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Abstract
Multi-state models are frequently used when data come from subjects observed over
time and where focus is on the occurrence of events that the subjects may experience.
A convenient modeling assumption is that the multi-state stochastic process is Marko-
vian, in which case a number of methods are available when doing inference for both
transition intensities and transition probabilities. The Markov assumption, however,
is quite strict and may not fit actual data in a satisfactory way. Therefore, inference
methods for non-Markov models are needed. In this paper, we review methods for
estimating transition probabilities in such models and suggest ways of doing regres-
sion analysis based on pseudo observations. In particular, we will compare methods
using land-marking with methods using plug-in. The methods are illustrated using
simulations and practical examples from medical research.

Keywords Land-marking · Markov process · Multi-state model · Non-Markov
model · Plug-in · Pseudo observations · State occupation probability · Survival
analysis · Transition intensity · Transition probability

1 Introduction

In many longitudinal studies, e.g. in medical research, subjects are followed over time
for the occurrence of certain events. One such example is the ‘PROVA’ trial (PROVA
study group 1991) that included 286 patients in whom liver cirrhosis was histologi-
cally verified. In eligible patients, endoscopy had shown oesophageal varices, but a
transfusion-requiring bleeding had not yet been observed. Patients were randomized
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in a four-arm design to treatment with propranolol or not combined with sclerother-
apy or not. The purpose of the trial was to study to what extent these treatments were
PROphylactic against transfusion-requiring bleeding from the VArices and against
death (without bleeding). In another example (Andersen and Pohar Perme 2008),
2009 patients with acute leukemia were followed after bone marrow transplantation
(BMT) in an observational study with the purpose of evaluating prognostic factors for
the events relapse of disease and death, and with special emphasis on how the inter-
mediate event graft-versus-host disease (GvHD) is associated with these outcomes.

A suitable mathematical framework in which to study such phenomena is that of
multi-state models where events of interest are considered as transitions between a
(typically small) number of states, see Figs. 1 and 2 for examples of ‘box-and-arrow
diagrams’ depicting possible multi-state models with the transitions of interest for the
PROVA and BMT studies. Reviews on multi-state models have been presented, e.g.
by Andersen and Keiding (2002) and byMeira-Machado and Sestelo (2017), the latter
focussing on the model in Fig. 1, known as the (irreversible) illness–death model. The
book by Cook and Lawless (2018) gives a comprehensive review of the field.

In a multi-state model, time is measured relative to some time origin (time of ran-
domization in the PROVA study and time of bone marrow transplantation in the BMT
study) and if X(t) denotes the state occupied at time t then the transition probabilities

Fig. 1 An irreversible illness–death model for the PROVA study

Fig. 2 States and transitions in the bone marrow transplantation (BMT) study
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are Phj (s, t) = P(X(t) = j | X(s) = h) where h, j are in the finite state space
S. Some times, the transition probabilities are further conditioned on the past of the
multi-state process up till just before time s: Fs− = σ {X(u), u < s, Z}, possibly
including time-fixed covariates Z observed at study entry. If, for all j �= h and all
t ≥ s, Phj (s, t) = 0 then state h is absorbing, otherwise h is transient.

The transition intensities are

αh j (t) = lim
�t→0

Phj (t, t + �t)

�t
, h, j ∈ S, h �= j,

and if αh j (t) only depends on the past Ft− via the state h occupied at t (and possibly
via time-fixed covariates) then themulti-state process isMarkovian. For an irreversible
illness–death model, the process is Markovian if the 1 → 2 intensity does not depend
on the time, say T1, of entry into state 1. Similarly, if in Fig. 2 all transition intensities
out of the non-initial transient states (1 and 2) are independent of times and types of
previous transitions then the process is Markovian.

