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Abstract
This paper discusses the fitting of the proportional hazards model to interval-censored
failure time data with missing covariates. Many authors have discussed the problem
when complete covariate information is available or the missing is completely at ran-
dom. In contrast to this, we will focus on the situation where the missing is at random.
For the problem, a sieve maximum likelihood estimation approach is proposed with
the use of I -spline functions to approximate the unknown cumulative baseline hazard
function in the model. For the implementation of the proposed method, we develop an
EM algorithm based on a two-stage data augmentation. Furthermore, we show that the
proposed estimators of regression parameters are consistent and asymptotically nor-
mal. The proposed approach is then applied to a set of the data concerning Alzheimer
Disease that motivated this study.

Keywords Case II interval-censored data · EM algorithm · Missing at random · Sieve
approach

1 Introduction

It is well-known that the proportional hazardsmodel is one of themost commonly used
models for regression analysis of failure time data, and a great deal of literature has
been established for fitting it to right-censored or interval-censored data. By interval-
censored data, we mean that the failure time of interest is observed only to belong to
an interval instead of being known exactly, and it is apparent that they include right-
censored data as a special case (Sun 2006). Among others, the fields that often generate
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interval-censored data include demographical, epidemiological, financial, medical and
sociological studies. In the following, we will discuss the fitting of the proportional
hazards model to interval-censored failure time data when some covariates may have
missing observations.

As discussed by many authors, missing data can arise due to many circumstances
and in general, their analysis highly depends on the censoring mechanism (Little and
Rubin 2002). For the situation, a naive approach is the so-called complete-case (CC)
method, which bases the analysis only on the complete part of the data or throw away
the subjects with missing information. It is apparent that the CC method not only may
be inefficient but also could yield biased estimation when the missing data mechanism
depends on the observed data (Lipsitz et al. 1994; Little and Rubin 2002; Qi et al.
2005). Instead of the CC method, some alternatives could be the multiple imputation
procedure and the estimating equation approach. As pointed out by many authors,
when the missing is missing at random (MAR), the focus of this paper, the maximum
likelihood approach may be preferred or should be used.

Severalmaximum likelihoodmethods have been proposed for regression analysis of
right-censored failure time datawithmissing covariates under the proportional hazards
model when the missing is MAR (Chen et al. 2002; Chen and Little 1999; Zhou and
Pepe 1995). However, it does not seem to exist an established approach for interval-
censored data when some covariates may be missing at random except Wen and Lin
(2011), who proposed a semiparametric maximum likelihood estimation procedure
under the proportional hazards model. However, they only considered current status
data or case I interval-censored data, a special case of the general interval-censored data
discussed here. In the following, we will consider the estimation of the proportional
hazards model when one faces case II interval-censored data with missing covariates
and propose a sieve maximum likelihood estimation approach. The method can be
easily implemented andmakes use of I -spline functions to approximate the underlying
cumulative hazard function in the model.

The remainder of this paper is organized as follows. We will begin in Sect. 2 with
introducing themodel and assumptions that will be used throughout the paper and then
present the resulting likelihood function. The proposed sieve maximum likelihood
estimation approach will be derived in Sect. 3, and in particular, for the determina-
tion of the proposed estimators, an EM algorithm is developed. Section 4 establishes
the asymptotic properties of the proposed estimators of regression parameters. Some
results obtained from a simulation study are presented in Sect. 5 and suggest that the
proposed approachworkswell in practical situations. Section 6 provides an application
and some discussion and concluding remarks are given in Sect. 7.

2 Models, assumptions and likelihood functions

Consider a failure time study that involves n independent subjects and let Ti and Xi
denote the failure time of interest and a p-dimensional vector of covariates associated
with subject i . In the following, suppose that for each subject, there exist two monitor-
ing variables or observation times Ui and Vi with Ui < Vi , and instead of observing
Ti , one observes only Ui and Vi and the indicator variables δ1i = I (Ti < Ui ),
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δ2i = I (Ui ≤ Ti < Vi ) and δ3i = 1 − δ1i − δ2i . That is, we only know if the failure
for subject i has occurred before Ui , during the examination interval [Ui , Vi ) or after
V and observe case II interval-censored data (Sun 2006).

