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Abstract
Simple logistic regression can be adapted to dealwith right-censoring by inverse proba-
bility of censoring weighting (IPCW). We here compare two such IPCW approaches,
one based on weighting the outcome, the other based on weighting the estimating
equations. We study the large sample properties of the two approaches and show that
which of the two weighting methods is the most efficient depends on the censoring
distribution.We showby theoretical computations that themethods can be surprisingly
different in realistic settings.We further showhow to use the twoweighting approaches
for logistic regression to estimate causal treatment effects, for both observational stud-
ies and randomized clinical trials (RCT). Several estimators for observational studies
are compared and we present an application to registry data.We also revisit interesting
robustness properties of logistic regression in the context of RCTs, with a particular
focus on the IPCWweighting. We find that these robustness properties still hold when
the censoring weights are correctly specified, but not necessarily otherwise.

Keywords Average treatment effect · Competing risks · Ipcw adjustment · Logistic
regression

1 Introduction

To handle right censored data when fitting logistic regression models, it has been sug-
gested to weight the estimating equations, see. e.g. Zheng et al. (2006); Uno et al.
(2007), or to weight the outcome, see e.g. Scheike et al. (2008). In this manuscript
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we review these two approaches and we study and compare their large sample prop-
erties. We further present their potential to estimate meaningful treatment effects in
observational studies and randomized clinical trials.

The twoweighting approaches can be used very similarlywith orwithout competing
risks, which is convenient. As pointed out by e.g. Schumacher et al. (2016), competing
risks are very common in medical research. The two weighting approaches have the
advantage that they directly extend the usual logistic regression method for binary
data to both survival data and competing risks data.

Logistic regression is appealing both for its simplicity and its direct interpretation
when the interest lies in estimating a risk or survival probability at a fixed time-
point. We refer to this as a t-year risk or survival, in what follows. Unlike alternative
methods based on hazards regression, the parameters of the model lead to a direct
interpretation for the t-year risk or survival (probability) beingmodeled. Themodeling
assumptions are also easier to communicate and check, in our opinion. This is in
contrast to hazard-based regression, where model parameters do not have a direct
interpretation for the t-year risk or survival, and are commonly misunderstood by
clinicians. This is true without competing risks (Sutradhar and Austin 2018), and
even more so with competing risks. Standard approaches to model hazards involve
structural assumptions, typically proportional hazards, whose consequences for the
risk of interest are typically not clear. In addition, it can be challenging to assess the
validity of these structural assumptions. Stensrud and Hernán (2020) also mentioned
that treatment effects calculated from t-year risks are often more helpful for clinical
decision-making and more easily understood by patients than hazard ratios.

The rest of the manuscript is organized as follows. In Sect. 2, we introduce the
estimating equations to fit a logistic regression model and we study the large sam-
ple properties of the two different weighting approaches. To derive the large sample
results, we use only “simple” arguments based on Taylor expansions and “standard”
martingales theory (Aalen et al. 2008, Sec. 2.2). We avoid the use of projection argu-
ments as in e.g. Tsiatis (2006), which we hope facilitates the understanding of the
origins of the key results. Building on the comparison of the asymptotic properties of
each weighting approach, in Sect. 2.8, we show that the two approaches sometimes
have very different performances, in terms of efficiency. In Sect. 3, we further show
how to use logistic regression to build G-computation (standardized) or double robust
estimators to account for confounding in observational studies, when estimating treat-
ment effects. Here we focus on the situation with a baseline treatment and baseline
confounders. We do not cover the more complex settings with time-dependent treat-
ment and/or time-dependent confounding.As compared to similar approaches building
on hazard-based regression, as that of Ozenne et al. (2020), here logistic regression
enables a direct parametrization of the outcome model. This can facilitate modeling
choices and the discussion of their strengths and limitations. In Sect. 4, we present
an application to Danish registry data (Holt et al. 2021), where we compared the 33-
months risk of cardiovascular death among patients who have initiated a beta-blocker
treatment to those who have not. In Sect. 5, we revisit interesting robustness proper-
ties of logistic regression fitted to randomized clinical trials (RCT) data. We find that
these robustness properties still hold with the two weighting approaches, when the
censoring weights are correctly specified. Finally, Sect. 6 presents a discussion.
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2 Logistic regression with censored data

2.1 Observed data

Weassume toobserve (˜Ti ,�i , η̃i , Li , Ai ), i =1, . . . , n, i.i.d. copies of (˜T ,�, η̃, L, A).
Here T is the time-to-event with cause of death η ∈ {1, 2}, that is observed sub-
ject to right censoring. Specifically, because of a censoring time C , we observe
˜T = min(T , C), the right censored time to event, � = 11{T ≤ C}, the event (or
non-censoring) indicator and the observed cause of death η̃ = �η. In addition to
(˜T ,�, η̃), we also observe baseline covariates L and a binary treatment group A.

In the worked example we consider in Sect. 4, T is the time from start of follow-up
to death, with η ∈ {1, 2} indicating either a cardiovascular death, when η = 1, or a
non-cardiovascular death, when η = 2. The censoring time C is the time from start
of follow-up to either administrative censoring at end of follow-up (e.g. 31 December
2018) or loss of follow-up due to other reasons (here only emigration), whichever
comes first. The variable A indicates whether a patient has initiated a beta-blocker
treatment (A = 1) or not (A = 0) within 3 months before start of follow-up. As
follow-up starts 3 months after a myocardial infarction (MI), the variable A indicates
whether a patient has initiated the treatment within 3 months after MI. Here L denotes
a vector of many baseline (pre-treatment) variables, such as age and diabetes history
(see Sect. 4 for the full list).

Finally, note that the case without competing risk simply corresponds to the case
where η = 1 with probability 1. In that case, the clinical interpretation of the statistical
results will often be simpler. The fact that we assume only two competing events is
also without loss of generality as all competing events can always be grouped in a
single one.

2.2 Additional notations

Further, for a given time horizon t of interest (e.g. t=1 year) we also define the binary
indicator of experiencing a main event within t-year as D(t) = 11{T ≤ t, η = 1}.
Because of censoring, D(t) is not always fully observed, but we do observe ˜D(t) =
11{˜T ≤ t, η̃ = 1}. These two indicators are related via the equation ˜D(t) = D(t)·�(t),
where �(t) = 11{t ∧ T ≤ C} = 1 − 11{˜T ≤ t} · (1 − �) is the indicator of not
observing a censored time before t . We use the notation x ∧ y to indicate the minimun
of x and y. To present technical results, we further introduce the notation λc(t, A, L)

for the hazard rate of C given the covariates (L, A) and we let Mc(t, A, L) = 11{˜T ≤
t,� = 0} − ∫ t

0 Y (v)λc(v, A, L)dv be the related standard martingale, where Y (v) =
11{˜T ≥ v}. When the hazard rate λc(t, A, L) is assumed to not depend on either
L or A (or both), we will omit them in the notation, for conciseness. We will also
use the notation V 2 = VV T , for any vector V , and Var(V ) to denote the variance-
covariance matrix of V . We also use the “expit” and “logit” functions, defined as
expit(x) = exp(x)/{1 + exp(x)} and logit(x) = expit−1(x) = log{x/(1 − x)}.
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2.3 Assumptions about the censoring

Throughout the manuscript, we assume the usual independent censoring assumption
that C is independent of the outcome (T , η) given (L, A). This allows some depen-
dency between C and (L, A) that is present in many practical situations such as the
study of cardiovascular death presented in Sect. 4. In some sections, we will make
the stronger assumption that C is independent of T to derive specific results. This
assumption is more restrictive but nevertheless still often plausible and used in prac-
tice. For identifiability, we further assume that not all subjects of any subgroup defined
at baseline are systematically censored before t , i.e., P{C > t |L = l, A = a} > 0
for all l and a = 0, 1.

2.4 Logistic regression & estimating equations

In this section, we aim to estimate a conditional t-year risk of event, often known as the
absolute risk (Pfeiffer and Gail 2017) and defined as F1(t, a, l) = P{D(t) = 1|A =
a, L = l}. Within our context presented in Sect. 2.1, it has a simple interpretation
as the proportion of patients who are expected to die from a cardiovascular death
within the 33 months of follow-up, among patients from treatment group A = a, with
baseline characteristics L = l . Both Geskus (2016) and Young et al. (2020) discuss
the use of this quantity as well as various other relevant quantities. We assume that
the absolute risk F1(t, a, l) can be modeled by a logistic model, that is,

Q(t, x,β) = expit(xT β) = exp(xT β)

1 + exp(xT β)
,

where x is a pre-specified vector of p random variables constructed from (l, a) and
xT β denotes the linear predictor associated to X = x. For example, X = (1, A, L)T is
used in the simplest model and X = (1, A, L, AL)T can be used to model interactions
for heterogeneous treatment effects. Note that we implicitly assume that the parame-
ter vector β depends on t . For ease of notation we will sometimes write Q(t, x) for
Q(t, x,β), without emphasizing that it depends on the parameter β. Whenever con-
venient, we will also use F1(t, x) to denote the conditional risk P{D(t) = 1|X = x}.

For uncensored data, i.e. assuming P(� = 1) = 1, the binary variable Di (t)
is observed for all subjects i = 1, . . . , n. In that case, we can simply fit a usual
generalized linear model (glm) and it is well known that maximizing the likelihood
leads to the following p estimating equations, see e.g. McCullagh and Nelder (1989),

Uglm(β) = 1

n

n
∑

i=1

X i

{

Di (t) − Q(t, X i ,β)
}

= 0 . (1)

For right censored data, Di (t) is not observed for all subjects, but only for subjects i
such that�i (t) = 1.Twomodifications of the estimating equations havebeenproposed
to obtain consistent estimators via inverse probability of censoring weighting. The first
consists of weighting each individual contribution in (1) as follows,
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̂Uipcw−glm(β) = 1

n

n
∑

i=1

̂Wi (t) · X i

{

Di (t) − Q(t, X i ,β)
}

= 0 (2)

using subject specific weight

̂Wi (t) = �i (t)
̂Gc(t ∧ ˜Ti , X i )

= 11{˜Ti ≤ t} · �i

̂Gc(˜Ti , X i )
+ 11{˜Ti > t}
̂Gc(t, X i )

,

where ̂Gc(u, xi ) denotes a consistent estimator of Gc(u, xi ) = P(Ci > u|X i = xi )

for all u ≤ t . We refer to this approach below as IPCW-GLM. Although Di (t) is not
observed for all subjects, we note that (2) can be computed since ̂Wi (t) · ˜Di (t) =
̂Wi (t) · Di (t).
Often, a Kaplan-Meier estimator is used to compute ̂Gc. It may be computed from

the entire dataset, when the censoring is independent of the covariates, or within strata
defined from xi (e.g. in each treatment group) when this is not the case. Alternatively,
a Cox model can be used to model the censoring distribution. This approach has been
used by Zheng et al. (2006) and Uno et al. (2007) in a context without competing risks
and by Azarang et al. (2017) in presence of competing risks.

A second approach consists of weighting each individual outcome in (1) as follows,

̂Uoipcw(β) = 1

n

n
∑

i=1

X i
{

Di (t) · ̂Wi (t) − Q(t, X i ,β)
} = 0 . (3)

Here again, we could equivalently write Di (t) instead of ˜Di (t) in (3) to clarify that the
computation can be done using the observed censored data. We refer to this approach
as the outcome weighted IPCW approach or the OIPCW below. This approach has
been used by Scheike et al. (2008), among others, in a context with competing risks.

2.5 Properties and comparison of the two approaches

In this section, we study and compare some properties of the two different IPCW
adjustements given by (2) or (3). Surprisingly, the two weighting approaches can lead
to very different performance in some settings, as it will be illustrated in Sect. 2.8.
But, first, we start by noting a situation in which the two approaches are identical.
This happens when ̂Gc(t, xi ) is fully non-parametric, that is, when for all values of
xi , the survival probability Gc(t, xi ) can estimated with the Kaplan-Meier estimator.
Indeed, for each strata s(xi ) of ns(xi ) subjects having this covariate value xi , we note
that

∑

j∈s(xi )
̂W j (t) = ns(xi ) for all t such that ̂Gc(t, xi ) > 0, see e.g. Appendix A of

Cortese et al. (2017). Therefore it follows that

∑

j∈s(xi )

̂W j (t)x j Q(t, x j ) = ns(xi )xi Q(t, xi ) ,

which makes the two set of estimating Eqs. (2) and (3) equivalent and give the same
estimator.
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Second, we study the large sample properties of the two IPCW adjustments given
by (2) or (3). In the remainder of this section, we will restrict our attention to the
case in which a simple Kaplan-Meier estimator is used to estimate the censoring
distribution and the distribution of C does not depend on the covariates (A, L). We
will not necessarily assume that the logistic model is correctly specified. That is, we
allow for Q(t, x,β) �= F1(t, x). In that case, β denotes the limit of the solution to
the estimating Eq. (1), when the sample size n tends to infinity. Such a β exists under
mild conditions, see e.g. Uno et al. (2007). Following similar lines as those of Bang
and Tsiatis (2000), in Appendix A.1, we provide i.i.d. decompositions for the score
equations, in Theorem 1 below.