Transition intensities can be considered as the basic ‘building blocks’ of a multi-
state process in the sense that if all transition intensities are known then, via Jacod’s
formula (e.g., Andersen et al. 1993), a likelihood is available that only depends on
the transition intensities. From this likelihood, inference on the intensities may be
performed based on observation of, possibly right-censored realizations of the process
for independent subjects. Thus, regression models for intensities may be based on
versions of the Cox (1972) proportional hazards model (or on other hazard regression
models known from survival analysis). Nevertheless, transition probabilities (and state
occupation probabilities, i.e. Qh(t) = P(X(t) = h), h ∈ S) have a more simple
interpretation, especially for scientists with limited mathematical background and
it is, therefore, of considerable interest to be able to estimate such quantities. For
Markov models, the problem of obtaining transition probabilities from intensities was
completely solved byAalen and Johansen (1978)who showed that the product-integral
maps transition intensities onto transition probabilities. We will briefly review this in
Sect. 2. For general multi-state processes, Datta and Satten (2001) showed that state
occupation probabilities may also be estimated using the product-integral. However,
estimation of transition probabilities in non-Markov models is more involved and
several approaches to this havebeenput forward.Wewill reviewsomeof thesemethods
in Sect. 3. This includes plug-in methods where, for non-reversible processes (such
as those exemplified in Figs. 1 and 2 where a state cannot be reached once it has been
left), transition probabilities are explicit functionals of the intensities. It also includes
more general approaches based on land-markingwhere estimation of Phj (s, t) is based
solely on subjects in state h at time s, such as those discussed by Titman (2015) and
Putter and Spitoni (2018).

A general technique to obtain estimates of transition probabilities for given inten-
sities is micro-simulation where paths of the multi-state process are generated and,
from these, transition probabilities may be estimated as simple averages over repeated
simulated paths (e.g., Mitton et al. 2000). However, in a regression situation where
intensities are given as a function of time-fixed covariates, neither this technique, nor
plug-in will provide parameters describing directly the association between covari-
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ates and transition probabilities. We will discuss this problem in Sect. 4 where we will
show that pseudo-observations (e.g., Andersen et al. 2003; Andersen and Pohar Perme
2010) may be applicable for this purpose. Results will be supported by simulations
(Sect. 5), and we will study how some of the methods work in the PROVA and BMT
examples (Sect. 6). The article is concluded by a brief discussion of findings and lines
of further research (Sect. 7).

2 Markovmodels

Let X(t) be a multi-state process with state space S = {0, 1, . . . , k} and assume that
X(t) is Markovian, i.e.

αh j (t)dt ≈ P(X(t + dt) = j | X(t) = h,Ft−) = P(X(t + dt) = j | X(t) = h, Z)

for all states h, j ∈ S, j �= h. We define the cumulative intensities Ahj (t) =∫ t
0 αh j (u)du and let Ahh(t) = −∑

j∈S, j �=h Ahj (t). We can then collect all
Ahj (t), h, j ∈ S in a (k + 1) × (k + 1)-matrix A(t) and the product-integral of
A(·) over the interval (s, t] is defined as the (k + 1) × (k + 1)-matrix

P(s, t) = Π
(s,t]

(
I + dA(u)

)

= lim
max |ui −ui−1|→0

∏(
I + A(ui ) − A(ui−1)

)
(1)

for any partition s = u0 < u1 < · · · < uN = t of (s, t] (Gill and Johansen 1990).
Here, I is the (k+1)×(k+1) identitymatrix. Note that equation (1) is alsowell-defined
if the Ahj have jumps, and in the case where the Ahj correspond to purely discrete
measures, the product-integral is just a finite matrix product over the jump times in
(s, t]. Gill and Johansen (1990) showed that P(s, t) is the transition probability matrix
for the Markov process X(·).

This immediately suggests plug-in estimators for P(s, t) based on models fitted
for the intensities, as follows. We assume that independent, possibly right-censored,
realizations of X(·) are observed. These data can be represented as counting processes
Nhji (t), t ≤ τi where, for h, j ∈ S, h �= j , the process Nhji (t) counts the observed
number of direct h → j transitions in [0, t] for subject i = 1, . . . , n. The time point
τi is either the time at which Xi (·) reaches an absorbing state or a previous time of
right-censoring. A non-parametric estimator for P(s, t) for an assumed homogeneous
group is obtained by plugging-in the Nelson-Aalen estimator Â, where

Âh j (t) =
∫ t

0

∑
i d Nhji (u)

∑
i Yhi (u)

and Yhi (u) = I (Xi (u) = h) is the state h indicator for subject i . The resulting
estimator

P̂(s, t) = Π
(s,t]

(
I + dÂ(u)

)
(2)
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is the Aalen–Johansen estimator (Aalen and Johansen 1978). The expression (2) also
applies if the model for the intensities is a hazard regression model with time-fixed
covariates, e.g. a Cox model.

