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Abstract
This proposal is motivated by an analysis of the English Longitudinal Study of Ageing
(ELSA), which aims to investigate the role of loneliness in explaining the negative
impact of hearing loss on dementia. The methodological challenges that complicate
this mediation analysis include the use of a time-to-event endpoint subject to compet-
ing risks, as well as the presence of feedback relationships between the mediator and
confounders that are both repeatedly measured over time. To account for these chal-
lenges, we introduce path-specific effect proportional (cause-specific) hazard models.
These extendmarginal structural proportional (cause-specific) hazardmodels to enable
effect decomposition on either the cause-specific hazard ratio scale or the cumulative
incidence function scale. We show that under certain ignorability assumptions, the
path-specific direct and indirect effects indexing this model are identifiable from the
observed data. We next propose an inverse probability weighting approach to estimate
these effects. On the ELSA data, this approach reveals little evidence that the total
effect of hearing loss on dementia is mediated through the feeling of loneliness, with a
non-statistically significant indirect effect equal to 1.01 (hazard ratio (HR) scale; 95%
confidence interval (CI) 0.99 to 1.05).
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1 Introduction

This article is motivated by an analysis of the English Longitudinal Study of Ageing,
a longitudinal cohort study of individuals aged 50 and older living in the community
in England, which follows participants biennially since 2002/03 (Steptoe et al. 2013;
Davies et al. 2017). In previous studies, it was shown that both self-reported hearing
loss and loneliness are significantly associated with a higher risk of dementia (Davies
et al. 2017; Davies-Kershaw et al. 2018; Rafnsson et al. 2020). The question of interest,
which we shall address here, is whether loneliness mediates the impact of hearing loss
on incident physician-diagnosed dementia.

The focus on time-to-event endpoints (dementia) complicates the planned medi-
ation analysis. It renders the popular difference- and product-of-coefficient methods
inappropriate (VanderWeele 2016; Robins and Greenland 1992; Pearl 2001), neces-
sitating the use of more complex causal mediation analysis methods. While such
methods have been developed for the analysis of time-to-event endpoints, most ignore
that the mediator is not assessed at baseline and that subjects may therefore expe-
rience the event prior to the mediator being assessed(Lange et al. 2013; Huang and
Yang 2017; Vandenberghe et al. 2018). Further complications arise from the mediator,
loneliness, being repeatedly measured. While useful to better capture mediation via
the entire longitudinal mediator process (Vansteelandt et al. 2019), this also gives rise
to complex time-varying confounding patterns whereby mediators (e.g. loneliness)
and confounders (e.g. comorbidities) mutually influence each other over time. These
complications have been addressed in a number of recent works (Zheng and van der
Laan 2017; Lin et al. 2017; Vansteelandt et al. 2019).

A further complication that we must consider, and that we have not previously
found being addressed in the mediation analysis literature, is the presence of com-
peting risks by death. With observed - as opposed to counterfactual - event times,
the modelling of cause-specific hazards is well known to simplify the handling of
competing risks. However, the modelling of (cause-specific) hazards is not readily
possible in the previous mediation analysis works (Zheng and van der Laan 2017; Lin
et al. 2017; Vansteelandt et al. 2019), which instead focus on the analysis of survival
chances. In view of this, in this paper, we will introduce so-called path-specific effect
proportional (cause-specific) hazard models, which directly parameterise the direct
and indirect effects of a given exposure on the cause-specific hazard of the consid-
ered event. We will extend the weighting-based approach proposed by Mittinty and
Vansteelandt (2020) for longitudinal natural effect models to enable the planned medi-
ation analysis of an exposure via repeatedly measured mediators on a time-to-event
endpoint subject to competing risks.

We proceed as follows. In the next section, we first describe the setting of interest.
We then extend the path-specific effect proportional hazard model to take into account
the longitudinal nature of themediator. In the same section,we discuss the assumptions
under which the path-specific direct and indirect effects derived from such model
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are identifiable from data, and provide a step-by-step procedure for estimating these
effects. In sect. 3, we apply the proposed approach to analyze data from the English
Longitudinal Study of Ageing (Steptoe et al. 2013; Davies et al. 2017). We end with
some final remarks and a discussion.

2 Proposal

2.1 Path-specific models for longitudinal mediators and a time-to-event endpoint
subject to competing risks

Consider an observational study in which independent individuals i = 1, . . . , n are
exposed to a categorical factor Ai coded as 0, 1, . . . , P −1 for P different categories.
Longitudinal measurements of the mediator Mi0, Mi1 . . . , MiK and of the covariates
Li0, Li1 . . . , LiK are subsequently recorded at baseline (subscript 0) and at visits
1, . . . , K , along with (i) a time-to-event endpoint Ti and (ii) an index Di specifying
whether the main event (Di = 1) or the competing one (Di = 2) happens. Denote t(k),
k = 1 . . . K the fixed time point after the onset of the exposure at which the measure-
ments of Mk and Lk are pre-planned for all patients. Assume that these measurements
are only recorded until the last visit K or until event Di = 1 or Di = 2 happens,
whichever comes first. The time-to-event endpoint may be censored administratively
or due to loss to follow-up, in which case Di = 0.

The causal diagram in Fig. 1 depicts the relationships between the variables over
time. In the diagram, Lk includes the indicator I (T ≥ t(k)) of having survived visit k.
Throughout, we will denote the history of measurements up to visit k using a bar, i.e.
Mk = (M1, . . . Mk) and Lk = (L1, . . . Lk).