To describe the covariate effect on Ti , we will assume that given the covariates Xi,
the cumulative hazard function of Ti has the form

�i (t |Xi) = �0(t) exp{β ′Xi}, (1)

where �0(t) denotes an unspecified baseline cumulative hazard function and β a
p-dimensional vector of regression parameters. That is, Ti follows the proportional
hazards model. In the following, we will assume that given the covariateXi, the failure
time Ti is independent of the observation times Ui and Vi or we have the independent
interval censoring.

Under the assumptions above, if there was no missing covariate, the likelihood
function would have the form

Lc(β, γ,�0) =
n∏

i=1

f (Ui , Vi , δ1i , δ2i , δ3i |Xi;β,�(t)) f (Xi; γ ).

In the above, f (Xi; γ ) denotes the density function of the covariate with the unknown
parameter γ and

f (Ui , Vi , δ1i , δ2i , δ3i |Xi) ∝ [1 − exp{−�0(Vi )exp(β
′Xi)}]δ1i

×[exp{−�0(Ui )exp(β
′Xi)} − exp{−�0(Vi )exp(β

′Xi)}]δ2i

×[exp{−�0(Ui )exp(β
′Xi)}]δ3i , i = 1, . . . , n. (2)

It follows that we would have the log likelihood function

ln(β, γ,�0) = log[Lc(θ, β, γ,�(t))]

=
n∑

i=1

log[ f (Ui , Vi , δ1i , δ2i , δ3i |Xi;β,�(t))] +
n∑

i=1

log[ f (Xi; γ )]

= l1(β,�0) + l2(γ ). (3)

It is easy to see that one can maximize l1(β,�0) and l2(γ ) separately if the goal is
to estimate β, γ and �0, or can ignore l2(γ ) since γ is usually not of interest. As
will be seen below, we have to estimate β, γ and �0 together when there are missing
covariates. Now suppose that some covariates may bemissing and the covariate can be
written as Xi

′ = (Xobs
i

′
,Xmis

i
′
), where Xobs

i denotes the components of the covariates
that are known or can be observed and Xmis

i the components of the covariates that are
missing. Also suppose that we can write the density function of the covariates as

f (Xobs
i ,Xmis

i ; γ ) ∝ f (Xi
obs) f (Xmis

i |Xobs
i ; γ ).
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Let Ri = (Ri1, ..., Rip)
′ denote the missing indicator with Ri j = 1 if the j th com-

ponent of the covariate associated with subject i is observed and 0 otherwise. In the
following, we will assume that the covariate is missing at random, meaning that

f (Ri |Ui , Vi , δ1i , δ2i , δ3i ,Xmis
i ,Xobs

i ) = f (Ri |Ui , Vi , δ1i , δ2i , δ3i ,Xobs
i )

for the conditional density function of Ri . Then the observed likelihood function has
the form

Lo(θ) =
n∏

i=1

∫
f (Ui , Vi , δ1i , δ2i , δ3i |Xmis

i ,Xobs
i ;β,�(t)) f (Xobs

i ,Xmis
i ; γ )dXmis

i ,

where θ = (β, γ,�0). In the next section, we will discuss estimation of θ by maxi-
mizing Lo(θ).

3 Sievemaximum likelihood estimation

In this section, we will discuss estimation of θ by maximizing Lo(θ) with the focus
on making inference about β. For this, it is apparent that it would be difficult directly
to maximize it and thus we will develop an EM algorithm. Before presenting the
algorithm, we will first discuss the use of the sieve approach and then the data aug-
mentation.