The state occupation probabilities are

Qh(t) = P(X(t) = h) =
∑

j

Q j (0)Pjh(0, t), h ∈ S.

In the situation where all subjects are in the same state (0) at time 0, i.e. Q0(0) = 1,
these are Qh(t) = P0h(0, t) and the Aalen–Johansen estimator may be used for this
parameter. Since Phj (s, t) is a differentiable functional of the intensities, large-sample
properties of the resulting plug-in estimator may be derived from those of the intensity
estimators using (functional) delta-methods (Andersen et al. 1993).

3 Non-Markovmodels

3.1 General non-Markovmodels

As mentioned above, estimation of state occupation probabilities is possible using the
Aalen–Johansen estimator for a general multi-state model (Datta and Satten 2001).
This feature was used by Putter and Spitoni (2018) to estimate transition probabilities
in any multi-state model using land-marking (or sub-setting). To estimate Phj (s, t) =
P(X(t) = j | X(s) = h) for a fixed value of s and a fixed state h ∈ S, attention was
restricted to those processes Xi (·) observed to be in state h at time s, i.e processes for
which Yhi (s) = 1 and counting process increments and at-risk processes were studied
for this subset:

d N L M
j� (t) =

∑

i

d N j�i (t)Yhi (s), Y L M
j (t) =

∑

i

Y ji (t)Yhi (s), t ≥ s.

The Nelson-Aalen estimators ÂL M (t) based on these sub-sets are then plugged-in to
the product-integral to yield the land-mark Aalen–Johansen estimator:

P̂L M (s, t) = QL M (s) Π
(s,t]

(
I + dÂL M (u)

)
, (3)

whereQL M (s) is the (k + 1) row vector with element h equal to 1 and other elements
equal to 0. Malzahn et al. (2021) extended this technique to ‘hybrid’ situations where,
only for some transitions, the Markov property fails whereas, for others, the Markov
assumption is compatible with the data.

Titman (2015) also used sub-setting to obtain estimators for transition probabilities
in non-Markov models, as follows. DefineRh j to be the set of states reachable from h
but from which j cannot be reached. For the considered subset of processes one then
defines the following competing risks process for u ≥ s when j is an absorbing state:
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X∗
s (u) =

⎧
⎨

⎩

0 if X(u) /∈ Rh j ∪ { j}
1 if X(u) ∈ Rh j

2 if X(u) = j

For the considered subset, this process is linked to X(t) by the relation Phj (s, t) =
P(X∗

s (t) = 2) and, therefore, the desired transition probability can be estimated using
the Aalen–Johansen estimator for the cause 2 cumulative incidence for X∗

s (t). More
specifically, if Ns�(u) counts cause � = 1, 2 events for X∗(·) and Ys(u) is the number
still at risk for cause 1 or 2 events at time u− then the estimator is

P̂T
h j (s, t) =

∫ t

s
P̂(X∗

s (u) = 0 | X∗
s (s) = 0)

d Ns2(u)

Ys(u)
,

where P̂(X∗
s (u) = 0 | X∗

s (s) = 0) is estimated using the Kaplan–Meier estimator

Π
(s,u]

(
1 − d Ns1(v) + d Ns2(v)

Ys(v)

)

based on events of both types. If j is a transient state then one defines the following
survival process for u ≥ s for the considered subset of processes:

X∗
s (u) =

{
0 if X(u) /∈ Rh j

1 if X(u) ∈ Rh j

For this subset, the process X∗
s (t) is related to X(t) via Phj (s, t) = P(X∗

s (t) =
0)P(X(t) = j | X∗

s (t) = 0), where the first factor can, once more, be estimated
by the Kaplan–Meier estimator for X∗

s (t). Titman (2015) proposed to use the relative
frequency of processes in state j at time t among those for which X∗

s (t) = 0, i.e.

∑
i I (Xi (t) = j, Xi (s) = h, Xi (t) /∈ Rh j )∑

i I (Xi (s) = h, Xi (t) /∈ Rh j )

as an (ad hoc) estimator of the second factor.
Wewill not study Titman’s estimators any further but rather focus on non-reversible

models for which some alternative estimators are possible.