Theorem 1 The scores ̂Uoipcw(β) and ̂Uipcw−glm(β) have the i.i.d. representation

√
n ̂Um(β) = n−1/2

n
∑

i=1

�m
{

X i , Di (t),˜Ti , η̃i , t
}+ op(1) ,

where the subscript m denotes either “oipcw” or “ipcw-glm”, with

�m
{

X, D(t),˜T , η̃, t
} = X

{

D(t) − Q(t, X)
}−

∫ t

0
ϕm

(

X, D(t), s
)d Mc(s)

Gc(s)
, (4)

where

ϕoipcw

(

X, D(t), s
) = XD(t) − E

[

XD(t)
∣

∣ T ≥ s
]

,

ϕi pcw−glm

(

X, D(t), s
) = ϕoipcw

(

X, D(t), s
)

−
{

XQ(t, X) − E
[

XQ(t, X)

∣

∣

∣ T ≥ s
]}

.

From the above Theorem 1, the asymptotic normality of the estimators follows and
the asymptotic variances are calculated following standard martingale theory (Aalen
et al. 2008, Sec. 2.2). Note that similar results have been given before in Scheike et al.
(2008) for the OIPCW case and by Azarang et al. (2017) for the IPCW-GLM case,
although the studied estimation equations were slightly different.

Corollary 1 Let ̂βm be the estimator that solves ̂Um(β) = 0. Asymptotically,√
n
(

̂βm − β
) ∼ N (0,�m

)

, with the usual sandwich form of the variance, �m =
I−1�mI−1, with “bread” I = E

[

X2Q(t, X) {1 − Q(t, X)}] and “meat” �m =
J +∫ t

0 f m(s) fc(s)ds, where fc(s) = λc(s)/Gc(s),J = E
([

X
{

D(t)− Q(t, X)
}]2)

and f m(s) = E
[{

ϕm

(

X, D(t), s
)}211{T ≥ s}]. A consistent estimator ̂�m of

�m is provided in Appendix A.2. Further, if the model is well-specified, that is, if
Q(t, x,β) = F1(t, x) for all x, then J = I .

Proof Following standard martingale theory (Aalen et al. 2008, Sec. 2.2), the second
term of the two in the right-hand side of (4) is a martingale relative to the filtration
{Fu}, whereFu is the σ -algebra generated by

{

11{C ≤ t}, t ≤ u ; (T , η, X)
}

. Further,
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the two terms in the right-hand side of (4) therefore are uncorrelated as the first term is

F(0) measurable. With notation �m = Var
[

�m
{

X, D(t),˜T , η̃, t
}

]

, as the two terms

are also 0 mean, it follows

�m = E
(

[

X
{

D(t) − Q(t, X)
}]2
)

+ E

(

[∫ t

0
ϕm

(

X, D(t), s
)d Mc(s)

Gc(s)

]2
)

.

By definition E
( [

X
{

D(t) − Q(t, X)
}]2 ) = J and we note that thatJ = I follows

from the law of iterated expectations, when Q(t, x,β) = F1(t, x) for all x. Again
following standard variance calculation for martingales (Aalen et al. 2008, Sec. 2.2)
and the law of iterated expectations, it further follows

�m = J +
∫ t

0
E

(

[

ϕm

(

X, D(t), s
) Y (s)

Gc(s)

]2
)

λc(s)ds ,

= J +
∫ t

0
E

[

{

ϕm

(

X, D(t), s
)

}2
11{T ≥ s} E {11{C ≥ s} | X, T , η}

Gc(s)2

]

λc(s)ds ,

= J +
∫ t

0
f m(s) fc(s)ds , (5)

where f m(s) = E
[

{

ϕm

(

X, D(t), s
)}211{T ≥ s}

]

and fc(s) = λc(s)/Gc(s).

Finally, the delta-method implies that, asymptotically, the variance of the estimator
̂βm solving ̂Um(β) = 0 will be proportional, in the sample size, to the usual sandwich
form of the variance,�m = I−1�mI−1, sinceI is equal to the mean of the derivative
of the estimating Eqs. (1), (2) and (3), see e.g., Stefanski and Boos (2002). That is,
asymptotically,

√
n
(

̂βm − β
) ∼ N (0,�m

)

. 	

We now compare the asymptotic efficiency of the two IPCW adjustements given

by (2) or (3), when the model is well specified, and show that which of the two
is the most efficient depends on the censoring time distribution. Specifically, there
exists a function g such that �i pcw−glm − �oipcw = ∫ t

0 g(s) fc(s)ds and the average
∫ t
0 g(s) fc(s)ds can be either positive definite or negative definite, depending on the
shape of fc = λc/Gc, and hence of the density of the censoring time C within
[0, t]. Therefore, for some censoring time distributions the estimator ̂β i pcw−glm will
be more efficient than ̂βoipcw, but for other distributions it will be the other way
around. Hence, a general recommendation about which method to prefer between
OIPCW and IPCW-GLM cannot be made based on general efficiency criteria. To
the best of our knowledge, this result, which we encapsulated in Corollary below,
is new. For illustration, in Fig. 1 of Sect. 2.8 we show the diagonal of I−1g(s)I−1

versus s ∈ [0, t], fromwhich originates the difference in asymptotic variance between
̂β i pcw−glm and̂βoipcw, in a specific setting with two binary covariates.

Corollary 2 When the model is well-specified, the difference of the asymptotic variance
of the two scores ̂Uoipcw(β) and ̂Uipcw−glm(β), that is, �i pcw−glm − �oipcw, can be
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either positive definite or negative definite, depending on the shape of the density of
the censoring time within the interval [0, t]. This means that for some distributions of
the censoring time ̂βoipcw is more efficient than ̂β i pcw−glm, but for some others it is
the other way around.

Proof In the following, we will make extensive use of the law of iterated expectations,
without explicitly mentioning it each time. We first note that E

[

XD(t)11{T ≥ s}] =
E [XH1(s, t, X)], with H1(s, t, X) = F1(t, X) − F1(s, X). Further, it follows

f oipcw(s) = E

[

{

XD(t) − E
[

XD(t)
∣

∣ T ≥ s
]

}2
11{T ≥ s}

]

= E
[

XD(t)11{T ≥ s} − 11{T ≥ s}
S(s)

E [XH1(s, t, X)]
]2

= E
[

X2H1(s, t, X)
]

− {

E [XH1(s, t, X)]
}2

/S(s) .

Similarly, we obtain

f i pcw−glm(s) = f oipcw(s) + E

[

{

XQ(t, X) − E
[

XQ(t, X)
∣

∣ T ≥ s
]

}2
11{T ≥ s}

]

− E

[

XD(t)
{

XQ(t, X) − E
[

XQ(t, X) | T ≥ s
]

}T
11{T ≥ s}

]

− E

[

{

XQ(t, X) − E
[

XQ(t, X) | T ≥ s
]

}

XT D(t)11{T ≥ s}
]

= f oipcw(s) + g(s)

with,

g(s) = E
[

X2F2
1 (t, X)S(s, X)

]

− 1

S(s)

{

E
[

XF1(t, X)S(s, X)
]

}2

− 2E
[

X2H1(s, t, X)F1(t, X)
]

+ 1

S(s)
E
[

XF1(t, X)S(s, X)
]

E
[

XH1(s, t, X)
]T

+ 1

S(s)
E
[

XH1(s, t, X)
]

E
[

XF1(t, X)S(s, X)
]T

,

where S(s, X) = P(T ≥ s|X), since we assumed Q(t, X) = F1(t, X). Interestingly,
because S(0) = S(0, X) = 1 and H1(0, t, X) = F1(t, X), we note that the function
g : R → R

p×p starts being negative definite in s = 0, where

g(0) = −
{

E
[

X2F2
1 (t, X)

]

− (E [XF1(t, X)])2
}

= −Var
(

XF1(t, X)
)
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and because H1(t, t, X) = 0, it ends up being positive definite in s = t , with

g(t) = E
[

X2F2
1 (t, X)S(t, X)

]

− 1

S(t)

{

E
[

XF1(t, X)S(t, X)
]

}2

= E
[{

XF1(t, X) − E
[

XF1(t, X)
∣

∣ T ≥ t
]

}2
11{T > t}

]

.

The consequence of this is that the average
∫ t
0 g(s) fc(s)ds can be either positive

definite or negative definite, depending on the shape of fc(·) within the interval [0, t].
This means that which set of estimating equations to prefer, between (2) and (3),
depends on how the censoring times are distributed. 	


2.6 On naive standard error computation obtained using standard software

Most statistical software for fitting logistic models have a “weight” option. That is for
instance the case of the function glm in R and of procedure LOGISTIC in SAS, which
can be used to solve ̂Uipcw−glm(β) = 0, using the weights ̂Wi (t), i = 1, . . . , n. Other
software can solve ̂Uoipcw(β) = 0 by solving the usual score equations of a logistic
model for the weighted outcomes ̂Wi (t)˜Di (t), i = 1, . . . , n. That is the case of the
function geese in R (from the geepack package) and of procedure GENMOD in
SAS. Standard software can therefore be used to computêβm by solving ̂Um(β) = 0,
for m = oipcw and i pcw − glm, once the weights have been computed in a previous
step, e.g. using Kaplan-Meier.

From a practical point of view, it is of interest to know how the “naive” standard
errors, which the software will compute by default in that case, will compare to the
correct values given by the diagonal of ̂�m in Corollary 1. In short, we expect them to
be different as the software will ignore the fact that the weights ̂Wi (t) are estimated
from the data and therefore are not known in advance. We show by simple arguments
that the “naive” estimator of the variance of̂β is conservative. As it will be illustrated
in Sect. 2.8, and perhaps surprisingly, it can be very conservative. This emphasizes
that using ̂�m of Corollary 1 or Bootstrapping is important for correct standard error
computation.

In the rest of this section, we restrict our attention to the case in which the censoring
weights have been computed by simpleKaplan-Meier estimates, thus assumingC does
not depend on any of the covariates. We first note that the “naive” computation of the
software will estimate the variance of

√
n
(

̂βm − β
)

by a variance that converges
towards I−1�′

mI−1, where

�′
oipcw = Var

(

X i

{

Wi (t)Di (t) − Q(t, X i ,β)
})

and �′
i pcw−glm = Var

(

Wi (t)X i

{

Di (t) − Q(t, X i ,β)
})

,

where W (t) = �(t)/Gc(t ∧ ˜T ). This follows from usual theory of estimating equa-
tions, see. e.g. Stefanski and Boos (2002), when a robust standard error is computed
by the software. The fact that the “naive” robust standard errors are (asymptotically)
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systematically computed too large is therefore a consequence of the following propo-
sition.

Proposition 1 The difference �m − �′
m is negative definite for both m = oipcw and

ipcw − glm.

Proof First, note that Var
{

n−1/2Um(β)
} = �′

m , where Um(β) is defined by replacing
̂Wi (t) by Wi (t) in ̂Um(β). Second, we note that

√
n Um(β) can be re-written as the

same i.i.d. representation as that of
√

n ̂Um(β) except for the absence of the conditional
expectations terms in ϕm

(

X, D(t), s
)

, that is, without the term E(XD(t)|T > t) for
the OIPCW estimator or the term E(X [D(t) − Q(t, X)] |T > t) for the IPCW-GLM
estimator. This follows from calculations already presented in Appendix A.1 and
especially the identity Wi (t) = 1 − ∫ t

0 {1/Gc(u)}d Mc
i (u). Consequently, following

the same martingale arguments as in the proof of Corollary 1, it follows that

�m − �′
m =

∫ t

0
E
[{

hm(X) − E
[

hm(X)
∣

∣ T ≥ s
]

}2
11{T ≥ s}

]

fc(s)ds

−
∫ t

0
E
[{

hm(X)
}2
11{T ≥ s}

]

fc(s)ds

=
∫ t

0

(

− 1

S(s)

{

E
[

hm(X)11{T ≥ s}
]}2

)

fc(s)ds ,

with hoipcw(X) = XD(t) and hi pcw−glm(X) = X{D(t)− Q(t, X)}. This shows that
�m − �′

m is negative definite. 	