It is well-known that the sieve approach can be used to approximate an unknown
function in order to reduce the number of unknown parameters and the computational
burden (Ma et al. 2015; Zhao et al. 2015; Li et al. 2017). More specifically, for the
estimation here, we suggest to approximate the baseline cumulative hazard function
�0(t) by monotone spline functions such as

�n(t) =
s+kn∑

l=1

αl Il(t)

(Ramsay 1988). In the above, {Il(t), l = 1, . . . , s + kn} are integrated spline basis
functions with the order s and the number of knots kn , and the α′

ls are nonnegative
coefficients that ensure monotonicity of �n(t). The degree s determines the smooth-
ness of the true baseline cumulative hazard function and is often taken to be 1, 2, or
3, which corresponds to linear, quadratic, or cubic basis functions, respectively. In
practice, for the choice of s and kn , one commonly used method is to try different
values of them and compare the obtained results. As an alternative, one could also
use the AIC to choose the values of s and kn that give the smallest AIC, and more
discussion on this is given below.

Now we discuss the data augmentation and for this, we will first assume that all
covariates have been observed. Then the log likelihood function l1(β,�(t)) would
have the form
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l1(β,�0) =
n∑

i=1

log
{[
1 − exp{−�0(Vi )exp(β

′Xi)}
]δ1i

× [exp{−�0(Ui )exp(β
′Xi)} − exp{−�0(Vi )exp(β

′Xi)}
]δ2i

[
exp{−�0(Ui )exp(β

′Xi)}
]δ3i
}

. (4)

By replacing �0 with �n , we have that

l∗1 (β, αl) =
n∑

i=1

log

{
[1 − exp

{
−
(s+kn∑

l=1

αl Il(Vi )

)
exp(β ′Xi)

}
]δ1i

×
[
exp

{
−
(s+kn∑

l=1

αl Il(Ui )

)
exp(β ′Xi)

}

− exp

{
−
(s+kn∑

l=1

αl Il(Vi )

)
exp(β ′Xi)

}]δ2i

×
[
exp

{
−
(s+kn∑

l=1

αl Il(Ui )

)
exp(β ′Xi)

}]δ3i
⎫
⎬

⎭ . (5)

Note that as pointed out by McMahan et al. (2013), the direct maximization of the
function above with the traditional algorithm would suffer numerical instability. Also
one may often get local maximizers and have other issues like convergence. In the
following, we will augment the observed data.

Let Ni (t) denote the latent Poisson processwith themean function�n(t)exp{β ′Xi},
i = 1, . . . , n, and define Zi = Ni (t1i ) and Wi = Ni (t2i ) − Ni (t1i ) for δ1i = 0, where
t1i = Vi I (δ1i = 1) + Ui I (δ1i = 0), and t2i = Vi I (δ2i = 1) + Ui I (δ3i = 1).
Then Zi and Wi are Poisson random variables with means �n(t1i )exp{β ′Xi} and
{�n(t2i ) − �n(t1i )}exp{β ′Xi}, respectively, and they are independent given δ1i = 0.
Furthermore, note that if Ti is left-censored or interval-censored, we have that

P(Ti ≤ t1i ) = P(Ni (t1i ) > 0) = P(Zi > 0) = 1 − exp{−�n(Vi )exp(β
′Xi)},

or

P(t1i < Ti ≤ t2i ) = P{Ni (t1i ) = 0, Ni (t2i ) > 0} = P(Zi = 0, Wi > 0)

= exp{−�n(Ui )exp(β
′Xi)} − exp{−�n(Vi )exp(β

′Xi)},

and for right-censored Ti , we have that

P(Ti ≥ t2i ) = P{Ni (t2i ) = 0} = P(Zi = 0, Wi = 0) = exp{−�n(Ui )exp(β
′Xi)}.

123

339



R. Zhou et al.

Thus if the Zi ’s and Wi ’s were observed, the log likelihood function corresponding to
l∗1 (β, αl) would have the form

l∗∗
1 (β, αl) =

n∑

i=1

log{PZi (Zi )PWi (Wi )
δ2i +δ3i {δ1i I (Zi > 0)

+ δ2i I (Zi = 0, Wi > 0) + δ3i I (Zi = 0, Wi = 0)}}.