3.2 Non-reversible models

If the multi-state process is non-reversible then, as discussed by Titman (2015), a sim-
ple estimator—building on Pepe (1991) and on sub-setting—is available for Phj (s, t)
when state j is transient. Thus, to estimate Phj (s, t), one again looks at the subset
of processes Xi (·) observed to be in state h at time s and, for fixed s, this transition
probability is estimated as the difference between Kaplan–Meier estimators of staying
in sets of states Sh j and Sh j ∪ { j}, respectively, at time t where Sh j is the set of states
reachable from h and from which j can be reached. A variance estimator was also
presented.
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Violation of the Markov property is typically detected by fitting models for the
intensities allowing past events (i.e., in Ft−) to affect αh j (t). When this dependence
is explicitly modelled and if an expression is available for the way in which transition
probabilities depend on the intensities then Phj (s, t)may be estimated by plug-in. This
is the case for non-reversible models such as those depicted in Figs. 1 and 2. Thus,
for the illness–death model, we have P00(s, t) = exp(− ∫ t

s (α01(u) + α02(u))du),
P11(s, t | T1) = exp(− ∫ t

s α12(u | T1)du), where T1 < s is the time of 0 → 1
transition, and

P01(s, t) =
∫ t

s
P00(s, u)α01(u)P11(u, t | u)du.

Similar expressions hold for the model in Fig. 2. Thus, P02(s, t) 1s the sum of two
terms corresponding to a direct 0 → 2 transition and to transition via state 1, say

P(a)
02 (s, t) =

∫ t

s
P00(s, u)α02(u)P22(u, t | ∞, u)du

and

P(b)
02 (s, t) =

∫ t

s
P00(s, u)α01(u)

∫ t

u
P11(u, x | u)α12(x | u)P22(x, t | u, x)dxdu.

Here,

P11(s, t | T1) = exp(−
∫ t

s
(α12(u | T1) + α13(u | T1))du)

is the probability of staying in state 1 from time s to time t given entry into state 1 at
T1 < s and

P22(s, t | T1, T2) = exp(−
∫ t

s
α23(u | T1, T2)du)

is similarly the probability of staying in state 2 from time s to time t given entry into
state 2 at T2 < s and, possibly, entry into state 1 at T1 < T2, T1 = ∞ denoting no
previous 0 → 1 transition.

To apply these expressions, intensity models describing the influence of T1, T2 are
needed. Obviously, such models may be difficult to assess, however, if such models
are available then estimation may be based on the entire data set, rather than restricting
attention to the land-mark sub-set of processes in state 0 at time s. This may entail a
considerable efficiency gain as we will further study in Sects. 5 and 6. Alternatively,
semi-Markov Cox-type models with the baseline intensities out of non-initial transient
states h depending on the sojourn time spent in h are possible. Large sample theory
for the resulting estimators follow, in principle, from those of the hazard models via
the functional delta-method. The details, however, may be cumbersome to verify, see
Shu et al. (2007) for a study of the semi-Markov illness–death model.
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It should be noted that for the irreversible illness–death model (Fig. 1), some spe-
cial estimators are available, see e.g. Meira-Machado et al. (2006), Meira-Machado
and Sestelo (2017), and Allignol et al. (2014). These estimators will not be further
studied here. For this model, Rodriguez-Girondo and Uña-Alvarez (2012) studied
non-parametric tests for Markovianity based on estimates of Kendall’s τ . Tests for
the Markov assumption in general multi-state models were discussed by Titman and
Putter (2022).

4 Regression

If transition probabilities are studied in relation to time-fixed covariates Z then the
plug-in methods described above are available, at least for non-reversible models.
This would entail fitting regression models, such as Cox models, for each of the
relevant transition intensities. Thereby, probabilitiesmaybepredicted for given Z. This
approach, however,wouldnot provide coefficients that directly describe the association
between Phj (s, t) and Z. To obtain this, we suggest to use pseudo-observations (e.g.,
Andersen et al. 2003; Andersen and Pohar Perme 2010), as follows.