2.7 Augmented estimators

Following ideas from Robins and Rotnitzky (1992) and Bang and Tsiatis (2000),
we now construct modifications of estimating Eqs. (2) and (3) which could lead to
(asymptotically) more efficient estimators. Here we will again restrict our attention to
the case where the Kaplan-Meier estimator is used to estimate the weights and C is
independent of the covariates (A, L), as in the two previous sections. To do this, we
first define augmented equations ̂U Aug

m (β) of the form

̂U Aug
m (β) = ̂Um(β) + 1

n

n
∑

i=1

∫ t

0
em(X i , s)

d Mc
i (s)

Gc(s)
= 0 ,

where em(X, s) is an arbitrary function of X and s. Thesemodified equations still have
mean zero (asymptotically) and thus any choice of em(X, s) will provide a consistent
estimator of β. A natural question is therefore which choices lead to the most efficient
estimators. The following proposition answers this question and shows that the optimal
choice of em(X, s) also makes the two augmented equations for OIPCW and IPCW-
GLM become asymptotically equivalent.
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Proposition 2 Let̂β
Aug
m be the solution of ̂U Aug

m (β). Then, the asymptotic variance of
̂β

Aug
m attains its minimum when

eoipcw(X, s) = E
[

XD(t)
∣

∣ T ≥ s
]− E

[

XD(t)
∣

∣ X, T ≥ s
]

and ei pcw−glm(X, s) = eoipcw(X, s) + XQ(t, X) − E
[

XQ(t, X)
∣

∣ T ≥ s
]

.

In that case,
√

n ̂U Aug
oipcw(β) = √

n ̂U Aug
ipcw−glm(β)+op(1) and the asymptotic variances

of̂β
Aug
oipcw and̂β

Aug
ipcw−glm are equal.

Proof From the i.i.d representation of
√

n ̂Um(β) given in Theorem1,we get that of the
augmented score, that is,

√
n ̂U Aug

m (β) = n−1/2∑n
i=1 �

Aug
m

{

X i , Di (t),˜Ti , η̃i , t
} +

op(1), with influence function

�
Aug
m

{

X, D(t),˜T , η̃, t
} = X

{

D(t) − Q(t, X)
}−

∫ t

0
ϕ

Aug
m

(

X, D(t), s
)d Mc(s)

Gc(s)
,

with ϕ
Aug
m (X, D(t), s) = em(X, s)+ϕm(X, D(t), s). Similarly to (5) in the Proof of

Corollary 1, it follows

Var
[

�
Aug
m

{

X, D(t),˜T , η̃, t
}

]

= J +
∫ t

0
f Aug

m (s) fc(s)ds ,

where

f Aug
m (s) = E

[

{

em(X, s) + ϕm

(

X, D(t), s
)}211{T ≥ s}

]

= E
[

{

em(X, s) + ϕm

(

X, D(t), s
)}2

∣

∣

∣ T ≥ s
]

S(s)

= E
{

E
[

{

em(X, s) + ϕm

(

X, D(t), s
)}2

∣

∣

∣ X, T ≥ s
] ∣

∣

∣ T ≥ s
}

S(s)

which achieves its minimum for

em(X, s) = −E
[

ϕm

(

X, D(t), s
)

∣

∣

∣ X, T ≥ s
]

.

Therefore, we have

eoipcw(X, s) = −E
[

XD(t)
∣

∣ X, T ≥ s
]+ E

[

XD(t)
∣

∣ T ≥ s
]

and ei pcw−glm(X, s) = eoipcw(X, s)

+ E
[

XQ(t, X) − E
[

XQ(t, X)
∣

∣ T ≥ s
]

∣

∣

∣ X, T ≥ s
]

= eoipcw(X, s) + XQ(t, X) − E
[

XQ(t, X)
∣

∣ T ≥ s
]

,

123



452 P. F. Blanche et al.

hence the first result of the proposition. As ϕ
Aug
m (X, D(t), s) = em(X, s) +

ϕm(X, D(t), s), it further follows

ϕ
Aug
oipcw

(

X, D(t), s
) = XD(t) − E

[

XD(t)
∣

∣ X, T ≥ s
]

and ϕ
Aug
ipcw−glm

(

X, D(t), s
) = ϕ

Aug
oipcw

(

X, D(t), s
)

−
{

XQ(t, X) − E
[

XQ(t, X)
∣

∣ T ≥ s
]

}

+ XQ(t, X) − E
[

XQ(t, X)
∣

∣ T ≥ s
]

= ϕ
Aug
oipcw

(

X, D(t), s
)

.

This shows that
√

n ̂U Aug
oipcw(β) = √

n ̂U Aug
ipcw−glm(β) + op(1) and therefore also that

the asymptotic variances of̂β
Aug
oipcw and̂β

Aug
ipcw−glm are equal. 	


When using the optimal choice of em(X, s) of Proposition 2, the augmented equa-
tions become

̂U Aug
m (β) = ̂Um(β) + 1

n

n
∑

i=1

∫ t

0

{

E
[

X i Di (t)
∣

∣ X i , Ti ≥ s
]

− E
[

XD(t)
∣

∣ T ≥ s
]

}d Mc
i (s)

Gc(s)
= 0 . (6)

One cannot solve ̂U Aug(β) = 0 in practice, since the augmentation term depends
on unknown parameters. However, one can instead solve a similar equation after
replacing Mc

i (s) and Gc(s) by ̂Mc
i (s) and ̂Gc(s) (as defined in Appendix A.2) and the

two terms in the brackets { } above by consistent estimators of each. While the second
term E

[

XD(t)
∣

∣ T ≥ s
]

can be estimated nonparametrically in a simple fashion (as
described in Appendix A.2), this is not necessarily the case for the first term because
of the conditioning on X i , especially if the dimension of X i is not small and/or some
components of X i are continuous covariates. In that case, one will often need to
model F1(s, X) for all s ∈ [0, t], build on the equality E

[

XD(t)
∣

∣ X, T ≥ s
] =

XH1(s, t, X)/S(s, X) and instead solve

̂U Aug
m (β) = ̂Um(β) + 1

n

n
∑

i=1

∫ t

0

{

X i ̂H1(s, t, X i )

̂S(s, X i )
− ̂E

[

XD(t)
∣

∣ T ≥ s
]

}

d ̂Mc
i (s)

̂Gc(s)

= 0 , (7)

where ̂H1(s, t, X) = ̂F1(t, X) − ̂F1(s, X) and ̂S(s, X) is an estimator of S(s, X) =
P(T > s|X). Popular methods to estimate F1(s, X) and S(s, X) simultaneously over
all time s ∈ [0, t] are based on cause-specific hazards modeling, see e.g. Ozenne et al.
(2017). Although ̂E

[

XD(t)
∣

∣ T ≥ s
]

can be computed non-parametrically, it might be
more natural to compute it as

{∑n
i=1 Yi (s)X i ̂H1(s, t, X i )

/

̂S(s, X i )
}

/
{∑n

i=1 Yi (s)
}
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in that case. From a computational point of view, it is also interesting to note that
d ̂Mc

i (s) in (7) can be replaced by d N c
i (s), where N c

i (s) = 11{˜Ti ≤ s,�i = 0}.
Following Robins and Rotnitzky (1992), one could rigorously show that Eq. (7)

provide the best augmented estimators and that this will provide more efficient esti-
mators than (2) and (3), if the plugged-in estimates ̂F1(s, X) and ̂S(s, X) are close
enough to their counterpart for all s ∈ [0, t].

On one hand, this efficiency result makes the augmented estimating Eq. (7) appeal-
ing. This is especially the case when F1(s, X) and S(s, X) do not appear particularly
difficult to estimate consistently for all s ∈ [0, t]. On the other hand, in practice it
might be challenging to estimate all these quantities precisely. Thismight often happen
when the dimension of X is not small and/or some components of X are continuous
covariates. The prespecification ofmodeling choices, which is often deemed important
in medical research (FDA 2021; Loder et al. 2010), might further complicate the task.
This should be kept in mind when considering the use of the augmented approach in

practice, since ̂β
Aug
m might be less efficient than ̂βm when F1(s, X) and S(s, X) are

not estimated consistently for all s ∈ [0, t].
Finally, the Proposition 3 below provides a simple computational trick to solve

estimating equations asymptotically equivalent to the augmented Eq. (6), using stan-
dard software, when X is a vector of a few categorical variables. The results and its
proof might also help to get some intuition for more general results, which state that
efficiency gains can generally be obtained by using inverse probability of censoring
weights that depends on X , even when the censoring time C is independent of X
(Robins and Rotnitzky 1992).

Proposition 3 Assume that X is a vector of categorical variables defining K strata
and let s(x) ∈ {s1, . . . , sK } denote the strata corresponding to x. Further assume that
a stratified Kaplan-Meier estimator, stratified on s(X), is used to compute the inverse
probability of censoring weights. In that case, solving the equations ̂Um(β) = 0 (given
by (2) and (3)) is asymptotically equivalent to solving the augmented augmented
̂U Aug

m (β) (given by (6)), for which a marginal Kaplan-Meier estimator is used to to
compute the weights. That is,

√
n ̂Um(β) = √

n ̂U Aug
m (β) + op(1).

Proof First, as pointed out before at the beginning of Sect. 2.5, we note that
̂Um(β) is identical for both choices of m in that case. Second, using that

∑n
i=1 =

∑K
k=1

∑

i :s(X i )=sk
and proceeding as in Appendix A.1 for each sum

∑

i :s(X i )=sk
, we

obtain a similar i.i.d decomposition as in Theorem 1 and it follows that
√

n ̂Um(β) =
n−1/2∑n

i=1 �m
{

X i , Di (t),˜Ti , η̃i , t
}+ op(1) with

�m
{

X, D(t),˜T , η̃, t
} = X

{

D(t) − Q(t, X)
}

−
∫ t

0

{

XD(t) − E
[

XD(t)
∣

∣ s(X), T ≥ s
]

}

d Mc
(

s, s(X)
)

Gc
(

s, s(X)
) .
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We now note that conditioning on X or s(X) is equivalent and that assuming C
independent of X implies Mc

(

s, s(X)
) = Mc(s) and Gc

(

s, s(X)
) = Gc(s). This

shows that
√

n ̂Um(β) = √
n ̂U Aug

m (β) + op(1). 	


2.8 Theoretical computation and comparison of efficiency

In this section, we compare the asymptotic variances of ̂β i pcw−glm and ̂βoipcw in
specific settings, to illustrate their theoretical differences detailed above. For a simple
illustration, we consider X = (X1, X2) where X1 and X2 are two independent binary
covariates, with P(X1 = −1) = P(X1 = 1) = 0.5 and P(X2 = 0) = P(X2 =
1) = 0.5. We assume that F1(t, X) = expit(β0(t) + β1X1 + β2X2) with β0(t) =
log[ρ1(1 − e−t )], β1 = 0.5 and β2 = −0.5. For the absolute risk of the competing
event, i.e. F2(t, X) = P(T ≤ t, η = 2|X), we assume F2(t, X) = expit(μ(t) − 0.5 ·
X1 + 0.5 · X2) · {1 − F1(6, X)} with μ(t) = log[ρ2(1 − e−t )]. This parametrization
satisfies the constraint F1(t, x) + F2(t, x) ≤ 1 for all x = (x1, x2) and t ∈ [0, 6]. To
generate independent censoring, we used a constant hazard λc(t, X) = rc.

To illustrate several scenarios, we use two values of each parameterρ1,ρ2 and rc and
two time horizons t = 1 and 5. This leads to 16 scenarios with a marginal risk F1(t) =
E{F1(t, X)} ranging from 5% to 42% and a proportion of censored observations
before time t , i.e. P(˜T ≤ t, η̃ = 0), ranging from 4% to 80% (Table 1). We consider
the estimation of the well-specified logistic model for F1(t, X) at time t = 1 and 5
and we compute the corresponding asymptotic variances, when using OPICW and
IPCW-GLM. The computation was made using the theoretical (asymptotic) formulae
derived in Sect. 2.5. In addition, we performed simulations that led to similar results
with sample sizes n = 400 and n = 1600 (not shown), which confirmed the results
presented below. In the simulation results, the gain for n = 400 for the OIPCW
approach were slightly better than in the theoretical (asymptotic) computations.

The theoretical computations, presented in Table 1, reveal which type of IPCW
adjustment gave the smallest asymptotic variances in our settings. Overall, OIPCW
appears to be preferable as the gain using this method is sometimes considerable.
For a high risk F1(t) = 42% and a low risk of competing event (ρ2 = 0.1, which
corresponds to 8% competing risk) the parameters β0(t), β1 and β2 are estimated with
a variance that is between 2.17 and 2.75 times larger when using IPCW-GLM instead
of OIPCW.