In the above, PA(.) denotes the probability function associated with the random vari-
able A.

In addition, note that one can decompose or write Zi and Wi as

Zi =
k∑

l=1

Zil , Wi =
k∑

l=1

Wil ,

the summation of k independent Poisson random variables Zil ’s and Wil ’s with means
αl Il(t1i ) exp(β ′Xi) and αl{Il(t2i ) − Il(t1i )}exp(β ′Xi), respectively. Then by treating
{ (Zi , Wi , Zil , Wil ,Xmis

i ) } to be known, we would have the complete log likelihood
function

l∗∗∗
1 (β, αl) =

n∑

i=1

k∑

l=1

log
{

PZil (Zil)PWil (Wil)
δ2i +δ3i

×{δ1i I (Zi > 0) + δ2i I (Zi = 0, Wi > 0) + δ3i I (Zi = 0, Wi = 0)}}

corresponding to l∗1 (β, αl).
Now we are ready to discuss the two steps of the proposed EM algorithm. Let

Oi = (Ui , Vi , δ1i , δ2i , δ3i ,Xobs
i ,Ri) denote the observed data on subject i and θ(d) =

(β(d)′ , α(d)′
l , γ (d)′)

′
the estimator of the parameters given after the d iterations. In the

E-step of the (d + 1)th iteration, we need to determine the expectation Q(θ |θ(d)) =
E[l∗∗∗

1 (β, αl) + l2(γ )|Oi, θ
(d)] or

Q(θ |θ(d)) =
n∑

i=1

k∑

l=1

[{E(Zil|Oi, θ
(d)) + (δ2i + δ3i)E(Wil|Oi, θ

(d))} × {log(αl) + β ′
1X

obs
i }

+ {β ′
2E(ZilXmis

i |Oi, θ
(d)) + β ′

2(δi2 + δi3)E(WilXmis
i |Oi, θ

(d))}
− αlexp(β

′
1X

obs
i )E(exp(β ′

2Xi
mis |Oi, θ

(d))){(δ1i + δ2i )Il(Vi ) + δ3i Il(Ui )}]

+
n∑

i=1

∫
log{ f (Xobs

i ,Xmis
i ; γ )}f(Xmis

i |Oi, θ
(d))dXmis

i + l(θ(d)).

In the above, β1 and β2 denote the components of β corresponding to the observed
and missing covariates, respectively, and l(θ(d)) is a function of θ(d) free of θ .
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For the determination of the expectations above, we need to calculate

E(Zil |Oi, θ
(d)) = α

(d)
l Il(Vi )E(Zi |Oi, θ

(d))

�(d)(Vi )
,

and

E(Wil |Oi, θ
(d)) = α

(d)
l {Il(Vi ) − Il(Ui )} × E(Wi |Oi, θ

(d))

�(d)(Vi ) − �(d)(Ui )
,

where �(d)(·) = ∑k
l=1 α

(d)
l Il(·). Note that if there are no missing covariates, by

following Wang et al. (2016), we have that

E(Zi |Oi, θ
(d)) = �(d)(Vi )exp(β

(d)′
1 Xi

obs + β
(d)′
2 Xi

mis)δ1i

1 − exp{−�(d)(Vi )exp(β
(d)′
1 Xi

obs + β
(d)′
2 Xi

mis)}
,

and

E(Wi |Oi, θ
(d)) = {�(d)(Ui ) − �(d)(Vi )}exp(β(d)′

1 Xi
obs + β

(d)′
2 Xi

mis)δ2i

1 − exp[−{�(d)(Ui ) − �(d)(Vi )}exp(β(d)′
1 Xi

obs + β
(d)′
2 Xi

mis)]
.