To define the direct and indirect effects of interest, we will make use of so-called
path-specific effects, expressed as a (cause-specific) hazard ratio. In particular, we
define the counterfactual variables Ta,a∗ and Da,a∗ as the time to the main or com-
peting event (whichever comes first) and the corresponding event index that would be
observed if the exposure A were set to a and the mediator levels changed to the levels
that we would have seen if the exposure were set to a∗ and the levels of the time-
varying confounders were as observed under this joint intervention on A and MK ,
respectively. The cause- j-specific hazard λ

j
a,a∗(t) observed under such intervention

can then be expressed as:

λ
j
a,a∗(t) = lim

δt→0+
P(t ≤ Ta,a∗ ≤ t + δt, Da,a∗ = j |Ta,a∗ ≥ t)

δt

The total causal effect (TE) on the cause- j-specific hazard when the exposure changes

from a to a∗ is thus HR j
T E (t) = λ

j
a∗,a∗ (t)

λ
j
a,a(t)

, which can be decomposed into the direct

effect (DE) HR j
DE (t) = λ

j
a∗,a(t)

λ
j
a,a(t)

and the indirect effect (IE) HR j
I E (t) = λ

j
a∗,a∗ (t)

λ
j
a∗,a(t)

,

where HR j
T E (t) = HR j

I E (t)×HR j
DE (t). The indirect effect HR j

I E (t) hence reflects
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A M1 M2 ... MK T

L0 L1 L2 ... LK Ul

Um

Fig. 1 Causal diagram.Ul : unmeasured confounders affecting L and (T , D).Um : unmeasured confounders
affecting different measurements of M over time. Note that in this figure, Lk = Mk = 0 if T < t(k). This
is to avoid that future measurements of L and M after the time-to-event T can influence T

the part of the treatment effect (on the cause- j-specific hazard) that is mediated via the
pathways A → Mk → . . . → T , where k = 1, 2, . . .. On Fig. 1, these pathways start
from the treatment A and go directly to one of the mediators before getting to the event
time T by any intermediate path. In contrast, the direct effect HR j

DE (t) reflects the
part of the treatment effect (on the cause- j-specific hazard) that does not go through
any of the above pathways.

There are many reasons why we choose to focus on the aforementioned pathways.
As visualized in Fig. 1, one may nearly always expect the mediators and confounders
to influence each other mutually over time. Due to this, many pathways will involve
both mediators and confounders. This blurs a good understanding which pathways can
be viewed as representing a mechanism via the mediator versus a mechanism via con-
founders. The decomposition that corresponds best with our intuition of a mechanism
via a givenmediator, is arguably the one we choose to focus on. The treatment or expo-
sure first affects themediator, whichmay in turn generate a cascade of effects, possibly
involving confounders and mediators at later time points, to subsequently affect the
outcome. Pathways whereby the exposure first influences confounders before in turn
affecting mediator and then outcome, correspond better with our intuition of capturing
(part of) themechanism via that confounder. As will be shown below, this combination
of effects, whereby the exposure first affects the mediator (at any time) and then in
turn outcome by no matter what pathways, is also what can be identified from the
observed data under reasonable assumptions.

One further challenge when defining the causal indirect effect via the proposed
pathway is the truncation-by-death problem. This arises as a result of the difference in
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a person’s time-to-death with versus without the considered exposure. Indeed, even if
a given person would survive a given time point t in the absence of exposure (A = 0),
that person’s counterfactual mediator value in the presence of exposure (A = 1) is
ill-defined at time t , if that person would have died by that time in the presence of
the exposure. In that case, it is wise to interpret the identified effects differently as
expressing the effect when setting the mediator at each time point at a random draw
from its distribution in the exposed who are still alive and have the same considered
observed data history. A more detailed discussion on this can be found elsewhere
(Vansteelandt et al. 2019).

Finally, note that the total, direct and indirect effects on the (cause-specific) hazard
ratio scale have a subtle interpretation. In the causal inference literature, the hazard
ratio is often criticized due to the fact that it may be affected by selection effects caused
by unobserved heterogeneity over time, and hence does not generally have a causal
interpretation (Young et al. 2020; Martinussen et al. 2020). As an example, consider
the cause- j specific hazard ratio HR j

T E defined above as:

HR j
T E = λ

j
a∗,a∗(t)

λ
j
a,a(t)

= limδt→0+ P(t ≤ Ta∗,a∗ ≤ t + δt, Da∗,a∗ = j |Ta∗,a∗ ≥ t)/δt

limδt→0+ P(t ≤ Ta,a ≤ t + δt, Da,a = j |Ta,a ≥ t)/δt

The righthand expressionmakes clear that HR j
T E contrasts the cause- j specific hazard

functionswith andwithout the exposure for two separate groups of individuals, namely
(i) those who survive time t if exposed (i.e. Ta∗,a∗ ≥ t) and (ii) those survive time if
unexposed t . (i.e. Ta,a ≥ t). These two groups are in general not comparable if the
exposure has a non-null causal effect on (T , D) (except at baseline if the exposure is
‘randomized’). This selection effect likewise impacts the two causal contrasts HR j

DE

and HR j
I E .

To overcome the above limitation, the total, direct and indirect effect could be
alternatively defined on the cause-specific cumulative incidence scale. For instance,
under the joint intervention on A and MK described above, one then has:

F j
a,a∗(t) := P(Ta,a∗ ≤ t, Da,a∗ = j) =

∫ t

0
exp

(
−

∫ u

0

∑
j

λ
j
a,a∗(s)ds

)
λ
j
a,a∗(u)du,

(1)

which expresses the incidence of the occurrence of event j at time t , while taking other
competing risks into account. Contrasts of F j

a∗,a∗(t) and F j
a,a(t) (e.g. on the relative

scale) hence quantify the total effect of the exposure on the event j at time t . Similarly,
contrasts of F j

a∗,a∗(t) and F j
a∗,a(t) (or F

j
a∗,a(t) and F j

a,a(t)) quantify the indirect effect
of A on the event j via the pathways A → Mk → . . . → T (or the direct effect of A
on the event j not via these pathways) at time t . Unlike hazard ratios, these contrasts
are marginally defined and hence are causally interpretable.

Even so, exposure effects on the cumulative incidence functions also have a subtle
interpretation because of the exposure effect on competing causes. For instance, the
exposure may seem to be protective of the event of interest merely because it increases
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the likelihood of the competing event (Putter et al. 2007). Young et al. (2020) therefore
evaluate effects under hypothetical interventions which eliminate the exposure effect
on the competing events. We here avoid this as it demands additional assumptions,
which we judged to be implausible in our study.