In Fig. 1 we show the 3 diagonal components of the matrix (1/n)I−1g(s)I−1,
together with fc(s), for s ∈ [0, t], for the two settings in which we saw the largest
difference in asymptotic variance between the twomethods favoringOIPCWor IPCW-
GLM, respectively. This provides insights on the origin of the variance differences. As
seen in Sect. 2.5, the differences in asymptotic variance, for each parameter estimator,
are given by the diagonal of (1/n)I−1{ ∫ t

0 g(s) fc(s)ds
}I−1, where fc depends only

on the censoring time distribution. In our settings, fc(s) = rcerc·s , which increases
fast with s. This makes the values of g(s) for late times s particularly influential in
the variance differences. This explains why the left plot corresponds to large variance
differences whereas the right plot corresponds to smaller differences. On the left plot
of Fig. 1, there is a large interval in which the diagonal terms of g(s) are positive and
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Table 1 Ratio of variances for
the estimators of each parameter
of the logistic model, when
using IPCW-GLM relative to
OIPCW. A symbol “-” means
that the value is similar to that
just above. “Cens” displays the
proportion of censored
observations before time t , i.e.
P(˜T ≤ t, η̃ = 0). See text for
the definition of the other
parameters

t ρ1 F1(t) ρ2 rc Cens β0(t) β1 β2

1 0.1 5% 0.1 0.1 9% 1.00 1.00 1.00

– – – – 0.5 36% 1.00 1.00 1.01

– – – 5 0.1 4% 1.00 1.00 1.00

– – – – 0.5 16% 1.00 0.99 0.99

– 0.9 32% 0.1 0.1 7% 1.00 1.00 1.00

– – – – 0.5 30% 1.02 1.02 1.03

– – – 5 0.1 4% 0.99 0.98 0.98

– – – – 0.5 17% 0.97 0.93 0.93

5 0.1 8% 0.1 0.1 33% 1.02 1.02 1.03

– – – – 0.5 80% 1.23 1.31 1.41

– – – 5 0.1 8% 1.00 0.99 1.00

– – – – 0.5 24% 1.02 1.00 1.03

– 0.9 42% 0.1 0.1 23% 1.09 1.13 1.14

– – – – 0.5 59% 2.17 2.68 2.75

– – – 5 0.1 7% 0.99 0.96 0.97

– – – – 0.5 23% 1.11 1.03 1.09

Fig. 1 Diagonal terms for (1/n)I−1g(s)I−1, for s ∈ [0, t], from which originates the difference in
asymptotic variance between each parameter estimator, when using either OIPCW or IPCW-GLM (with
n = 400). The 1st , 2nd and 3rd diagonal terms relate to the differences in variance for estimators of β0(t),
β1 and β2, respectively. The gray area and the right axis additionally show fc(s) for s ∈ [0, t], which
weights the contribution of (1/n)I−1g(s)I−1, at each time s ∈ [0, t], to the variance differences given
by (1/n)I−1{ ∫ t

0 g(s) fc(s)ds
}I−1. The right and left plots correspond to situations with data generating

parameters ρ1, ρ2, rc and t of lines 14 and 8 of Table 1, respectively

fc(s) is large. By contrast, on the right plot, the large interval for which the diagonal
terms of g(s) are negative contains a wide range of time s for which fc(s) is rather
small.
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Table 2 Ratio of naive-variance
to true variance, for scenarios
with censoring rc = 0.5 and
t = 5, when using either a
marginal or a stratified
Kaplan-Meier estimator to
compute the IPCW weights

ρ1 ρ2 Marginal K-M Stratified K-M

β0(t) β1 β2 β0(t) β1 β2

OIPCW

0.1 0.1 1.01 1.00 1.00 1.02 1.01 1.02

− 5 1.03 1.00 1.00 1.05 1.05 1.05

0.9 0.1 1.06 1.00 1.00 1.13 1.11 1.12

− 5 1.13 1.00 1.00 1.28 1.25 1.26

IPCW-GLM

0.1 0.1 1.18 1.00 1.00 1.47 1.33 1.43

− 5 1.05 1.01 1.00 1.09 1.06 1.09

0.9 0.1 1.45 1.00 1.00 3.23 2.91 3.00

− 5 1.18 1.07 1.01 1.52 1.38 1.41

Figure 1 also illustrates the result that which method is asymptotically the most
efficient depends on the censoring time distribution. Graphically, which method is
most efficient depends on the location of the gray area and different distributions will
lead to different shapes of the gray area. For instance, if the censoring times were all
early with respect to the time-point t of interest, then the IPCW-GLM would be more
efficient, as in that case fc(s) would be non zero only for early times s. Conversely, if
they were all located just before t , then OIPCW would be more efficient.

Finally, we compare the “naive” variance, which standard software can estimate by
default, to the true variance (asymptotically). This exemplifies the asymptotic over-
estimation of the variance showed in Sect. 2.6. The results are provided in Table 2,
for all scenarios with time t = 5. The table provides the results when using a simple
(marginal) Kaplan-Meier estimator or a (fully) stratified Kaplan-Meier estimator to
compute the weights. We note that for all settings and both estimators the variance is
overestimated for β0(t), and this is particularly so for the IPCW-GLM method. For
instance, this will make the confidence interval for the predicted risk in the reference
group too wide. The variance of covariate effect estimators are well estimated for
the OPICW using the simple naive variance estimator, when using a simple Kaplan-
Meier to compute the weight. However, when using the stratified Kaplan-Meier, we
see differences. The IPCW-GLM “naive” standard errors were considerably off when
compared to the truth when using the stratified Kaplan-Meier weights. We conclude
that it is important to use appropriate methods to compute standard errors.

Comparing the results obtained using the stratified versus those using the simpler
Kaplan-Meier estimator also illustrates the efficiency gain that can be obtained using
the augmented estimators. This is because using the (fully) stratified Kaplan-Meier is
asymptotically equivalent to using the augmented estimator, as seen in Proposition 3.

3 Average causal treatment effect and confounding

We now present estimators of the average causal treatment effect. We use potential
outcome notations, as e.g. in Ozenne et al. (2020) or Young et al. (2020), to define the
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associated target parameters. Let (T a, ηa) and Da(t), for a = 0, 1, denote the poten-
tial outcome variables (T , η) and D(t) that are, or would have been observed, under
the treatment value a. Averaged causal risks are defined by F1(t, a) = P{Da(t) = 1},
for a = 0 and 1, where the term “average” emphasizes that we average over base-
line covariates, i.e. F1(t, a) = E[P{Da(t) = 1|L}]. The term “causal” emphasizes
that F1(t, a) relates to the potential outcome Da(t). Within our context presented in
Sect. 2.1, the interpretation of F1(t, a) is that of the proportion of patients that would
have been expected to die from a cardiovascular death within the 33 months of follow-
up, had all the patients initiated a beta-blocker treatment, when a = 1, or had none of
them been treated with beta-blocker, when a = 0. The corresponding risk difference
Diff(t) = F1(t, 1) − F1(t, 0), and risk ratio RR(t) = F1(t, 1)

/

F1(t, 0), therefore
each defines an average treatment effect.

Specific assumptions, in addition of those of Sect. 2.3, are required to make valid
causal inference. In the rest of the manuscript, we will assume the usual “no unmea-
sured confounding”, “consistency” and “positivity” assumptions. No unmeasured
confounding means that (T a, ηa), and thus also Da(t), are independent of A condi-
tionally on L. Positivity means that π(a, l) > 0 for all l and a = 0, 1, where π(a, l) =
P{A = a|L = l}. Consistency means that (T , η) = (1− A) · (T 0, η0)+ A · (T 1, η1).
See, e.g., Hernán and Robins (2020) for more details on these standard assumptions
and counterfactual notations.

3.1 G-computation

As in Ozenne et al. (2020) and Zhang and Zhang (2011), for a = 0, 1, we can estimate
F1(t, a) using the G-computation estimator

̂F1
g
(t, a) = 1

n

n
∑

i=1

̂Q(t, a, Li ) (8)

where ̂Q(t, a, Li ) = Q(t, a, Li ,̂β), using any consistent estimator ̂β of β seen
above, e.g., ̂βoipcw or ̂βoipcw. With a slight abuse of notations, we will often write
Q(t, A, L,β) for Q(t, X,β) in what follows, to emphasize that it depends on both A
and L. Similarly, we will also write Q(t, a, L,β) in the case A is either observed with,
or set to, the value a. The rational for ̂F1

g
(t, a) is that, under the above assumptions,

F1(t, a) = E{P{D(t) = 1|A = a, L}}. The g-computation estimators of Diff(t) and
R R(t) are then obtained as the difference or the ratio of ̂F1(t, 1) and ̂F1(t, 0). Instead
of using a logistic model, Ozenne et al. (2020) previously suggested to combine two
cause-specific Cox models to compute ̂F1(t, a) for a = 0, 1, whereas Zhang and
Zhang (2011) suggested to use a Fine and Gray (1999) model.

Many asymptotic properties of ̂F1
g
(t, a), and of the corresponding estimators of

Diff(t) and RR(t), can be derived directly from Taylor-expansions and the results of
the previous sections. We especially note the following result, which provides insights
to compare the asymptotic efficiency of different versions of the estimator ̂F1

g
(t, a),

defined by plugging-in different estimatorŝβ of β. Maybe unsurprisingly, this result
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implies that using themost efficient estimator̂β will lead to themost efficient estimator
̂F1

g
(t, a), when the model is well-specified.

Proposition 4 Assume that the model is well-specified, that is, Q(t, a, l,β) =
F1(t, a, l) for all l , and that C does not depend on the covariates (A, L). Asymp-

totically,
√

n
{

̂F1
g
(t, a) − F1(t, a)

}

is normally distributed with variance

Var
{

Q(t, a, L,β)
}

+ n
{

Bβ(a)
}

Var(̂β)
{

Bβ(a)
}T

,

where Bβ(a) = E
{

∂/∂θT Q(t, a, L, θ)|θ=β

}

. Consequently, if we consider any two
versions of ̂F1

g
(t, a), each defined by plugging-in a different estimator ̂β of β, the

most efficient of the two is obtained by plugging-in the most efficient estimator ̂β
(asymptotically).

Proof A proof can be found in Bartlett (2018, Appendix A.2), in a slightly different
context. We repeat the main arguments in our context in Appendix A.3, for complete-
ness. 	


3.2 Double robust estimating equations

The above g-computation estimator requires the model for F1(t, a, l) to be well-
specified to be consistent (unless specific additional assumptions hold, as in Sect. 5).
To relax this assumption, so called double-robust (DR) estimators have been proposed.
These estimators build on estimators for both F1(t, a, l) (the “outcome model”) and
π(a, l) (the “propensity scoremodel”) and requires only one of the two to be consistent
for the DR estimator to be consistent. See e.g. Hernán and Robins (2020). Let π̂(a, Li )

denote an estimator of π(a, Li ). For binary (uncensored data), the DR estimators of
F1(t, a) is

̂F1
dr

(t, a) = 1

n

n
∑

i=1

11{Ai = a}
π̂(a, Li )

(

Di (t) − ̂Q(t, a, Li )
)

+ 1

n

n
∑

i=1

̂Q(t, a, Li ) . (9)

In short, the double robustness comes from the following properties. If the outcome
model is correctly specified, the law of iterated expectations and the law of large
number together imply that the first average on the right-hand side of Eq. (9) converges
to zero. Specifically, the first average in the right-hand side of (9) will converge to

E

{

E

[

11{Ai = a}
π̂(a, Li )

(

Di (t) − ̂Q(t, a, Li )
)

∣

∣

∣

∣

Ai , Li

]}

≈ E

{

11{Ai = a}
π̂(a, Li )

(

E
[

Di (t)
∣

∣ Ai , Li
]− ̂Q(t, Ai , Li )

)

}

,

which will also converge to zero when ̂Q(t, Ai , Li ) converges to E[Di (t)|Ai , Li ] =
F1(t, Ai , Li ). Hence, in that case the DR-estimator has asymptotically the same mean
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as the g-computation estimator. If the propensity model is correctly specified, then the
two ways of averging, using the empirical average (1/n)

∑

i or the weighted average
(1/n)

∑

i
11{Ai =a}
π̂(a,Li )

, are both consistent for the population average. Hence the weighted

and empirical average of ̂Q(t, a, Li ) cancel each other out (in the limit) and the DR
estimator converges to the expectation of (1/n)

∑n
i=1

11{Ai =a}
π̂(a,Li )

Di (t), which is indeed
F1(t, a).

To define an estimator with right censored data, we note that only the first of the two
averages on the right-hand side of Eq. (9) needs to be modified. Further, the formula of
this first average resembles very much that of the estimating equation for binary data
of Eq. (1). Hence we can build on the same idea: we can either weight the individual
contribution to the average (as in (2)) or the censored outcome (as in (3)). The first
option leads to

̂F1
dr ,1

(t, a) = 1

n

n
∑

i=1

̂Wi (t)11{Ai = a}
π̂(a, Li )

(

Di (t) − ̂Q(t, a, Li )
)

+1

n

n
∑

i=1

̂Q(t, a, Li ) (10)

the second to

̂F1
dr ,2

(t, a) = 1

n

n
∑

i=1

11{Ai = a}
π̂(a, Li )

(

̂Wi (t) · Di (t) − ̂Q(t, a, Li )
)

+1

n

n
∑

i=1

̂Q(t, a, Li ) . (11)

This second approach is similar to a DR estimator suggested by Ozenne et al. (2020).
The only difference is that we suggest to use a logistic model for the outcome model
Q(t, a, Li ), whereas they instead suggest a model based on two cause-specific Cox
regressions. Estimators of D̂iff(t) and̂R R(t) are then obtained as the difference or the
ratio of the estimator for each group.