If there had been no censoring then, for all subjects in state h at time s, the indicator
Y ji (t) = I (Xi (t) = j) of being in state j at time t > s would be observable and
could be used as outcome variable in a regression model. With potential censoring,
let P̂h j (s, t) be the estimator based on ‘all’ subjects and P̂−i

h j (s, t) the same estimator
applied to the data set obtained by eliminating subject i . The pseudo-observation for
subject i is then

θi = ns · P̂h j (s, t) − (ns − 1)P̂−i
h j (s, t)

where ns is the size of the data set used for estimating P̂h j (s, t). Depending on the
estimator used, ns could be the size the full land-mark data set (e.g., land-mark Aalen–
Johansen or land-mark Pepe estimators) or of the complete data set (e.g., Aalen–
Johansen or plug-in estimators). For plug-in estimators, an ‘intermediate’ data set
could consist of all subjects still at risk at time s, but not necessarily in state h at that
time. Note that the Aalen–Johansen estimators based on either the complete data set
or the ‘at risk’ (at time s) data set are identical. Also note that, in an uncensored data
set, pseudo-values based on the land-mark Aalen–Johansen or the land-mark Pepe
estimators both reduce to the indicator θi = I (Xi (t) = j).

Estimates of the parameters β in a regression model g(Phj (s, t | Z)) = βT Z with
link function g are now obtained by solving the estimating equations

U(β) =
∑

i

A(β, Zi )
(
θi − g−1(βT Zi )

) = 0 (4)
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(e.g., Andersen and Pohar Perme 2010). The function A(β, Zi ) is typically the p-
vector

A(β, Zi ) =
(

∂

∂β j
g−1(βT Zi ), j = 1, . . . , p

)

of partial derivatives of the mean function. Properties of the resulting estimators have
been studied in special cases, e.g. by Overgaard et al. 2017 when pseudo-values are
based on the Kaplan–Meier estimator or the Aalen–Johansen estimator for the com-
peting risks cumulative incidence function and when censoring is independent of
covariates. In a simulation study, we will in the next section investigate the behav-
ior of the estimator of β when pseudo observations are based on the estimators for
Phj (s, t) discussed in Sect. 3.

A crucial assumptionwhen using pseudo observations is, asmentioned, that censor-
ing is independent of covariates. An alternative to using pseudo-observations would
be to use inverse probability of censoring weighted ‘direct binomial regression’. Thus,
Scheike and Zhang (2007) used that technique for analyzing state occupation prob-
abilities, and Azarang et al. (2017) studied transition probabilities in the irreversible
illness–death model.

5 Simulations

In the simulation study, we focus on the illness–death model of Fig. 1 and consider
three scenarios:

• Scenario A: Markov model with constant transition intensities
• Scenario B: Non-Markov model with constant transition intensities and with a
linear effect of duration d on α12(t, d)

• Scenario C: Non-Markov model with constant transition intensities and with a
piece-wise constant effect of duration d on α12(t, d)

5.1 Marginal estimators

First, the probability P01(1, t)was estimated on a large data-set (75000 individuals, no
censoring) to obtain ‘true values’ for the transition probability. Then, a simulation with
100 simulation runs with sample size n = 750 was performed and on each simulated
data set, the following estimators were used:

land-mark data set (only individuals in state 0 at time s = 1):

• LM Pepe: Pepe estimator
• LM AAJ: Aalen–Johansen estimator
• LM PGL: Plug-in estimator using land-mark data only, modelling duration effect
in state 1 linearly

At risk data set (only individuals at risk at time s = 1):

• At risk PGL: Plug-in estimator using everyone at risk at time s = 1, modelling
duration effect in state 1 linearly
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Fig. 3 Estimates of the transition probability P01(s, t), t > s for s = 1 in Scenarios A, B, and C

Complete data set (using all individuals):

• AAJ: Aalen–Johansen estimator (same as at risk AAJ)
• PGL: plug-in estimator, modelling the effect of duration d in state 1 linearly
• PGS: plug-in estimator, modelling the effect of duration d in state 1 using a spline
with 3 df

• PGR: plug-in estimator, using duration as time-scale in state 1 and modelling the
effect on α21(t, d) of time t since 0 linearly

Figure 3 shows the true P01(1, t) together with averages over the simulation runs
of the various estimates. It is seen that all estimators are unbiased when the process
is Markov, that the Aalen–Johansen estimator using all data is biased on non-Markov
data, and that the simple linear model for duration makes the plug-in estimator biased
when the duration effect is non-linear.