We are now ready to define the cause— j—specific path-specific effect proportional
hazard model, accounting for longitudinal mediators, as follows:

λ
j
a,a∗(t) = λ

j
0(t)e

α1 j a+α2 j a∗
(2)

for all a, a∗, where λ
j
0(t), α1 j and α2 j are unknown. This model is inspired by the

so-called natural effect models proposed by Steen et al. (2017b), and subsequently
extended by Mittinty and Vansteelandt (2020) to a longitudinal outcome setting. The
difference, however, is that model (2) targets path-specific effects rather than natural
indirect effects as in Steen et al. (2017b). Also, note that when a = a∗, the proposed
model (2) reduces to the standard marginal structural model proposed by Robins
et al. (2000). It can thus be viewed as a generalization of marginal structural models
to investigate path-specific effects.

Under model (2), the total, direct and indirect effect can be expressed on the haz-
ard ratio scale as HR j

T E = e(α1 j+α2 j )(a∗−a); HR j
I E = eα2 j (a∗−a) and HR j

DE =
eα1 j (a∗−a), respectively. To assess the possibility of mediator-exposure interaction,
one can alternatively consider model:

λ
j
a,a∗(t) = λ

j
0(t)e

α1 j a+α2 j a∗+α3 j a.a∗
(3)

Under model (3), the total causal effect on the hazard ratio scale is expressed as
HR j

T E = e(α1 j+α2 j+α3 j (a∗+a))(a∗−a) and is decomposed into the indirect effect

HR j
I E = e(α2 j+α3 j a)(a∗−a) and the direct effect HR j

DE = e(α1 j+α3 j a∗)(a∗−a). The

cumulative incidence function F j
a,a∗(t) at any time t can also be computed from the

estimates of model (2) and (3) (see below). Finally, note that other models for survival
outcomes, such as the Aalen model, can also be extended to the current context.

2.2 Identification

In this section, we discuss the assumptions that allow one to identify the distribution
of Ya,a∗ = (Ta,a∗ , Da,a∗) from the observed data. For now, we will ignore the problem
of censoring and will specifically focus on identifying the cause- j-specific cumulative
distribution function F j

a,a∗(t) at a time t between t3 and t4, i.e. the last measurements
of M and L are M3 and L3, respectively. All results given below generalize to any
time t with measurements for more than three study visits.

First, we make use of the following recanting witness (or cross-world) assumption:

(i)

{
Y (a, l3,m3), L1(a), L2(a, l1,m1), L3(a, l2,m2)

}
⊥⊥
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{
M1(a

∗, l1), M2(a
∗, l2,m1), M3(a

∗, l3,m2)

} ∣∣∣∣ L0

This assumption is satisfied in the causal graph depicted in Fig. 1, provided that it
represents a non-parametric structural equation model with independent errors. Under
this assumption, F j

a,a∗(t) for t3 < t ≤ t4 can be written as:

F j
a,a∗ (t) =

∫
Pr{T (a,m3) ≤ t, D(a,m3) = j,

L1(a) = l1, L2(a, l1,m1) = l2, L3(a, l2,m2) = l3|L0 = l0}
× f {M1(a

∗, l1) = m1, M2(a
∗, l2,m1) = m2, M3(a

∗, l3, ) = m3,m2|L0 = l0}
× f (L0 = l0) dl3 dm3 (4)

where f {·} denotes the (joint) density. To link F j
a,a∗(t) to the observed data, we will

further assume that the set of baseline covariates L0 is sufficient to control for con-
founding of the relationship between A and Y = (T , D), as well as between A and
Mk or Lk at any time t(k).

(ii) A ⊥⊥ Lk(a,mk−1)|L0 and A ⊥⊥ Mk(a, lk)|L0 for all k = 1, 2, 3
(iii) A ⊥⊥ Y (a, l3,m3) | L0

Besides, we assume that conditional on the observed history, there are no unmeasured
confounders of the relationship between the time-to-event outcome and the mediator,
as well as between the mediator and the longitudinal confounder at any time. More
precisely,

(iv) Mk ⊥⊥ {Y (a, l3,m3), Lk+1(a, lk,mk), . . . , L3(a, lk,mk)}|A = a, Lk = lk, Mk−1
for k = 1, 2 and M3 ⊥⊥ Y (a, l3,m3)|A = a, L3 = l3, M2 = m2, L0

(v) Lk ⊥⊥ {Mk(a, lk,mk−1), . . . , M3(a, l3,m2)}|Mk−1 = mk−1, Lk−1 = lk−1, A =
a, L0 for all k = 1, . . . , 3

For instance, in Fig. 1, assumption (iv) is satisfied since conditioning on the exposure
A and the history of the time-varying confounder L up to time t is sufficient to adjust
for confounding of the relationship between the time-to-event outcome T and the
mediator level at time t . Our development allows for the presence of unmeasured
common causes of the mediators over time (i.e. denoted Um in Fig. 1) and separate,
independent unmeasured common causes of the baseline/time-varying confounders
and the survival time (T , D) (i.e. denoted Ul ).