Standard errors may be computed either by bootstrapping or via asymptotic decom-
positions, which follow after Taylor expanding in the direction of the different
parameters, similarly to what we did for the G-computation estimator in Appendix
A.3.

3.3 Regression based DR estimators via clever covariates

Building on the work of Scharfstein et al. (1999, p. 1140–1441), Bang and Robins
(2005) pointed out that aDRestimator closely related to that of Eq. (9) can be computed
via simple averages of predicted risks similar to that of the G-computation estimator in
(8). They suggested to proceed as follows. First, fit a logistic model using, in addition
to the covariates (A, L), the two constructed covariates defined by ha{A, L} = 11{A =
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a}/π̂(a, L), for a = 0, 1, which Moore and van der Laan (2009) referred to as “clever
covariates”. That is, fit the logistic regression model

Q′(t, A, L
) = expit

[

logit
{

Q(t, A, L)
}+ βh0h0{A, L} + βh1h1{A, L}

]

,

where Q(t, A, L) is the same logistic model as before. Then, instead of (8), compute,

̂F1
rdr

(t, a) = 1

n

n
∑

i=1

̂Q′(t, a, Li ) . (12)

Below, we refer to this estimator as the regression-based DR estimator. The rational

for this approach is that ̂F1
rdr

(t, a) can be re-written almost exactly as the right-hand
side of Eq. (9), with the only difference that ̂Q should be replaced by ̂Q′. Indeed,

1

n

n
∑

i=1

11{Ai = a}
π̂(a, Li )

[

Di (t) − ̂Q′(t, a, Li )
]

= 0 , (13)

when fitting the logistic model with the clever covariates, using estimating Eq. (1).
This is because the equation corresponding to the clever covariate ha{A, L}, for a =
0, 1, is nothing else than (13), by definition of ha{Ai , Li } and because ha{Ai , Li } ·
̂Q(t, Ai , L) = ha{Ai , Li } · ̂Q(t, a, L).
Of course, the minor difference between ̂F1

rdr
(t, a) and ̂F1

dr
(t, a) has no conse-

quence for the double robustness property. Indeed, if the outcomemodel Q(t, A, L) is
well specified, then Q′(t, A, L) is also well-specified and adding the clever covariates
or not into the model does not matter much, because estimators of parameter βh0 and
βh1 will converge towards zero, as the sample size n increases. If the propensity score
model is well specified, then the outcomemodel does not need to be correctly specified
and thus it does not matter either for consistency.

Scharfstein et al. (1999) and Bang and Robins (2005) also note that if we only aim
to estimate the causal difference Diff(t) and not each of the two risks, then we can use
a single clever covariate instead of two, when fitting the logistic model. That is, one
can fit the logistic regression model

Q′′(t, A, L
) = expit

[

logit
{

Q(t, A, L)
}+ βh{1−0}h{1−0}{A, L}

]

,

with the single clever covariate h{1−0}{A, L} = h1{A, L} − h0{A, L}. The risk dif-
ference can then be estimated by a simple average of differences,

1

n

n
∑

i=1

{

̂Q′′(t, 1, Li
)− ̂Q′′(t, 01, Li

)

}

.

The rational is similar to that of using two clever covariates. This becomes clear after
noticing that
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̂F1
dr

(t, 1)−̂F1
dr

(t, 0) = 1

n

n
∑

i=1

{

11{Ai = 1}
π̂(1, Li )

− 11{Ai = 0}
π̂(0, Li )

}

{

Di (t) − ̂Q(t, Ai , Li )
}

+ 1

n

n
∑

i=1

{

̂Q(t, 1, Li ) − ̂Q(t, 0, Li )
}

,

which holds because 11{Ai = a}· ̂Q(t, Ai , Li ) = 11{Ai = a}· ̂Q(t, a, Li ). Scharfstein
et al. (1999) pointed out that this approach can be slightly more efficient than that
based on the two clever covariates. However, we believe that often we do not aim to
estimate only the risk difference but also the risk in each group. Hence, using two
clever covariates is probably often the most attractive option to compute the three
estimates in a unified way.

To define regression-based DR estimators for right censored data, it is sufficient to
use either the estimating Eqs. (2) or (3) to fit the logistic model and otherwise proceed
as in the binary uncensored case described above. The rational is exactly the same: the
first average on the right-hand side of Eqs. (10) and (11) are similar to the estimation
equation induced by the clever covariates in either (2) or (3). Finally, note that the DR
estimators may further be censoring augmented along the lines of Sect. 2.7, and this
has been done in Ozenne et al. (2020).

3.4 tMLE-like estimators

Moore and van der Laan (2009) suggested a very similar yet different approach to the
regression-based DR approach. The regression models used for the outcome, i.e.,
Q′(t, A, L), and the propensity score, i.e., π(A, L), are the same. The estimator
used for the propensity score, and thus to construct the clever covariates, are the
same and the averaging step (12) is also exactly the same. However, the procedure
to estimate the parameters of the outcome model Q′(t, A, L), and hence to com-
pute ̂Q′(t, a, Li

)

, is slightly different. Moore and van der Laan (2009) proposed to
first estimate F1(t, Ai , Li ) by fitting the model without the clever covariates, that
is, Q(t, A, L). Then, in a second step, the model is updated by regressing on the
clever covariates while including logit

{

̂Q(t, A, L)
}

, obtained from the previous step,
as an offset in the model. Hence, the final estimate of the individual predicted risk
̂Q′(t, a, Li

)

closely resembles that of the regression based DR, except for the fact that
not all regression parameters have been estimated simultaneously. Instead, a two steps
approach was used. First the parameters in Q(t, Ai , L) were estimated, and then the
parameters βh0 and βh1 . A similar two steps approach is also suggested to compute
̂Q′′(t, a, Li

)

, when using one clever covariate instead of two.
The double robustness property is of course preserved with this approach. If the

outcome regression model is well specified, then consistency follows from the same
argument as for the regression-based DR approach. If the propensity score model is
consistent, here again the consistency follows because, in the second step, the estimat-
ing equations induced by the clever covariates are similar to the first average on the
right-hand side of Eq. (9).
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This estimator is referred to as the tMLE estimator by Moore and van der Laan
(2009). This stands for “targeted maximum likelihood estimation”. Overviews about
tMLE, in general, can be found in Van Der Laan and Rubin (2006) and Van der Laan
and Rose (2011). The computation of the tMLE estimator described above is presented
in details in a tutorial by Luque-Fernandez et al. (2018).

Interestingly, with right censored data, a similar approach to that of Moore and
van der Laan (2009) can easily be used. One can just use the estimating Eqs. (2) or
(3) to fit the logistic models and otherwise proceed as in the binary uncensored case.

4 Application to Danish registry data

We re-analyze data from Holt et al. (2021), who investigated the long-term cardio-
protective effect associated with beta-blocker treatment in stable, optimally treated,
myocardial infarction (MI) patients without heart failure. Themotivation for this study
was that the evidence of a protective beta-blocker effect relies on data fromold random-
ized trials, which were conducted before catheter-based reperfusion became standard
care during hospital admission for MI. Consequently, the evidence relates to a rather
different patient population than the current population of MI patients. This has led
to increasing skepticism about the benefit of initiating a beta-blocker treatment and to
increasingly less systematic treatment initiations (Rossello et al. 2015).

As in Holt et al. (2021), in our analysis follow-up starts 3 months after MI and
we compare the t = 33-months risk of cardiovascular death among patients who
have initiated a beta-blocker treatment (A = 1) to those who have not (A = 0),
among patients alive 3 months after MI. The data were collected from nationwide
registers and we included Danish patients with first-timeMI discharged between 2003
and 2018. Following inclusion criteria detailed in Holt et al. (2021), this results into
24,770 patients included in the treated group (A = 1) and 5,407 in the untreated
group (A = 0). Follow-up ended at death, emigration, 33 months after inclusion or 31
December 2018, whichever came first. Here non-cardiovascular death is a competing
risk. The definition of each variable T , η, A and C within this context was already
presented in Sect. 2.1.

We assume that the no unmeasured confounding assumption holds when adjusting
on the following baseline variables L: age group (30-60, 60-70, 70-80, 80-85), sex,
calendar year at inclusion (2003-2008, 2009-2013, 2014-2018), educational level (3
levels), procedure during MI hospital admission (3 types), diabetes, history of stroke,
hypertension, peripheral arterial disease, kidney and liver disease, gastrointestinal
bleeding and cancer.

Another important assumption of the methods discussed in this paper is the con-
sistency of the estimator of the censoring probabilities. That is, the consistency of
̂Gc(u, x), for all u ≤ t and x. This means that the choice of estimator matters and we
therefore illustrate four choices, referred to as C1, C2, C3 and C4, in what follows.
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4.1 Considered estimators for the censoring distribution

First, we consider the simplest andmost common choice, that is, the use of a (marginal)
Kaplan-Meier estimator (C1). Here the covariate values x do not play any role. Second,
we use a Kaplan-Meier estimator stratified by treatment and age group (C2). The ratio-
nale for stratifying by treatment group is the growing skepticism about the benefit of
initiating beta-blocker treatment during the study period (2003-2018). Hence, patients
included recently, e.g. in 2010’s, are more likely to be non treated than those included
less recently, say in the 2000’s. The rationale for further stratifying by age group is to
try to increase efficiency, see e.g. Malani (1995) and related remarks in Sect. 2.7. The
third choice consists to use a Kaplan-Meier estimator stratified by group of inclusion
year, before or after 1st of January 2015 (C3). The rationale for this choice is that
patients included before 2015 can be lost of follow-up within 33-months only if they
leave Denmark, which is extremely rare in the study population. By contrast, those
included after March 2016 will all be censored within 33-months due to study end
on 31 December 2018. The arbitrary cutoff in 2015 was chosen to strike a good bal-
ance between two conflicting objectives. The first is to define a strata containing only
patients similar enough to those included after March 2016. The second is to include
enough patients in this strata to obtain reliable estimates. These patients need to be
similar enough with respect to standard health care received, including the propensity
to receive a beta-blocker treatment. The fourth choice is similar to the third, except
that we further stratified by age and treatment group in the strata of patients included
in 2015-2018 (C4). Here the rationale is to both adjust for the increasing skepticism
and increase efficiency.

Note that choices C3 and C4 closely relate to the work of Rotnitzky et al. (2007) and
Lok et al. (2018), who modeled two competing risks of censoring, to rely on weaker
assumptions when estimating the IPCW weights. In our context, two competing risks
of censoring exist: one due to study end, the other due to emigration. With choices
C3 and C4, we approximately modeled these two competing risks of censoring, by
stratifying on the inclusion year (before or after 2015). We therefore believe that
choices C3 and C4 are more suitable than C1 and C2. The choice C4 makes less
assumptions than C3, hence we believe that it leads to the most trustworthy results.

4.2 Logistic models for the outcome and propensity models

All baseline variables described above were included in the logistic model for the
33-months risk of CV death. To capture potentially different treatment effect among
patients of different groups of age, year of inclusion, procedure during MI hospital
admission and sex, interaction terms between each of these variables and the treatment
variable were added. The same model choices were used in Holt et al. (2021), up to
minor differences in the definition of some groups. For the double robust estimators,
modeling choices are also needed for the probably of initiating a beta-blocker treat-
ment. We used a logistic model and all baseline variables were also included, without
any interaction term.
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4.3 Comparedmethods

We present results obtained for all estimators introduced in Sect. 3. For comparison
purpose, we also present results obtained using three other approaches to estimate
the risk F1(t, a), for a = 0, 1, and the risk difference F1(t, 1) − F1(t, 0). The first
method is to estimate the risk in each treatment group using the Aalen-Johanssen
estimator, as an unadjusted (crude) analysis. Note that this is algebraically equivalent
to using a logistic model that only includes the treatment variable, when fitting the
model using a Kaplan-Meier estimator stratified by treatment groups to compute the
weights (Scheike et al. 2008; Geskus 2016). The second approach consists in using G-
computation based onCox regression for each cause-specific hazard, instead of logistic
regression, as detailed in Ozenne et al. (2020). Here we used the same variables and
interaction terms as in the logistic model, to model each cause specific hazard. Finally,
the third approach uses inverse probability of treatment and censoring weighting, to
estimate each risk F1(t, a) as

̂F1
i ptcw

(t, a) =
∑n

i=1 ω̂i (t, a, Li )Di (t)
∑n

i=1 ω̂i (t, a, Li )
, with ω̂i (t, a, Li ) = 11{Ai = a}̂Wi (t)

π̂(a, Li )
.

By contrast to the approaches described in Sect. 3, the first of these approaches
does not account for confounding and it is expected to lead to biased results. The
second adjusts for confounding, but it relies on a correct model specification of the
cause-specific hazards of the two competing risks, at any time within the 33 month
of follow-up. However, it does not rely on any specific modeling assumption for the
censoring distribution or the propensity score. Only the assumption of independent
censoring is needed, which allows the censoring time to arbitrarily depend on the
treatment variable A as well as baseline variables L. The third relies on a correct
model specification of the propensity score and of the censoring distribution, but it
does not rely on any modeling assumption about the conditional risk F1(t, A, L).