Turning, next, to the variability of the estimators, Table 1 shows the standard
deviation over the simulation runs of the estimates at three time points chosen, approx-
imately, at the 25th, 50th, and 75th percentiles of transition times in the land-mark
data set. The general picture is that the estimators using the complete data (plug-in or
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Fig. 4 Transition probability P01(s, t | Z = �), t > s, � = 0, 1, for s = 1 in Scenario B together with
average pseudo observations using different estimators

Aalen–Johansen) give the lowest variance, however, in ScenariosB andCwehave seen
that Aalen–Johansen is biased. Furthermore, the model based on the at-risk data gives
a standard deviation similar to models using the complete data set; the model using
duration as the time scale has the lowest standard deviation and, on the land-mark data
set, all methods give similar standard deviations. The results for the Aalen–Johansen
estimator and for the land-mark Aalen–Johansen and Pepe estimators are well in line
with the results reported in the simulation studies by Putter and Spitoni (2018).

5.2 Regression

We now turn to regression and consider one binary covariate. All regression models
are based on pseudo-observations where we directly model the probability P01(1, t).
The link function is the logarithm, i.e. we estimate the coefficient β = log(P01(1, t |
Z = 1)/P01(1, t | Z = 0)).

We first study the average of the pseudo-observations and Fig. 4 shows the true
curves and the averages of pseudo-observations based on estimates in a data set with
n = 2000 and 20%censoring.We can see that the average pseudo observationswith all
methods are close and follow nicely the true values, the only exception is the complete
data AAJ (not shown), which we already know to be biased.

It is instructive to study how pseudo-values look like for different subjects and for
the different base estimators, see the Supplementary Material.

To study the behavior of estimators of β we consider Scenario B (linear effect
of duration on α21(t, d)) and three effects of Z : (1)—no effect, (2)—Z affects only
α12, (3)—Z affects all three transition intensities. Fig. 5 shows box-plots of the β̂’s
in these situations based on 100 simulation runs with n = 750 subjects and 20%
censoring. It is seen that all estimators are unbiased, except Aalen–Johansen using
the full data set (which, however, provides an unbiased estimate of β under the null –
even though the average of pseudo observations does not hit the target). The box-plots
suggest some differences in the variability of the estimators: the variance is lower
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Fig. 5 Box-plots of β̂ under the null hypothesis ((1) – no effect of Z , top panel) and under two alternatives
((2) and (3) – middle and lower panels). The ‘true value’ (i.e., based on 75000 subjects) is at the red line

with the plug-in model in the complete or at risk data sets, the other three options
give roughly the same variance. At the later time point, with only few individuals at
risk, the plug-in estimators become more variable. In the Supplementary Material, the
standard deviations are tabulated, as well as the power of a (Wald) test for the null
hypothesis β = 0. There, we also show how different levels of censoring affect the
estimators.
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6 Examples

6.1 The PROVA trial

Based on data from the PROVA trial, briefly introduced in Sect. 1, we will illustrate
the estimators discussed in Sects. 2–4. We will first study the entire data set, ignor-
ing treatment and other covariates, and aim at estimating the probability, P01(1, t)
of being alive in the bleeding state (1) at time t among those who were alive and
free of bleeding s = 1 year after randomization. At that time, 190 out the initial
286 patients were still at risk in state 0. Figure 6 shows the Markov-based Aalen–
Johansen estimator (using all 286 patients) and the land-mark Aalen–Johansen and
Pepe estimators. The Aalen–Johansen estimator is seen to provide somewhat higher
values compared to the land-mark estimators, suggesting that the Markov assump-
tion may be questionable. This observation is supported by fitting models for the
death intensity after bleeding, α12(t | T1) taking the time T1 of bleeding into
account. This was done by introducing time-dependent covariates Z(t) = t − T1
or (Z1(t), Z2(t)) = (I (5 days > t − T1), I (5 days ≤ t − T1 < 10 days)) and test-
ing their significance. The estimated coefficients (with estimated standard deviation)
were, respectively, β̂ = −2.21(0.62), (β̂1 = 3.22(0.61), β̂2 = 2.14(0.73)) and in
both models the Markov assumption is clearly rejected. The estimates show that,
shortly after a bleeding episode, the mortality rate is high. Figure 6 also shows the
plug-in estimators based on these models as well that based on a semi-Markov model
using duration d = t − T1 as baseline time in the model for α12(·). It is seen that
the latter is close to the non-parametric estimators based on land-marking, whereas
the plug-in estimator based on a piecewise constant duration effect in the Cox model
does not seem to capture the true effect very well. The plug-in estimator based on a
linear duration effect in the Cox model is close to the non-parametric estimates using
land-marking, and a model with a more detailed duration effect (using a fractional
polynomial, not shown) was quite similar to the model with a linear effect.