Finally, we make use of the standard consistency assumption, i.e.:

(vi) Pr(L1(a) = L1|a) = Pr(M1(a, l1) = M1|a, l1) = Pr(L2(a, l1,m1) =
L2|a, l1,m1) = . . . = 1

In Appendix 1, we show that under the above assumptions, F j
a,a∗(t) can be linked to

the observed data as:

F j
a,a∗(t) =

∫
Pr{T ≤ t, D = j |a, l3,m3, l0} ·

∏
s:0<s≤3

f (ms |a∗,ms−1, ls, l0, T ≥ t(s))·

· f (ls |ls−1,ms−1, l0, a, T ≥ t(s)) · f (l0) dm3 dl3 dl0
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2.3 Estimation

In what follows, we generalize the standard estimation procedure for the popu-
lar marginal structural models to fit models (2) and (3). For this, we make an
additional assumption that censoring is non-informative, in the sense that C ⊥⊥
(T , M�t�, L�t�, L0)|A where C denote the time-to-censoring. At any timepoint, the
instantaneous risk of the event among patients who then drop out of the study is hence
not different (at all future times) from that of patients who remain, conditional on
the exposure level. In the next section, we will relax this assumption to allow for
more complicated censoring mechanisms. Under the aforementioned assumptions,
Appendix 2 shows that consistent estimators of the parameters indexing model (2) can
be obtained by solving the estimating equation:

∫ ∞

0

∑
i,a,a∗

⎧⎪⎪⎨
⎪⎪⎩

(
a
a∗

)
−

∑
a,a∗ Ê

[(
a
a∗

)
R j
i (t)I (Ci ≥ t)Wi (�t�, a, a∗)eα1 j a+α2 j a∗

]

∑
a,a∗ Ê

[
R j
i (t)I (Ci ≥ t)Wi (�t�, a, a∗)eα1 j a+α2 j a∗]

⎫⎪⎪⎬
⎪⎪⎭

·

(5)

· R j
i (t)I (Ci ≥ t)Wi (�t�, a, a∗)

(
dN j

i (t) − λ
j
0(t)e

α1 j a+α2 j a∗) = 0

where R j
i (t) = I (Ti ≥ t, Di = j); dN j

i (t) = I (Ti = t, Di = j) and I (.) denotes
the indicator function. Besides,

Wi (�t�, a, a∗) =
∏

s∈N,ts≤�t� P̂r(Ms,i |Ai = a∗, Ms−1,i , Ls,i , L0,i , Ti ≥ t(s))∏
s∈N,ts≤�t� P̂r(Ms,i |Ai = a, Ms−1,i , Ls,i , L0,i , Ti ≥ t(s))

× I (Ai = a)

P̂r(Ai = a|L0,i )

denotes theweight of individual i at time t and at exposure levelsa anda∗, P̂r(·)denotes
a consistent estimator of the corresponding probability Pr(·), and Ê(·) denotes the
sample average. Here, the notation �t� is slightly different from its standard definition,
to take into account the fact that if a patient experiences an event or leaves the study
at time t = t(k) of visit k, no measurement of Mk and Lk is possible at that time. More
precisely,

�t� =
{
t(k−1) if t = t(k)
t(k) if t(k) < t < t(k+1)

where k = 1, . . . , K . The second component of the weight ensures that the exposure-
outcome association is adjusted for confounding by L0. It creates a pseudo-population
in which the exposure is no longer associated with L0 and hence removes confounding
by L0 (Lange et al. 2012). Thefirst component of theweight thendistinguishes between
the direct and indirect paths by correcting for the fact that the observed mediator value
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at each time point before t may differ from the counterfactual value that is of interest
at that time. From this, the fitting procedure is described as follows:

Step 1 Postulate and fit a suitable model for the exposure A conditional on the baseline
confounders (L0) based on the original data set. For instance, a multinomial logistic
model can be used for a categorical exposure with P possible values:

log
Pr(A = a|L0 = l0)

Pr(A = 0|L0 = l0)
= β0,a + β1,a l0,

where a = 1, . . . , P − 1 and Pr(A = 0|L0 = l0) = 1/(1 + ∑P−1
a=1 eβ0,a+β1,a l0).

Step 2 Convert the original dataset to a long or counting-process format, in which
the observation period [0, Ti ] of individual i (where Ti is the observation time of this
individual) is broken into k′ + 1 intervals where k′ = argmaxk{t(k) ≤ �T �}. Each
interval k (1 ≤ k ≤ k′) will have the following information encoded:

(a) The beginning of the interval, which equals the time t(k−1) of visit k − 1, with
t(0) = 0.

(b) The end of the interval, which equals the time t(k) of visit k or the event/censoring
time Ti for the last interval.

(c) The event status at the end of the interval.
(d) The exposure Ai and the baseline covariates L0i , whose values remain unchanged

across all intervals.
(e) The history of the mediator and the longitudinal confounders recorded up to the

end of the interval. Note that the history of L and M for subject i up to the time
Ti is similar to their history up to the last visit prior to time Ti .

Table 1 provides a toy example in which three patients receive a binary treatment and
are followed up for a total of three years, with two visits pre-planned at the end of year
1 and 2. Patient 3 is free of event at the end of the study and hence has themediator level
fully recorded at the two intermediate visits. In contrast, patient 1 and 2 experience
an event after 1.5 and 0.9 years, due to which they have no (i.e. patient 2) or only
one (i.e. patient 1) mediator level recorded. Table 2 illustrates how the information of
these three hypothetical individuals is encoded in a counting-process format.

Step 3 Postulate and fit a suitable model for the mediator at each time t(k), conditional
on the exposure, the longitudinal confounder Lk and previous measurements of the
mediator (i.e. Mk−1), by using the long data set. For instance, one may assume multi-
nomial logistic models for a categorical mediator Mk with possible values 0, . . . , Q,

Table 1 Illustrating example: A toy dataset in standard short format

Individual Follow-up time (years) Status A M1 M2 L0 L1 L2

1 1.5 1 1 m11 − l01 l11 −
2 0.9 2 0 − − l02 − −
3 3.0 0 1 m13 m23 l03 l13 l23

Here, mi j and li j denote the mediator and longitudinal confounder level of individual j recorded at visit
t(i), respectively. The treatment A is binary (0 vs. 1) and there are two competing events, coded as 1 and 2
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Table 2 The counting-process format of the dataset in Table 1

Individual Start Stop Status A Mk Mk−1 Lk Lk−1 L0

1 0 1 0 1 0 0 0 0 l01
1 1 1.5 1 1 m11 0 l11 0 l01
2 0 0.9 2 0 0 0 0 0 l02
3 0 1 0 1 0 0 0 0 l03
3 1 2 0 1 m13 0 l13 0 l03
3 2 3 0 1 m23 m13 l23 l13 l03

that is:

log
Pr(Mk = q|A = a, Mk−1 = mk−1, Lk = l̄k, L0 = l0, T ≥ t(k))

Pr(Mk = 0|A = a, Mk−1 = mk−1, Lk = lk, L0 = l0, T ≥ t(k))

= γ0q + γ1q t(k) + γ2qa + γ ′
3qmk−1 + γ ′

4qlk + γ5ql0

where q = 1, . . . , Q. Note that other non-linear terms such as two-by-two interactions
between baseline covariates and previous measurements of M before k can also be
added to the above model.