Note that for the initial (main) analysis of these data, whose results are detailed
in Holt et al. (2021), we chose to use G-computation via logistic regression. We will
now briefly explained why we preferred this approach to alternatives, in this specific
context. Despite the large sample size (n = 24, 770+5, 407), the number of observed
cardiovascular deaths was not very large (333 + 72) and the prevalence of some of
the many important baseline characteristic we needed to adjust for were rare (see
Table 1 in Holt et al. (2021)). This seemed to rule out the use of very flexible modeling
approaches, which generally need more data in each subgroup. Therefore, parametric
modeling assumptions seemed needed and important to pre-specify carefully, using
background knowledge, to obtain reliable results. We found the background clinical
knowledge easier to translate into reliable parametric assumptions for the 33-months
absolute risk of CV death than for the two cause-specific hazards at any time within
the follow-up. This was especially the case when considering parametric assumptions
related to the inclusion of interaction terms, which can be important. Consequently,
we chose to pre-specify a G-computation approach based on logistic regression of the
absolute risk over an alternative based on regressions of the two cause-specific hazards.
That is, we chose the approach presented in Sect. 3.1 over that presented in Ozenne
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Fig. 2 Estimates risks per treatment group and risk differences, with 95% confidence intervals. Here the
IPCW weights are based on choice C4. The labels on the Y-axis indicate the method used to obtained
the results: “Crude”: unadjusted (crude) analysis using a stratified Aalen-Johanssen estimator; “Cox G-
computation”: G-computation based on Cox regression for each cause-specific hazard; “IPTCW”:inverse

probability of censoring and treatment weighting (̂F1
i ptcw

(t, a)); “G-computation”: G-computation based
on logistic regression for the 33-month risk of CV death (̂F1

g
(t, a)); “DR”: DR estimator of Sect. 3.2

(̂F1
dr

(t, a)); “DR-reg: 1 cov” and “DR-reg: 2 cov”: regression based DR estimators of Sect. 3.3 with one,
respectively two, clever covariates; “tmle: 1 cov” and “tmle: 2 cov”: tMLE-like estimators of Sect. 3.4 with
one, respectively two, clever covariates

et al. (2020). Pre-specifying a reliable model for the likelihood of initiating a Beta-
Blocker treatment appeared also rather challenging in our context, using background
knowledge. That is why we pre-specified the choice of an analysis that did not use
propensity scores either.

Finally, also for similar reasons, it would have been challenging to use the aug-
mented estimators of Sect. 2.7 in a meaningful way. Therefore, we did not pursue the
use of these interesting estimators in this application. All results building on logistic
regressions that we present are based on estimators solving the estimating Eqs. (2) or
(3).

4.4 Results

Figure 2 displays all results obtained from the different methods, with censoring mod-
eling choice C4, which we believe to be the best. Standard errors (se) were computed
by Bootstrap (400 samples) and 95% confidence intervals (CI) for the risk differences
were computed as CI=estimate ± 1.96·se. Similar figures for choices C1, C2 and C3
are provided in the supplementary material.
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Fig. 3 Sensitivity of the results to the modeling choices to compute the IPCW weights

Figure 2 does not show large differences between the results obtained when using
OIPCW or IPCW-GLM. The results of the crude analysis is surprisingly close to the
results obtained with the other methods that adjust for confounding. The reason is
probably that the distribution of the baseline covariates L is actually quite similar in
the two treatment groups, which is what Table 1 in Holt et al. (2021) suggests. That
might also partly explain why all the other results are also quite similar. We note that
the narrowest confidence interval is obtained when using G-computation based on
Cox regressions for the two cause-specific hazards. This is not surprising, since this
approach makes stronger parametric assumptions. However, the difference is modest
and we believe that it is has a negligible impact on the clinical interpretation of the
results.

Figure 3 provides an overview of the sensitivity of the results to choices C1-C4,
when using the G-computation and tMLE-like estimators of Sects. 3.1 and 3.4, using
either IPCW-GLM or OIPCW. Unlike in Fig. 2, here we show the results for only
one of the five double robust estimators. This is because the results are quite similar
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for the others (see Figures in the supplementary material). Interestingly, Fig. 3 and
choices C1-C4 illustrate that incorrectly modeling some truly existing associations
between censoring and baseline covariates can lead to more bias than to not model
them. Indeed, if we consider the choice C4 as the most rational in our context, we
see that choice C2 leads to results further away from those of choice C4 than choice
C1. This is the case although choice C2 accounts for the strong dependence between
censoring and treatment in a flexible way, whereas choice C1 does not account for any
dependence between censoring and baseline covariates. Figure 3 also illustrates that
using OIPCW or IPCW-GLM can give substantially different results. For instance, the
difference is substantial with censoring adjustment C2.

5 Efficient and robust analysis of RCT

When the data come from a randomized trial, one can estimate F1(t, a), for a = 0 and
1, directly by an unadjusted logistic regression. This is because unlike in observational
studies, A is independent of L in RCTs, because of randomization. Hence, F1(t, a) =
P(D(t) = 1|A = a).

Note that also with censored data, when using a stratified Kaplan-Meier estimator,
stratified on treatment A, to compute the IPCWweights, fitting the unadjusted logistic
regression model is algebraically equivalent to a widespread approach. Indeed, it
reduces to using a stratified Kaplan-Meier estimator, with survival data, or a stratified
Aalen-Johanssen estimator, with competing risks data, to estimate F1(t, a), for a =
0, 1 (Geskus 2016).

However, instead of using an unadjusted analysis, one can gain efficiency by
leveraging the information contained in the baseline covariates L. See, e.g., Robin-
son and Jewell (1991); Zhang et al. (2008). The simplest way to do that is to add
the baseline covariates L into the model, in addition to A, to model and estimate
F1(t, a, l). Interestingly, even if this is done using an incorrect model, that is, even
if Q(t, l, a) �= F1(t, l, a), the type-I error rate for testing a treatment effect will be
controlled, as long as the Wald-type test statistic is computed with a robust standard
error. Furthermore, the g-computation estimator ̂F1

g
(t, a) defined in (8) will still be

consistent under arbitrary model misspecification (Moore and van der Laan 2009;
Rosenblum and Steingrimsson 2016). Consequently, adjusting for baseline covariates
L when analyzing RCTs is recommended by regulatory agencies such as the Food and
Drug Administration (FDA 2021) and the European Medicine Agency (EMA 2015).
The latter states that “Variables known a priori to be strongly, or at least moderately,
associated with the primary outcome and/or variables for which there is a strong
clinical rationale for such an association should also be considered as covariates in
the primary analysis.”.

In the next section, we start by briefly reviewing these robustness results, in the
binary uncensored case. We then provide related results for the right censored case,
when an additional censoring adjustment ismade based on our IPCWweighted logistic
regression models.

To the best of our knowledge, previous work on similar robustness properties with
right-censored data focused on hazardsmodeling, not on riskmodeling as we do below
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(Struthers and Kalbfleisch 1986; Lin and Wei 1989; DiRienzo and Lagakos 2001; Lu
and Tsiatis 2008; Kim 2013; Vansteelandt et al. 2014).

5.1 Robustness for binary uncensored data

We will assume the use a simple logistic model, where X = (1, A, L). That is, the
risk of D(t) = 1 given x = (1, a, l) being modeled by

Q(t, a, l,β) = exp(β0 + βAa + βLl)
1 + exp(β0 + βAa + βLl)

. (14)

Further, we assume that, as expected by design, randomization makes the treatment
variable A independent of the baseline covariates L. With binary uncensored data
and when fitting the above model (14) via usual maximum likelihood, i.e. by solving
the estimating Eq. (1), then Rosenblum and Steingrimsson (2016) established the
interesting robustness properties that follow. First,βA converges in probability towards
0 if and only if the null hypothesis of no treatment effect, H0 : F1(t, 0) = F1(t, 1),
holds, under any model misspecification. Furthermore, the G-computation estimator
̂F1

g
(t, a) = (1/n)

∑n
i=1 Q(t, a, Li ,̂β) converges in probability towards F1(t, a), for

a = 0, 1, also under any model misspecification. The estimated treatment effects
̂F1

g
(t, 1) − ̂F1

g
(t, 0) and ̂F1

g
(t, 1)/̂F1

g
(t, 0) are therefore also consistent.

As pointed out by Rosenblum and Steingrimsson (2016), the robustness property of
the G-computation estimator is very useful in practice. It provides a simple and trans-
parent approach to leverage the information contained in baseline variables which i)
does not rely on any modeling assumptions and ii) estimates the same average treat-
ment effect as that estimated by an unadjusted analysis. The use of this G-computation
is therefore now promoted by the most recent FDA guidelines (FDA 2021).

For computing confidence intervals and p-values, Rosenblum and Steingrimsson
(2016) note that one can compute robust standard errors via nonparametric bootstrap
and exploit the asymptotic normal distribution of the estimators. Finally, note that
Rosenblum and Steingrimsson (2016) also showed that the two hypothesis tests for H0,
defined via the G-computation estimator ̂F1

g
(t, 1) − ̂F1

g
(t, 0) and via the maximum

likelihood estimator ̂βA of βA, do not only both control the type-I error rate, but they
are also equally powerful, asymptotically, under any model misspecification.

5.2 Results for right-censored data

With right-censored data, the robustness properties still hold under additional condi-
tions, but not necessarily without. This the topic of the following theorems, for which
we sketch the proofs in Appendix B.

Theorem 2 For both approaches, OPICW and IPCW-GLM, when the censoring
adjustment model is correct, then the G-computation estimator ̂F1

g
(t, a) is consis-

tent, for a = 0, 1. Further, ̂βA converges to 0 if and only if the null hypothesis of no
treatment effect, H0 : F1(t, 0) = F1(t, 1), is true. The two results hold under arbi-
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trary misspecification of the working model Q(t, a, l), in randomized trials where A
is independent of L.

Consequently, hypothesis testing for a treatment effect based on either the average
risk difference estimator ̂F1

g
(t, 1) − ̂F1

g
(t, 0) or ̂βA will control the type-I error,

asymptotically, as long as an appropriate (robust) standard error is used in the Wald-
type test statistic. However, the estimated value ̂βa will usually not have a meaningful
interpretation under model misspecification, unlike ̂F1

g
(t, 1) − ̂F1

g
(t, 0). Indeed, if

F1(t, a, l) �= Q(t, a, l), the limit of ̂βa does no longer have a simple interpretation as
the logarithm of a conditional odds ratio.

For many clinical trials, the censoring distribution is not expected to depend on
(A, L). This is for instance the case when only administrative censoring occurs. Con-
sequently, using a Kaplan-Meier estimator, possibly stratified by treatment group,
should be sufficient to ensure a correct censoring adjustment and thus guarantee the
above robustness properties.

Without a correct censoringmodel, someof the robustness properties still hold under
specific assumptions, when using a stratified Kaplan-Meier estimator to compute the
IPCW weights. The next theorem identifies two such assumptions. The first is that
the hazard of the censoring time C has an additive structure. The second is that there
is no conditional treatment effect given baseline covariates, neither on the risk of the
event of interest nor on the competing risk. Without these assumptions, it can be seen
from the proof of the theorem (or simple simulations) that the robustness properties
will generally no longer hold.

Theorem 3 Assume that i) λc(t, A, L) = λ0(t)+ Aλ1(t)+λ2(t, L), where λ0(t) and
λ1(t) do not depend on (A, L) and λ2(t, L) does not depend on A, and ii) Fk(s, 0, l) =
Fk(s, 1, l) for all l , s ≤ t and k = 1, 2, where Fk(s, a, l) = P(T ≤ s, η = k|A =
a, L = l). Further, assume that a stratified Kaplan-Meier estimator is used to compute
the IPCW weights, stratified on A. Then, for both approaches, OPICW and IPCW-
GLM, both the G-computation estimator of the risk difference, ̂F1

g
(t, 1) − ̂F1

g
(t, 0),

and̂β|A, converge to 0. The results hold under arbitrary misspecification of the working
model Q(t, a, l), in randomized trials where A is independent of L.

Group sequential trials are increasingly used, especially in the pharmaceutical
industry. Interestingly, recent results fromMartens and Logan (2020) show that̂βopicw
has the asymptotic properties required by the common stopping boundary specification
methods, to design group sequential trials. The above robustness results are therefore
also useful for this type of trials.

6 Discussion

Wehave presented two approaches to fit logistic regressionmodels with right censored
data. One method deals with the censored data by weighting the outcome (OIPCW),
the other by weighting the estimating equations (IPCW-GLM). We have studied the
large sample properties of the two approaches and this revealed that which approach is
the most efficient depends on the distribution of the censoring times. We have further
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illustrated that there can be surprisingly big differences between the two methods.
In a concrete setting, we saw that a parameter estimated using OPICW had a vari-
ance almost three times smaller than when using IPCW-GLM. In most other settings,
however, the two methods gave similar results.