Turning, next, to the precision of the estimators, a bootstrap experiment was con-
ducted, re-sampling data sets of size 286, B = 1000 times with replacement from
the PROVA data. On each data set, estimators of P01(1, t) were computed and the
standard deviation of the estimates was calculated. Since the variability tends to be
larger, when the point estimate is large, Table 2 reports relative bootstrap standard
deviations (coefficients of variation, CV). It is seen that the two estimators based on
land-marking (n = 190) have relatively large CV-values compared to those based
on the full data set (n = 286). The smallest CV is for the biased Aalen–Johansen
estimator but also the semi-Markov estimator is quite precise. The plug-in estimator
has large CV-values for high values of t .

Pseudo-values

To illustrate the use of pseudo-values, we now study how P01(s, t), t > s for s = 1
year depends on whether sclerotherapy was given. First, we use the Cox model to
model each transition intensity separately. To this end, we can use the whole data
set or only at-risk or land-mark data (the two are equal for transitions 0 to 1 and 0

123



Inference for transition probabilities in non-Markov multi-state models 599

Fig. 6 Estimates for the transition probability P01(s, t), t > s for s = 1 year in the PROVA trial. AAJ:
Aalen–Johansen estimator based on the entire data set; LM AAJ: land-mark Aalen–Johansen estimator
using only subjects in state 0 at time s = 1; PGR: Semi-Markov model using d as time axis for the 1 to
2 transition intensity; PGL: Plug-in model with a linear effect of d; PCW: Plug-in model with piecewise
constant effect of d; LM Pepe: land-mark Pepe estimator using only subjects in state 0 at time s = 1

Table 2 Coefficient of variation
(%) for different estimators for
the transition probability
P01(s, t), t > s for s = 1 year in
the PROVA trial

Time t AAJ LM AAJ PGR LM Pepe PGL

1.5 34.6 47.7 39.1 50.4 36.6

2.0 28.9 42.0 32.4 45.3 42.0

2.5 30.8 45.8 31.5 54.7 50.3

3.0 31.4 47.6 33.3 55.0 45.3

3.5 34.4 44.4 34.2 54.4 54.2

to 2). When considering the 1 to 2 transition, we have several options: fitting on the
original time axis but with duration as a covariate (linear or as a spline), fitting on the
duration time axis but with time since randomization as a covariate (linear or spline).
The results are shown in Fig. 7; the effect of treatment only seems important for the 0
to 2 transition.

When modelling the transition probability directly, we first study the two estimated
curves (using the land-mark Aalen–Johansen estimator) and compare to the average
of pseudo-observations for each of the subgroups of the data, see Fig. 8. We can see
no important differences between the two estimated curves. We also investigated if
censoring was independent of covariates and that assumption turned out to be rea-
sonably well fulfilled. As the last step, we fit the model using pseudo-observations
at a time point around the 50th percentile of observed transition times. These can be
calculated in different ways (Fig. 9), but all the estimated coefficients have a large
standard deviation and no effects of the covariate are seen. However, those based on
land-marking show the largest variability in accordance with the simulation study.
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Cox model results
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Fig. 7 Effect of sclerotherapy on transition rates in the PROVA trial using different subsets of the data
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Fig. 8 Effect of sclerotherapy on P01(s, t), t > s for s = 1 in the PROVA trial: land-mark Aalen–Johansen
estimators and average pseudo-values
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Fig. 9 Effect of sclerotherapy on P01(s, t), t > s for s = 1 in the PROVA trial based on pseudo observations