Step 4 A new data set is then constructed by copying the original data set (in long
format) P times and including an additional variable A∗ to capture the P possible
values of the exposure relative to the indirect path. A∗ is set to the actual value of the
exposure A for the first replication, to the other potential values of A for the remaining
replications. This step ensures that the estimating equation solved by standard software
is summing over levels of a∗ as in equation (5). Such a step is also standard in the
estimation procedure of natural effect models and extensions thereof, which was first
proposed by Lange et al. (2012) in the simple setting of single mediator. For the
example discussed in Tables 1 and 2, the corresponding extended data set is provided
in Table 3.

Step 5 Compute weights by applying the fitted models from steps 1 and 3 to the
new data set. At visit k, the weight for the i th individual is wi (k, a, a∗) = wt tm

i (a) ·
wmed
i (k, a, a∗), where:

wt tm
i (a) =

P−1∑
a=0

I (Ai = a)

P̂r(Ai = a|L0i = l0i )

and

wmed
i (k, a, a∗)

=
∏

s∈N,t(s)≤t(k)

P̂r(Ms,i = ms,i |Ai = a∗, Ms−1,i = ms−1,i , Ls,i = l̄s,i , L0,i = l0,i , Ti ≥ ts)

P̂r(Ms,i = ms,i |Ai = a, Ms−1,i = ms−1,i , Ls,i = ls,i , L0,i = l0,i , Ti ≥ ts)
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Table 3 Extended data set for the example in Table 1

Individual Start Stop Status A A∗ Mk Mk−1 Lk Lk−1 L0

1 0 1 0 1 1 0 0 0 0 l01
1 1 1.5 1 1 1 m11 0 l11 0 l01
2 0 0.9 2 0 0 0 0 0 0 l02
3 0 1 0 1 1 0 0 0 0 l03
3 1 2 0 1 1 m13 0 l13 0 l03
3 2 3 0 1 1 m23 m13 l23 l13 l03
1 0 1 0 1 0 0 0 0 0 l01
1 1 1.5 1 1 0 m11 0 l11 0 l01
2 0 0.9 2 0 1 0 0 0 0 l02
3 0 1 0 1 0 0 0 0 0 l03
3 1 2 0 1 0 m13 0 l13 0 l03
3 2 3 0 1 0 m23 m13 l23 l13 l03

where the superscript t tm and med denotes treatment and mediator, respectively. At
the end of the follow-up time, the weight for a patient having Ti = ti iswi (ti , a, a∗) =
wi (�ti�, a, a∗).

Step 6 Fit the path-specific effect cause-specific proportional hazard model (2) and (3)
by proportional hazard regression of the cause-specific event time on A and A∗ on the
basis of the expanded data set, using the weights computed in the previous step. Derive
confidence intervals for the parameters in model (2) and (3) using the non-parametric
bootstrap. For this, one first generates S bootstrap samples with replacement from the
original dataset, then repeat all the above steps for each bootstrap sample. The 95%
confidence interval for each parameter in model (2) and (3) is computed by using the
2.5% and 97.5% quantiles of the bootstrap distribution of the corresponding estimator.

Step 7 Establish the cause-specific cumulative incidence curves under different sets of
a and a∗. To estimate the curves, consider the different event types as terminal states
of a multi-state model where the transition from one state to the other is treated as an
absorbing state, i.e. the one that subjects never exist (Putter et al. 2007).

2.4 Addressing complications due to censoring

As stated above, when the censoring is non-informative conditional on the exposure
(Fig. 2a), the provided estimating procedure remains valid without further adjustment.
When censoring is dependent upon the baseline covariate vector L0 and the exposure
A (i.e. C ⊥⊥ (T , M�t�, L�t�)|L0, A), one may adjust for censoring by alternatively
focusing on the so-called conditional cause-specific path-specifci effect proportional
hazard model, that is,

λ
j
a,a∗(t |L0 = l0) = λ

j
0(t)e

α1 j a+α2 j a∗+α′
2 j l0
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Fig. 2 (Simplified) causal diagram when censoring presents—a Censoring is non-informative conditional
on the exposure and b Censoring is non-informative at time t conditional on the exposure and the history
up to that time. RC (t) = I (C ≥ t), where C is the time-to-censoring

Note that an interaction between a∗ and l0 could also be permitted in such model
to assess the possibility of mediator-baseline covariate interaction. The procedure
discussed in Sect. 2.2 can then be applied to estimate the parameters in this model,
with a slight adjustment in step 6where apart from A and A∗, the covariates L0 (and the
product of A∗ and L0 if mediator- baseline covariate interaction is assessed) are also
included into the proportional hazard regression model. In practice, censoring may
however also depend upon post-baseline factors such as the longitudinal mediator and
confounder levels that are measured prior to censoring (Fig. 2b). In that case, progress
can be made upon assuming that at any time t , the risk of dropping out of the study for
patients not yet experiencing an event does not depend on when they will experience
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an event in the future and of what type this event will be, given the history up to
time t , i.e. λC (t |T > t, T , D, A, Mt , Lt ) = λC (t |T > t, A, Mt , Lt ) where λC (·)
denoting the cause-specific hazard function of the time-to-censoring. In that case, the
so-called inverse probability of censoring weighting approach can be used to account
for censoring. More precisely, the parameters indexing models (2) can be estimated
by solving the estimating Eq. (5) with the following weight for each individual i (see
appendix A2 for a formal proof):