We have also reviewed the estimation of causal average treatment effects in obser-
vational studies, via G-computation and double-robust estimation, both building on
logistic regression. Then, we showed that, here again, OIPCW and IPCW-GLM can
be used to deal with right censored data in simple ways. In our application to Danish
registry data, all methods gave similar results with negligible difference in terms of
the clinical interpretation.

As pointed out by a reviewer, the causal interpretation of the results in our specific
application might not be as simple as it appears at first reading. This is because the
patients included in our study either have initiated the treatment at any time within 3
months after MI (A = 1) or have had the opportunity but did not (A = 0). Hence, all
patients included in our study need to have survived 3months (andmeet other inclusion
criteria) to be included in the analysis. It is difficult to proceed differently with our
registry data, but this introduces a selection mechanism that can be a consequence of
the treatment. This complicates the interpretation of the results as it will usually make
the two treatment groups no longer comparable at start of follow-up, 3 months after
MI. This selection mechanism is similar to that involved in the definition of hazard
ratios (Martinussen et al. 2020) and estimands based on functional outcomes in RCTs
with high mortality (Colantuoni et al. 2018). One could think about our observational
study as an attempt to emulate a RCT, when considering an outcome similar to those
“truncated due to death” discussed in Colantuoni et al. (2018). Thus, the results should
probably not be interpreted on their own, but in conjunction with others, e.g., with the
probability of a patient being included in the analysis, for each treatment group. We
refer to Colantuoni et al. (2018) for excellent discussions about closely related topics.

Finally, we have reviewed important robustness properties of logistic regression
models fitted to RCT data. These properties support recently updated guidelines from
regulatory agencies, which promote adjustment on baseline variables and the use of
G-computation via logistic regression (FDA 2021). We showed that these properties
are preserved when using OIPCW or IPCW-GLM to deal with right censored data,
under correct censoring adjustment. This makes logistic regression and the derived
G-computation estimator appealing to analyze time-to-event endpoints in RCTs. Espe-
cially when considering estimands, G-computation may be a relevant alternative to
the use of more traditional hazard-based regression models (Rufibach 2019).

Our robustness results have been shown assuming simple randomization, not strat-
ified randomization. Recently, Wang et al. (2021) showed that for uncensored data,
the robustness results are preserved under stratified randomization. We think that this
is also the case when using OIPCW and IPCW-GLM to deal with right censored data,
under correct censoring adjustment. This would be interesting to confirm in future
work.

Software have been made available to facilitate the use of both the opicw and the
IPCW-GLM approach. They provide asymptotically correct standard error compu-
tation based on large sample expansions such as those of Theorem 1. See functions
binreg and logitIPCW in the R package mets (Holst and Scheike 2021), to fit a
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logistic regression model with OIPCW and IPCW-GLM, respectively. See functions
binregATE and logitATE to compute causal risks and risk differences. These
functions implement the G-computation and double robust estimators of Sects. 3.1
and 3.2, with OICPW and IPCW-GLM, respectively.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s10985-022-09564-6.
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Appendix A

Appendix A.1: Proof of Theorem 1

Overall, we follow similar lines as those of Bang and Tsiatis (2000). First, note that
for all s ∈ [0, t],

W (s) = �(s)

Gc(s ∧ ˜T )
= 1 −

∫ s

0

d Mc(u)

Gc(u)
, (15)

with �(s) = 11{s ∧ T ≤ C}, Y (u) = 11{˜T ≥ u} and Mc(u) = 11{˜T ≤ u,� =
0} − ∫ u

0 Y (v)λc(v)dv. The second equality in (15) has been pointed out by Robins
and Rotnitzky (1992) for s = ∞ and it can be shown as follows for any s ∈ [0, t] as
follows.

1 −
∫ s

0

d Mc(u)

Gc(u)
= 1 −

{

(1 − �)11{˜T ≤ s}
Gc(˜T )

−
∫
˜T ∧s

0

λc(u)

Gc(u)
du

}

= 1 −
{

(1 − �)11{˜T ≤ s}
Gc(˜T )

−
[

1

Gc(˜T ∧ s)
− 1

Gc(0)

]}

,

because

λc(u)

Gc(u)
du = − dGc(u)

{Gc(u)}2 and
d

du

(

1

Gc(u)

)

= − dGc(u)

{Gc(u)}2 .

Since Gc(0) = 1, it follows

1 −
∫ s

0

d Mc(u)

Gc(u)
=
{

�/Gc(˜T ) if ˜T ≤ s
1/Gc(s) if ˜T > s

}

= W (s) .
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Second, recall a well-known martingale integral representation for the Kaplan-
Meier estimator, see e.g. Andersen et al. (1993, Sec. IV.3), for all s ∈ [0, t],

̂Gc(s) − Gc(s)

Gc(s)
= −

n
∑

i=1

∫ s

0

̂Gc(u−)

Y•(u)

d Mc
i (u)

Gc(u)
, (16)

where Y•(u) = ∑n
i=1 11{˜Ti ≥ u}. Third, note that

n−1Y•(u) = ̂Gc(u−)̂S(u−) , (17)

where ̂S(u−) is the Kaplan-Meier estimator for S(u−) = P(T > u−). With the
notations

̂Uoipcw(β) = n−1
n
∑

i=1

X i

{

̂Wi (t)Di (t) − Q(t, X i ,β)
}

Uoipcw(β) = n−1
n
∑

i=1

X i

{

Wi (t)Di (t) − Q(t, X i ,β)
}

and Uglm(β) = n−1
n
∑

i=1

X i

{

Di (t) − Q(t, X i ,β)
}

,

we first note that

n1/2
̂Uoipcw(β) = n1/2Uoipcw(β)

︸ ︷︷ ︸

(∗)

+ n−1/2
n
∑

j=1

X j D j (t)
� j (t)

̂Gc(t ∧ ˜Tj )

{

Gc(t ∧ ˜Tj ) − ̂Gc(t ∧ ˜Tj )

Gc(t ∧ ˜Tj )

}

︸ ︷︷ ︸

(∗∗)

.

From (15), we get

(∗) = n1/2Uglm(β) − n−1/2
n
∑

i=1

∫ t

0
X i Di (t)

d Mc
i (u)

Gc(u)
,

and from (16), we get

(∗∗) = n−1/2
n
∑

j=1

X j D j (t)
� j (t)

̂Gc(t ∧ ˜Tj )

{

−
n
∑

i=1

∫ t∧˜Tj

0

̂Gc(u−)

Y•(u)

d Mc
i (u)

Gc(u)

}

= −n−1/2
n
∑

i=1

∫ t

0

⎡

⎣

̂Gc(u−)

Y•(u)

n
∑

j=1

X j D j (t)
� j (t)

̂Gc(t ∧ ˜Tj )
11{˜Tj ≥ u}

⎤

⎦

d Mc
i (u)

Gc(u)
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and from (17), we get

(∗∗) = −n−1/2
n
∑

i=1

∫ t

0

̂E[XD(t)|T ≥ u]d Mc
i (u)

Gc(u)

where

̂E[XD(t)|T > u] = 1

n̂S(u−)

n
∑

i=1

�i (t)11{˜Ti ≥ u}X i Di (t)
̂Gc(t ∧ ˜Ti )

= E
[

XD(t)
∣

∣ T ≥ u
]+ op(1) ,

because of independent censoring and the uniform convergence of the Kaplan-Meier
estimator ̂Gc(·) in [0, t]. Consequently,

n1/2
̂Uoipcw(β) = n1/2Uglm(β) − n−1/2

n
∑

i=1

∫ t

0

{

X i Di (t) − ̂E[XD(t) | T ≥ u]
}d Mc

i (u)

Gc(u)

= n1/2Uglm(β) − n−1/2

n
∑

i=1

∫ t

0

{

X i Di (t) − E[XD(t) | T ≥ u]
}d Mc

i (u)

Gc(u)

+ op(1)

For n1/2
̂Uipcw−glm(β), the result follows similarly, since the calculation is similar

except from X i Di (t) being replaced with X i {Di (t) − Q(t, X i )} in (∗) and (∗∗).

Appendix A.2: variance estimator̂6m

From the above derivations, the same calculations without using

n1/2Uoipcw(β) = n1/2Uglm(β) − n−1/2
n
∑

i=1

∫ t

0
X i Di (t)

d Mc
i (u)

Gc(u)

lead to n1/2
̂Uoipcw(β) = n−1/2∑n

i=1 εi + op(1) where

εi = X i

{

Wi (t)Di (t) − Q(t, X i ,β)
}

+
∫ t

0
E[XD(t) | T ≥ u]d Mc

i (u)

Gc(u)
.

One can consistently estimate εi by

ε̂i = X i

{

̂Wi (t)˜Di (t) − Q(t, X i ,̂βoipcw)
}

+
∫ t

0

̂E[XD(t) | T ≥ u]d ̂Mc
i (u)

̂Gc(u)
,
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where ̂Mc
i (s) = 11{˜Ti ≤ s,�i = 0} − ∫ s

0 Yi (v)d̂�c(v), where ̂�c(s) is the Nelson-
Aalen estimator of the cumulative hazard of C at time s and

̂E[XD(t)|T > u] = 1

n̂S(u−)

n
∑

i=1

�i (t)11{˜Ti ≥ u}X i ˜Di (t)
̂Gc(t ∧ ˜Ti )

.

Consequently, one can consistently estimate �oipcw by ̂�oipcw = (1/n)
∑n

i=1 ε̂i ε̂
T
i .

Similarly, to estimate �i pcw−glm we can use ̂�i pcw−glm = (1/n)
∑n

i=1 ω̂i ω̂
T
i with

ω̂i = ̂Wi (t)X i

{

˜Di (t) − Q(t, X i ,̂β i pcw−glm)
}

+
∫ t

0

̂E
[

X{D(t) − Q(t, X i ,β)} ∣∣ T ≥ u
]d ̂Mc

i (u)

̂Gc(u)

where

̂E
[

X{D(t) − Q(t, X i ,β)} ∣∣ T ≥ u
]

= 1

n̂S(u−)

n
∑

i=1

�i (t)11{˜Ti ≥ u}X i
{

˜Di (t) − Q(t, X i ,̂β i pcw−glm)
}

̂Gc(t ∧ ˜Ti )
.

Consistent estimators ofI arêIm =n−1∑n
i=1

[

X2
i Q(t, X i ,̂βm)

{

1−Q(t, X i ,̂βm)
}]

,
for m = oipcw or i pcw − glm. Finally, �m = I−1�mI−1 can be estimated by
̂�m = ̂I−1

m
̂�m̂I−1

m .

Appendix A.3: Proof of Proposition 4

A proof was provided by Bartlett (2018, Appendix A.2), in a slightly different context.
We repeat the main arguments here for completeness. First, we note that a Taylor-
expansion and the results from Sects. 2.5 and 2.7 imply that

√
n
{

̂F1
g
(t, a) − F1(t, a)

}

= 1√
n

n
∑

i=1

{

Q(t, a, Li ) − F1(t, a) + Bβ(a)ψ i

}

+ op(1)

withψ i = I−1�
{

X i , Di (t),˜Ti , η̃i , t
}

. Here,� denotes�m or�Aug
m , form = opicw

or i pcw − glm, depending on which estimator ̂β we plugged-in to define ̂F1
g
(t, a).

Formulas for the different versions of � can be found in Theorem 1 or in the proof

of Proposition 2. Hence, it only remains to prove that Cov
{

Q(t, a, L) , Bβ(a)ψ
}

=
0. This can be done by expanding the covariance, using the conditional covariance
formula, as

Cov
{

E
[

Q(t, a, L)
∣

∣ X
]

, E
[

Bβ(a)ψ
∣

∣ X
]

}

+ E
[

Cov
{

Q(t, a, L) , Bβ(a)ψ
∣

∣ X
}

]
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The second term is 0, because the first component is constant, conditional on X . We
now explain why the first term is also 0. First note, that

E
[

Bβ(a)ψ

∣

∣

∣ X
]

= Bβ(a)I−1E
[

�{. . . }
∣

∣

∣ X
]

and

E
[

�{. . . }
∣

∣

∣ X
]

= E
[

X
{

D(t) − Q(t, X)
}−

∫ t

0
ϕ
(

X, D(t), s
)d Mc(s)

Gc(s)

∣

∣

∣ X
]

.

Second, note that E
[

X
{

D(t)−Q(t, X)
} ∣

∣ X
] = X

{

F1(t, X)−Q(t, X)
} = 0 because

the model is assumed to be well specified. Third, E
[ ∫ t

0 ϕ
(

X, D(t), s
) d Mc(s)

Gc(s)

∣

∣ X
] = 0

follows by independent censoring and standard martingale theory (Aalen et al. 2008,
Sec. 2.2).