6.2 The BMT study

We also illustrate some of the methods for the bone marrow transplantation example
introduced in Sect. 1. For this example, a Markov model does not fit the data well
judged from results fromCoxmodels for the transition intensities allowing for duration
dependence in states 1 or 2. Thus, the two death intensities depend significantly on (a
linear effect of) duration, t − T1 or t − T2 in states 1 or 2, respectively. The former
increases with duration (β̂ = 0.050, SD = 0.021) while the latter decreases (β̂ =
−0.066, SD = 0.016). The transition intensity from state 1 to state 2 increases
insignificanty with duration (t − T1) in state 1 (β̂ = 0.074, SD = 0.046).

Figure 10 shows estimates of P02(s, t), t > s for s =6 months using various esti-
mators: the Markov-based Aalen–Johansen estimator, the land-mark Aalen–Johansen
and Pepe estimators, and two plug-in estimators. The first plug-in estimator uses dura-
tions in states 1 or 2 as baseline time variables with no adjustment for time t since
transplantation (‘semi-Markov estimators’), and the other models the intensities out of
states 1 or 2 using t as baseline time variable and adjusting for duration in states 1 and
2 using the models with estimates quoted above. It is seen that, for this example, the
deviations from the Markov assumption are less severe for the estimation of the tran-
sition probability, and no big differences between the various estimators are apparent.
However, it does seem as if that based on the semi-Markov model gives somewhat
lower estimates for large values of t . A possible explanation is that the semi-Markov
model does not take time since transplantation into account for the death intensities
out of states 1 and 2. The example thus illustrates that when using plug-in estimators
and modeling duration effects explicitly, great care must be exercised when setting up
these models.

7 Discussion

We have reviewed how inference for transition probabilities Phj (s, t) may be carried
out in non-Markov multi-state models. For (‘marginal’) estimators of the probability
in a homogeneous population, i.e. with no consideration of covariates, we saw that the
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Fig. 10 Estimates for the transition probability P02(s, t), t > s for s = 6months for the bonemarrow trans-
plantation data: AAJ—Aalen–Johansen; LM AAJ—land-mark Aalen–Johansen; LM Pepe—land-mark
Pepe; PGL—Plug-in with a linear effect of d on death intensities from states 1 and 2; PGR—semi-Markov
model using d as time axis for death intensities from states 1 and 2

standard Aalen–Johansen estimator using all data could be biased when the process
was, indeed, non-Markov, whereas this estimator was the most efficient one in the
Markovian case. Restricting to the land-mark data set of subjects in state h at time
s, the Aalen–Johansen method provided unbiased estimation and was comparable to
the land-mark Pepe estimator in the situations studied. Estimators based on plug-in
were highly competitive in terms of precision if the plug-in models for the intensities
were correctly specified but did suffer from bias otherwise. This was seen both in the
simulations and in the practical examples.

The results for regression models using pseudo observations were compatible with
the findings for the overall estimators. Thus, using the Aalen–Johansen estimator for
the full data set as the base estimator when calculating pseudo-values gave biased
estimates of regression coefficients in non-Markov situations. Furthermore, plug-in
models may be efficient but they do suffer from bias when the intensity models are not
correctly specified, whereas base estimators using land-marking gave unbiased results,
however, possibly with a large variability. In conclusion: there is a bias/variance trade-
off when choosing between land-mark and plug-in estimators.

Some remarks about calculation of pseudo-values are in place. We think it is a good
practice always to look at themarginal estimator (whichmay exhibit large jumps – also
becoming negative at later time points) and to check whether the average of pseudo
observations is close to the marginal estimator. Furthermore, convergence problems,
especially at later time points are not unusual and it should be noted that pseudo-
observations for the plug-in models are very computationally intensive.

Some points deserve further attention. Future studies should investigate if the
pseudo-values calculated from different base estimators have the desired mathemat-
ical properties that make the GEE in (4) unbiased when censoring is independent of
covariates, see e.g. Overgaard et al. (2017). Additionally, methods for adjusting for
covariate-dependent censoring should be developed and it should be investigated to
what extent plug-in estimators using, respectively, the full data set, the land-mark
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data set, or the at risk data set are applicable as base estimators for calculation of
pseudo-values.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s10985-022-09560-w.
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