Wi (�t�, a, a∗) =
∏

s:t(s)≤�t� P̂r(Ms,i |Ai = a∗, Ms−1,i , Ls,i , L0,i , Ti ≥ t(s),Ci ≥ t(s))∏
s:t(s)≤�t� P̂r(Ms,i |Ai = a, Ms−1,i , Ls,i , L0,i , Ti ≥ t(s),Ci ≥ t(s))

· I (Ai = a)

P̂r(Ai = a|L0,i )
·

· 1
∏

0<s≤t

[
1 − λ̂C (s|Ti > s, M�s�,i , L�s�,i , L0,i , Ai = a)ds

]

Here,
∏

s xs is defined as a product limit and λ̂C (·) is a consistent estimator of λC (·).
With the above weight Wi (�t�, a, a∗), the additional component that accounts for the
informative censoring can make the overall weight become unstable (e.g. when the
censoring hazard is close to 1 in some strata). To overcome this, one can then use
stabilized (censoring) weights which incorporate a numerator defined in the same way
as the denominator but adjusting only for the exposure, that is:

∏
s:0≤s≤t

[
1 − λ̂C (s|Ai = a)ds

]
∏

s:0≤s≤t

[
1 − λ̂C (s|Ti > s, M�s�,i , L�s�,i , L0,i , Ai = a)ds

]

One then needs to postulate two models for the censoring hazard at time t , with one
conditioning on exposure and the other conditioning on exposure, baseline covariates
and the history of the longitudinal mediator and confounders up to time t , where only
the latter model needs to be correct. For instance,

λC (t |ai ) = λ′
0C (t)eηai

λC (t |Ti > t,m�t�,i , l�t�,i , l0,i , ai ) = λ0C (t)eθ0ai+θ1l0,i+θ ′
2m�t�,i+θ ′

3l�t�,i (6)

Note that non-proportional hazards can be addressed in the standard way, e.g. the
time-varying effect can be modeled parametrically or with a step function.

In step 5 of the estimation procedure, apart from computing the mediator and treat-
ment weights, one needs to additionally derive the censoring weight. More precisely,
the weight for the i th individual at visit k is nowwt tm

i (a, a∗) ·wmed
i (k, a) ·wcen

i (k, a),
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where the superscript cen denotes censoring, i.e.,

wcen
i (k, a) =

∏
s:0≤s≤t

[
1 − λ̂C (s|Ai = a)ds

]
∏

s:0≤s≤t

[
1 − λ̂C (s|Ti > s, M�s�,i , L�s�,i , L0,i , Ai = a)ds

]

while wt tm
i (a, a∗) and wmed

i (k, a, a∗) are computed as above. Of note, some R pack-
ages such as ipcwswitch provide useful built-in functions to calculate the censoring
weights (Graffeo et al. 2019). We thus refer the reader to these references for more
practical guidance.

Once the individual weights are computed, the natural effect cause-specific propor-
tional hazard model (2) and (3) can be fitted using these weights and the confidence
intervals for the estimates can be derived via the nonparametric bootstrap, as described
above.

3 Illustrating example

We illustrate the proposed approach on the ELSA dataset (https://www.elsa-project.
ac.uk), which includes 4232 patients over 50 years of age. In this ongoing study, the
first contact with the participants was in 2002/03 (wave 1). These participants were
then followed up biennially, with measures collected via computer-assisted face-to-
face interview and self-completion questionnaires. As stated above, the question of
interest here is whether the feeling of loneliness mediates the impact of hearing loss on
time-to-dementia (measured in years), accounting for mortality as a competing event.

For this analysis, we used the hearing measurement recorded at wave 2 (e.g.
2004/05) and dichotomized subjects into two groups, namely normal (A = 0) and
limited (A = 1) hearing ability.Among4232 patients at baseline, 772 (18.2%) had lim-
ited hearing ability. The longitudinal mediator "loneliness" was recorded from wave 3
(2006/07) to wave 7 (2014/15) and had two potential values, namely frequent (M = 1)
vs. infrequent feeling of loneliness (M = 0). Alongside themediator, four longitudinal
confounders were recorded over time (i.e. wave 3 to wave 7), namely depression sta-
tus (yes vs. no), mobility score (continuous), smoking status (non-smoker vs. current
smoker) and alcohol status (non-drinker vs. current drinker). The baseline covari-
ates consisted of 15 variables, including age at wave 2, gender, ethnicity (white vs.
non-white), wealth (1=low, 5=high), education level (1 = no formal qualification, 2 =
intermediate and 3 = higher education), marital status (yes vs. no), the use of hearing
aids (yes vs. no), the presence of hypertension (yes vs. no), diabetes (yes vs. no),
stroke (yes vs. no) and cancer (yes vs. no), alongside the baseline values of the four
aforementioned time-varying confounders. A detailed description of these covariates,
as well as the mediator distribution, the event and censoring rate over time is pro-
vided in the appendix and in previous works (Davies et al. 2017; Hackett et al. 2018;
Davies-Kershaw et al. 2018; Rafnsson et al. 2020). Of note, all patients were followed
up until one year after the last wave in 2014/15, which equals to a total of 11 years of
follow-up.
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We assumed that the relationship between the variables obeys the causal structure
depicted in Fig. 1. Here, the mediators and confounders measured at time tk−1 are
time-varying confounders of the relationship between the mediator measured at time
tk and the outcome. To estimate the exposure weights (step 1), we first considered
a logistic (exposure) model adjusting for the main effects of all baseline covariates.
To assess the potential of covariate-covariate interactions, we used a LASSO variable
selection process (R package glmnet) to select the most important interaction terms
from the set of all 105 possible two-by-two covariate interactions (i.e. a zero penalty
was given to the main effect of all variables). The chosen interactions were then added
into the exposure model. Of note, we selected the value of the tuning parameter that
minimized the mean cross-validated error in a ten-fold cross-validation with deviance
as loss function.