Appendix B

7.1 Sketch of Proof for Theorem 2

A proof was provided by Rosenblum and Steingrimsson (2016) for the uncensored
case. We here essentially repeat their main arguments, which also apply in our case,
up to minor differences introduced by the IPCW weights. First, note that ̂βoipcw is
consistent for β, where β is the solution to

E
[

X
{

D(t) · W (t, X) − Q(t, X,β)
}]

= 0 , (18)

with X = (1, A, L)T and W (t, X) = �(t)/GC (t ∧ ˜T , X), using a notation that
emphasizes the (potential) dependence of the IPCW weight on X . Second, note that
the first equation in (18), which corresponds to the first component of X = (1, A, L)T ,
is

E
[

D(t)W (t, X)
] = E

[

Q(t, X,β)
]

=
∑

a∈{0,1}
E
[

Q
(

t, (1, A, L)T ,β
) ∣

∣ A = a
]

· π(a)

= E
[

Q
(

t, (1, 1, L)T ,β
)] · π(1) + E

[

Q
(

t, (1, 0, L)T ,β
)

]

· π(0)

(19)

where π(a) = P(A = a), for a = 0, 1, and where the last equality follows because
A is assumed independent of L (randomization), hence the conditioning disappears
in the expectations. Similarly, the second equation in (18), which corresponds to the
second component of X = (1, A, L)T , is

E
[

AD(t)W (t, X)
] = E

[

AQ(t, X,β)
]
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= E
[

Q(t, (1, 1, L)T ,β)
] · π(1) . (20)

Furthermore,

E
[

D(t)W (t, X)
] = E

[

AD(t)W (t, X)
]+ E

[

(1 − A)D(t)W (t, X)
]

. (21)

By plugging-in (19) and (20) into (21), we find

E
[

(1 − A)D(t)W (t, X)
] = E

[

Q
(

t, (1, 0, L)T ,β
)

]

· π(0) . (22)

Further note that we also have the identities

E
[

AD(t)W (t, X)
] = E

[

D(t)W (t, X)|A = 1
] · π(1) (23)

and E
[

(1 − A)D(t)W (t, X)
] = E

[

D(t)W (t, X)|A = 0
] · π(0) . (24)

Hence, Eqs. (23) and (20) give

E
[

D(t)W (t, X)
∣

∣ A = 1
] = E

[

Q
(

t, (1, 1, L)T ,β
)]

, (25)

and Eqs. (24) and (22) give

E
[

D(t)W (t, X)
∣

∣ A = 0
] = E

[

Q(t, (1, 0, L)T ,β)
]

. (26)

The robustness result for theG-computation estimator, that is, E
[

Q(t, (1, a, L),β)
] =

F1(t, a), for a = 0, 1, therefore follows for OIPCW because E
[

D(t)W (t, X)|A =
a
] = F1(t, a), when the censoring adjustment is correct.
To show that ̂βA converges in probability towards zero if and only if F1(t, 0) =

F1(t, 1), we here repeat the argument of Rosenblum and Steingrimsson (2016). As,
we have just shown that

F1(t, 0) − F1(t, 1) = E
[

expit(β0 + βLL) − expit(β0 + βA + βLL)
]

and since x �→ expit(x) is monotonically increasing, then it follows that F1(t, 0) −
F1(t, 1) = 0 if and only if βA = 0. This completes the proof for the OIPCW approach.

The same arguments apply for IPCW-GLM too. Briefly, instead of the solution to
(18), we consider the solution to

E
[

XW (t, X)
{

D(t) − Q(t, X,β)
}]

= 0 .

Instead of (25) and (26), this leads to

E
[

D(t)W (t, X)
∣

∣ A = 0
] = E

[

W (t, X)Q
(

t, (1, 0, L)T ,β
) ∣

∣ A = 0
]

(27)

E
[

D(t)W (t, X)
∣

∣ A = 1
] = E

[

W (t, X)Q(t, (1, 1, L)T ,β)
∣

∣ A = 1
]

. (28)
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Note that in the expectations in (27) and (28) the conditioning does not vanish as in
(26) and (25), because of the weight W (t, X). If the censoring adjustment is correct,
then E

[

W (t, X)
∣

∣ A = a, X
] = 1 for a = 0, 1, which together with the law of iterated

expectations implies that the right-hand side of (27) and (28) are the same as that of
(25) and (26). Hence (27) and (28) are equivalent to (26) and (25) and the rest of the
proof is identical to that of OIPCW.

7.2 Sketch of Proof for Theorem 3

The proof exploits the three key equalities (29), (30) and (31) below. They are proven
at the end of this section, after the proof of the theorem which exploits them. First, the
stratified Kaplan-Meier estimator of P(C > s|A = a), for s ∈ [0, t], will converge to
˜Gc(s, A) = exp

{− ∫ s
0
˜λc(u, A)du

}

, where

˜λc(u, A) = lim
h→0

1

h
P
(

C ∈ [u, u + h] ∣∣C > u, T > u, A
) =˜λ0(u) + Aλ1(u) , (29)

where λ̃0(u) does not depends on (A, L). Second,

E
[

˜W (t, A)D(t)
∣

∣

∣A = 0
]

= E
[

˜W (t, A)D(t)
∣

∣

∣A = 1
]

, (30)

where ˜W (t, A) = �(t)/˜Gc(t ∧ T , A), where the notation ˜W (t, A) emphasizes both
the mispecification of the censoring adjustment and the dependence on A. Third, for
a = 0, 1,

E
[

˜W (t, A)Q
(

t, (1, a, L)T ,β
)

∣

∣

∣ A = a
]

= E
[

rc(T ∧ t, L)Q
(

t, (1, a, L)T ,β
)

]

,

(31)

where rc(T ∧ t, L) ≥ 0 depends on (L, T ) but not on A (see Sect. 7.2.3 for details).
Other useful results are “new versions” of (25) and (26) (for OIPCW) and (27) and

(28) (for IPCW-GLM). The equations of (25), (26), (27) and (28) still hold under the
weaker assumptions of Theorem 2, up to the minor difference that W (t, X) should
now be replaced by ˜W (t, A). Indeed, (25), (26), (27) and (28) were derived without
making any assumptions on the censoring adjustment. They were only consequences
of the estimating equations. Below we refer to these “new versions” when we cite
(25), (26), (27) or (28).
Let us now consider the OIPCW case. Equations (30), (25) and (26), imply

E
[

Q(t, (1, 1, L)T ,β)
] = E

[

Q(t, (1, 0, L)T ,β)
]

which proves that ̂F1
g
(t, 1) − ̂F1

g
(t, 0) convergences to 0, for OIPCW. Using the

same monotonicity argument as in the Proof of Theorem 2, this implies that ̂βA also
convergences to 0.
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Let us now consider the IPCW-GLM case. Equations (30), (27) and (28), imply

E
[

˜W (t, A)Q
(

t, (1, 1, L)T ,β
)

∣

∣

∣ A = 1
]

= E
[

˜W (t, A)Q
(

t, (1, 0, L)T ,β
)

∣

∣

∣ A = 0
]

which, using (31), further leads to

E
[

rc(T ∧ t, L)
{

expit(β0 + βLL) − expit(β0 + βA + βLL)
}]

= 0 .

Because rc(T ∧ t, L) > 0 and x �→ expit(x) is monotonically increasing, then it
follows that βA = 0, which proves that ̂βA convergences to 0. This further implies
that E

[

Q(t, (1, 1, L)T ,β)
] = E

[

Q(t, (1, 0, L)T ,β)
]

, which proves that ̂F1
g
(t, 1)−

̂F1
g
(t, 0) convergences to 0.

7.2.1 Proof of (29)

By construction, the stratified Kaplan-Meier estimator of P(C > s|A = a), for
s ∈ [0, t], will converge to ˜Gc(s, A) = exp

{− ∫ s
0
˜λc(u, A)du

}

, where

˜λc(u, A) = lim
h→0

1

h
P
(

C ∈ [u, u + h] ∣∣C > u, T > u, A
)

= limh→0
1
h P
(

C ∈ [u, u + h], T > u | A
)

P(C > u, T > u | A)

First, let’s look at the numerator,

lim
h→0

1

h
P
(

C ∈ [u, u + h], T > u | A
)

= lim
h→0

1

h
E
[

11{C ∈ [u, u + h]} · 11{T > u}
∣

∣

∣ A
]

= lim
h→0

1

h
E
[

E
(

11{C ∈ [u, u + h]} · 11{T > u}
∣

∣

∣ A, L
) ∣

∣

∣ A
]

= E
[

λc(u, A, L)Gc(u, A, L)S(u, L)

∣

∣

∣ A
]

as C ⊥⊥ T | (A, L) ,

where Gc(u, A, L) = P(C > u|A, L) and S(u, L) = 1− F(u, A, L)− F2(u, A, L),
which depends on L but not on A, by the assumption of no conditional treatment
effects. This further leads to

lim
h→0

1

h
P
(

C ∈ [u, u + h], T > u | A
)

= E
[

{

λ0(t) + Aλ1(t) + λ2(t, L)
}

e− ∫ u
0

{

λ0(s)+Aλ1(s)+λ2(s,L)
}

ds S(u, L)

∣

∣

∣ A
]

= τ(A, u)
[

{

λ0(t) + Aλ1(t)
}

γ (u) + ξ(u)
]
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with

τ(A, u) = e− ∫ u
0

{

λ0(s)+Aλ1(s)
}

ds

γ (u) = E
[

e− ∫ u
0 λ2(s,L)ds S(u, L)

]

ξ(u) = E
[

e− ∫ u
0 λ2(s,L)ds S(u, L)λ2(t, L)

]

where the conditioning on A in the expectations vanishes because we assumed A ⊥⊥ L
(randomization). Similarly, it follows P(C > u, T > u | A) = τ(A, u)γ (u). Hence,
˜λc(u, A) =˜λ0(u) + Aλ1(u) with˜λ0(u) = λ0(u) + ξ(u)/γ (u).

7.2.2 Proof of (30)

Using result (29) and the above definition of ˜Gc(t, A), we now show (30). First, we
note that result result (29) implies that the ratio rc(t, L) = Gc(t, A, L)/˜GC (t, A) =
exp[− ∫ t

0 {λ0(s) + λ2(s, L) −˜λ0(s)}ds] does not depend on A, but on L and t (hence
the notation rc(t, L)). Therefore, we have

E
[

˜W (t, A)D(t)
∣

∣

∣A = 0
]

= E
[

E
{11{T ∧ t ≤ C}
˜Gc(t ∧ T , A)

D(t)
∣

∣

∣T , η, L, A = 0
}∣

∣

∣A = 0
]

= E

⎡

⎣

E
{

11{t ∧ T ≤ C}
∣

∣

∣T , η, L, A = 0
}

˜GC (T ∧ t, 0)
D(t)

∣

∣

∣A = 0

⎤

⎦

= E
[

rc(T ∧ t, L)D(t)
∣

∣

∣ A = 0
]

as C ⊥⊥ (T , η)|(A, L)

= E

[

E
{

∫ t

0
rc(s, L)d D(s)

∣

∣

∣ L, A = 0
}∣

∣

∣A = 0

]

= E

[∫ t

0
rc(s, L)E

{

d D(s)
∣

∣

∣ L, A = 0
} ∣

∣

∣A = 0

]

= E

[∫ t

0
rc(s, L)d F1(t, 0, L)

∣

∣

∣ A = 0

]

= E

[∫ t

0
rc(s, L)d F1(t, 1, L)

∣

∣

∣ A = 0

]

(no conditional treatment effect)

= E

[∫ t

0
rc(s, L)d F1(t, 1, L)

∣

∣

∣ A = 1

]

(randomization, i.e., A ⊥⊥ L)

= E
[

˜W (t, A)D(t)
∣

∣

∣ A = 1
]
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7.2.3 Proof of (31)

As in the Proof of (30), here again we use that (29) implies that rc(t, L) =
Gc(t, A, L)/˜GC (t, A) does not depend on A, but on L and t . Therefore,

E
[

˜W (t, A)Q(t, (1, a, L)T ,β) | A = a
]

= E
[

E
{11{T ∧ t ≤ C}
˜Gc(t ∧ T , A)

Q(t, (1, a, L)T ,β)

∣

∣

∣T , L, A
}∣

∣

∣A = a
]

= E

⎡

⎣

E
{

11{t ∧ T ≤ C}
∣

∣

∣T , L, A
}

˜GC (T ∧ t, A)
Q(t, (1, a, L)T ,β)

∣

∣

∣A = a

⎤

⎦

= E
[

rc(T ∧ t, L)Q(t, (1, a, L)T ,β)

∣

∣

∣A = a
]

as C ⊥⊥ T |(A, L)

= E
[

rc(T ∧ t, L)Q(t, (1, a, L)T ,β)
]

,

where the last equality follows from the randomization assumption A ⊥⊥ L and the
assumption of no conditional treatment effect, which further implies A ⊥⊥ T .
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