To estimate the mediation weights (step 3), we first considered a logistic (mediator)
model adjusting for tk , Mk−1, Lk and the main effects of all baseline covariates, i.e.:

log
Pr(Mk = 1|A = a, Mk−1 = mk−1, Lk = lk, L0 = l0, T ≥ t(k))

Pr(Mk = 0|A = a, Mk−1 = mk−1, Lk = lk, L0 = l0, T ≥ t(k))

= γ0 + γ1t(k) + γ2a + γ3mk−1 + γ4lk + γ ′
5l0

We then improved this mediator model in a sequential manner. First, to assess whether
the conditional distribution of Mk has a residual dependence upon the measurements
of M and L that preceded Mk−1 and Lk , we used the LASSO to determine the first
measurement ofM and L prior toMk−1 and Lk thatwere predictive forMk , conditional
on tk ,Mk−1, Lk and themain effects of all baseline covariates in L0. Thismeasurement
and all measurements following this one up toMk−1 forM and Lk for L were included
into themediatormodel. Next, we assessedwhether therewere important (i) treatment-
baseline/longitudinal covariate interactions, (ii) time-baseline covariate interactions
and (iii) baseline covariate-covariate interactions that should be adjusted for. For each
step, an independent LASSO variable selection process was performed to select the
most important interaction terms from all possible interactions. The interactions that
were chosen in the previous step were always included in the model of the subsequent
steps (which implies no shrinkage on these terms in the subsequent steps). In each
LASSO procedure, we selected the value of the tuning parameter that minimized the
mean cross-validated error in a ten-fold cross-validationwith deviance as loss function.
The final model was refitted before calculating the mediation weights.

To estimate the censoring weights, we first considered a cause-specific proportional
hazard model adjusting for Mk , Lk , the exposure A and the main effects of all baseline
covariates L0. We then improved this censoring model in a sequential manner. First,
to assess whether the censoring hazard at time t had a residual dependence upon the
history of M and L that preceded the time tk for M and for L , we implemented a
backward elimination process, using the Akaike information criterion to determine
the first post-baseline measurement of M and L that were predictive for the cen-
soring hazard at time t , conditional on the later measurements. This measurement
and all measurements following this one were included into the censoring propor-
tional hazard model. Next, as for the mediator model, we assessed whether there were
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Table 4 Data analysis: estimation of the path-specific effect models (1) and (2)

Model Coefficient Estimate 95%CI p-value

(1) Dementia ( j = 1)

α1 j 0.60 (0.09; 1.00) 0.01

α2 j 0.01 (−0.01; 0.05) 0.44

Death ( j = 2)

α1 j −0.13 (−0.48; 0.14) 0.46

α2 j 0.00 (−0.01; 0.01) 0.91

(2) Dementia ( j = 1)

α1 j 0.59 (0.09; 1.00) 0.01

α2 j 0.00 (−0.01; 0.02) 0.83

α3 j 0.02 (−0.02; 0.08) 0.52

Death ( j = 2)

α1 −0.12 (−0.48; 0.15) 0.49

α2 0.01 (−0.01; 0.02) 0.58

α3 −0.01 (−0.05; 0.02) 0.63

important (i) treatment-baseline/longitudinal covariate interactions and (ii) baseline
covariate-covariate interactions that should be adjusted for. For each step, an inde-
pendent backward elimination process was performed to select the most important
interaction terms from all possible interactions of the same type. The interactions that
were chosen in the previous step were always included in the model of the subsequent
steps (which implies no exclusion of these terms in the subsequent steps). Note that we
used backward elimination for the construction of the censoring models (as opposed
to LASSO) due to the lack of prepackaged software that can apply LASSO or other
advanced variable selection methods on a counting format survival dataset (Bien et al.
2013; Bickel et al. 2010). Results of the variable selection processes for the treatment,
mediator and censoring models are reported in the Online Supplementary Materials.

The two path-specific effect proportional hazard models specific for dementia and
for death (i.e. model (1) without interaction between a and a∗, and model (2) with this
interaction) were then fitted using the calculated weights. The confidence intervals
of the total, direct and indirect hazard ratios were derived by the non-parametric
bootstrap method, with 5000 samples taken from the original data set by sampling
with replacement. We then established the cumulative incidence curves of dementia
and of death under different sets of a and a∗. As the interaction between a and a∗
was not statistically significant at the 5% level, we only use the results of the path-
specific effect model (1) (which omits the interaction between a and a∗) to establish
the cumulative incidence curves.

Results of the estimation procedures are provided in Tables 4 and 5. As can be seen
from these tables, the total effect of hearing loss on the time to dementia diagnosis was
statistically significant (Model 1, HR = 1.84; 95%CI 1.10 to 2.71). Model (1) further
suggested that this total effect was weakly mediated through feelings of loneliness,
with a non-statistically significant indirect effect equal to 1.01 (HR scale; 95%CI
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Table 5 Data analysis: the effect of limited vs. normal hearing ability on the time-to-event outcomes,
mediated through the feeling of loneliness

Model Effect Hazard ratio 95%CI Mediated proportion

(1) Dementia

Total effect (A = 1 vs. A = 0) 1.84 (1.10; 2.71)

Direct effect 1.82 (1.10; 2.72)

Indirect effect 1.01 (0.99; 1.05) 2.0%

Death

Total effect (A = 1 vs. A = 0) 0.88 (0.63; 1.15)

Direct effect 0.88 (0.62; 1.15)

Indirect effect 1.00 (0.99; 1.01) −0.8%

(2) Dementia

Total effect (A = 1 vs. A = 0) 1.84 (1.10; 2.71)

Direct effect 1.84 (1.09; 2.72)

Indirect effect 1.00 (0.99; 1.02) 0.3%

Total effect (A = 0 vs. A = 1) 0.54 (0.37; 0.91)

Direct effect 0.55 (0.37; 0.91)

Indirect effect 0.98 (0.93; 1.02) 3.2%

Death

Total effect (A = 1 vs. A = 0) 0.88 (0.62; 1.15)

Direct effect 0.88 (0.61; 1.15)

Indirect effect 1.01 (0.99; 1.02) − 4.0%

Total effect (A = 0 vs. A = 1) 1.13 (0.87; 1.61)

Direct effect 1.13 (0.86; 1.62)

Indirect effect 1.00 (0.98; 1.04) 3.2%

The mediated proportion is calculated on log scale

0.99 to 1.05). This expresses that the hazard of dementia would increase by 1% if all
patients were to have limited hearing ability but loneliness levels were switched from
the values that would have been observed if they had normal hearing ability to the
value observed under limited hearing. In contrast, the total effect of hearing loss on
mortality was not statistically significant (Model 1, HR = 0.88; 95%CI 0.63 to 1.15).
There was no statistical evidence of an indirect effect through feelings of loneliness
(HR = 1.00, 95%CI 0.99 to 1.01). These findings did not change when considering
model (2) with interaction (Table 4—p-value of the interaction coefficient equals 0.52
for dementia and 0.63 for death).

Figure 3 provides the estimated cumulative incidence curve of dementia for different
a and a∗, which visualizes the weak indirect effect of hearing loss on dementia through
the suggested longitudinalmediator. At some time points, there are large jumps in these
curves due to the fairly high rate of interval censoring in the dataset (i.e. if the date for
dementia diagnosis (or for death) was not known but the person had a new diagnosis
(or passed away) from one visit to the next, then we considered the midpoint between
two visits as the event date). Besides, note that the exposure (hearing impairment) was
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Fig. 3 Estimated cumulative incidence curves of dementia diagnosis and of death over time, if the whole
population were to have hearing ability level a, but the loneliness levels M1, M2, . . . were switched from
the values observed under hearing ability level a to the values observed under hearing ability level a∗ (while
the levels of the time-varying confounders were as observed under this joint intervention on A and M

not found to affect mortality. This implies that interpretation of the exposure effect
on the cumulative incidence of dementia is not hindered by the exposure effect on the
competing event.

The above findings should be interpreted with caution due to many potential limita-
tions. First, there might be important baseline or time-varying confounders that were
not measured and taken into account. For instance, genes affecting the likelihood of
hearing loss may well be correlated with genes increasing the risk of dementia. Sec-
ond, note that choosing time zero at wave 2 prevents bias due to left truncation, but
renders interpretation slightly more subtle by ignoring age at study entry, which we
did in order to display population-level results. Third, the obtained findings can be
biased due to the involved models being incorrectly specified or censoring being infor-
mative (e.g. elderly patients who live alone might not come to the control visit due to
dementia-related problems). Fourth, the data-adaptive methods used for constructing
exposure, mediator and censoring models may affect the validity of the obtained con-
fidence intervals and p-values. Addressing this complication is non-trivial and beyond
the scope of this paper. In practice, a possible (heuristic) approach to overcome this
could be to adjust for the union of all variables and/or interactions selected in all mod-
els, to ensure that no important confounders are omitted. This is inspired by the double
selection principle proposed in the recent literature (Belloni et al. 2014). Further study
might give insight into the extent to which this improves results, though we are not
hopeful that a rigorous justification is possible.
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4 Discussion

In this paper, we have generalized the weighting-based strategy proposed for natu-
ral effect models in single mediation analysis to the setting where the mediator of
interest is repeatedly measured over time (hence subject to longitudinal confounders)
and the primary outcome is a time-to-event endpoint, subject to competing risks.
The proposed approach yields consistent estimates for the suggested path-specific
direct and indirect effects if the causal assumptions hold, and the path-specific effect
model and the conditional distribution of the exposure, mediator and censoring are
correctly specified. As noted by Steen et al. (2017b), the mediator model needs careful
consideration, especially when the exposure (and baseline covariates) are highly pre-
dictive of the mediator, for then even minor misspecification can have a major impact
on the weights, lead to biased results and large variance due to extreme weights.
While the presence of extreme weights might appear as a limitation at first, it may
also diagnose severe model extrapolation that often goes unnoticed when using a
repeated regression approach proposed for the same setting (Steen et al. 2017b). Sim-
ple weighting-based approaches also tend to yield larger standard errors (compared
to imputation or regression-based approaches) due to lack in efficiency. This can be
especially problematic when themediator is continuous. In that case, the weight-based
approaches tend to be unstable even under proper model specification. The repeated
regression approach may be more appropriate for continuous mediators (Steen et al.
2017a; Vansteelandt et al. 2012, 2019).

Like in other settings, the presence of competing risks complicates the interpretation
of the results. This is because the cumulative incidence of the event of interest is
determined by the cause-specific hazards for both competing events, which may both
be impacted by the exposure. Further insight may sometimes be gained by studying
how the direct and indirect effects of exposure on the cumulative incidence of the
event of interest would be like if we could intervene to hold the cause-specific hazard
for the competing event fixed (Gran et al. 2015). While of interest, we have chosen
not to do this in our study because it is unlikely that we have access to all common
causes of dementia and mortality to render such further adjustment trustworthy.

Several proposals can be made to improve the suggested approach. For instance,
instead of modeling the cause-specific hazard as discussed above, one may alterna-
tively consider the Fine and Gray subdistribution hazard model to directly quantify
the impact of covariates on the cumulative incidence function (Fine and Gray 1999).
Future research might also focus on the development of doubly or multiply robust esti-
mators (Bang and Robins 2005) to improve the robustness and efficiency of the current
weight-based approach. The proposed strategy can also be easily extended to take into
account multiple mediators M (1), . . . , M (V ) that are repeatedly measured over time.
When these mediators are causally ordered then as suggested by VanderWeele and
Vansteelandt (2014), one can first evaluate the effect mediated through M (1), then
examine how much this changes when M (1) and M (2) are jointly considered as medi-
ators. This then reveals the additional contribution of M (2) beyond M (1) alone. The
process is then carried on by sequentially adding one mediator at a time until all V
mediators are included. By accounting for multiple, repeatedly measured mediators,
results of the analysis may allow one to get closer to evaluating the entire mediation
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process that underlies the treatment mechanism in practice. Finally, future research
should also extend the proposed approach to account for continuous exposures, which
are quite common in epidemiology and social science.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s10985-022-09555-7.
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