When there exist missing categorical covariates, by following Herring and Ibrahim
(2001), we have that

E(Zi |Oi, θ
(d)) =

∑

xmis
i ( j)

�(d)(Vi )exp(β
(d)′
1 Xi

obs + β
(d)′
2 xmis

i ( j))δ1i pi j

1 − exp{−�(d)(Vi )exp(β
(d)′
1 Xi

obs + β
(d)′
2 xmis

i ( j))}
,

and

E(Wi |Oi, θ
(d)) =

∑

xmis
i ( j)

{�(d)(Ui ) − �(d)(Vi )}exp(β(d)′
1 Xi

obs + β
(d)′
2 xmis

i ( j))δ2i pi j

1 − exp[−{�(d)(Ui ) − �(d)(Vi )}exp(β(d)′
1 Xi

obs + β
(d)′
2 xmis

i ( j))]
.

Here Xmis
i (j) denotes the j th possible missing data pattern for subject i and pi j the

conditional probability of a given missing data pattern, which can be estimated in the
dth iteration of the EM algorithm by

pi j = P(Xi
mis = xmis

i ( j)|Oi, `(d))

= f (Ui , Vi , δ1i , δ2i , δ3i |Xi
obs, xmis

i ( j)) f (Xi
obs, xmis

i ( j); γ (d))
∑

xmis
i ( j)

f (Ui , Vi , δ1i , δ2i , δ3i |Xi
obs, xmis

i ( j)) f (Xi
obs, xmis

i ( j); γ (d))
.
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For the situation where missing covariates are continuous, the calculation, which will
be described at “Appendix I”, will involve integrations and do not have the closed
forms.

In the M-step of the (d + 1)th iteration, we need to maximize Q(θ, θ(d)). For this,
one can solve the following score equations

∂ Q

∂β1
=

n∑

i=1

[{E(Zi |Oi, θ
(d)) + δ2i E(Wi |Oi, θ

(d))} − {(δ2i + δ1i )�(Vi ) + δ3i�(Ui )}

exp(β ′
1Xi

obs)E(exp(β ′
2Xi

mis))|Oi, θ
(d))]Xi

obs = 0, (6)

∂ Q

∂β2
=

n∑

i=1

[
{E(ZiXi

mis|Oi, θ
(d)) + δ2i E(WiXi

mis|Oi, θ
(d))}

− {(δ2i + δ1i )�(Vi ) + δ3i�(Ui )}

× exp(β ′
1Xi

obs)
∂ E(exp(β ′

2Xi
mis|Oi, θ

(d)))

∂β2

]
= 0, (7)

∂ Q

∂αl
=

n∑

i=1

[α−1
l {E(Zil |Oi, θ

(d)) + δ2i E(Wil |Oi, θ
(d))}

− {(δ2i + δ1i )Il(Vi ) + δ3i Il(Ui )}
× exp(β ′

1Xi
obs)E(exp(β ′

2Xi
mis|Oi, θ

(d)))] = 0, (8)

∂ Q

∂γ
=

n∑

i=1

∂[∫ log{ f (Xi
obs,Xi

mis; γ )} f (Xi
mis|Oi, θ

(d))dXi
mis]

∂γ (d)
= 0. (9)

In the above,

∂ E(exp(β ′
2Xi

mis|Oi, θ
(d)))

∂β2
=
∑

xmis
i ( j)

exp
(
β ′
2xmis

i ( j)
)

xmis
i ( j)pi j ,

E(Xi
mis|Oi, θ

(d)) =
∑

xmis
i ( j)

xmis
i ( j)pi j ,

E(ZiXi
mis|Oi, θ

(d)) =
∑

xmis
i ( j)

�(d)(Vi )exp(β
(d)′
1 Xi

obs + β
(d)′
2 xmis

i ( j))xmis
i ( j)δ1i pi j

1 − exp{−�(d)(Vi )exp(β
(d)′
1 Xi

obs + β
(d)′
2 xmis

i ( j))}
,

and

E(WiXi
mis|Oi, θ

(d))

=
∑

xmis
i ( j)

{�(d)(Ui ) − �(d)(Vi )}exp(β(d)′
1 Xi

obs + β
(d)′
2 xmis

i ( j))xmis
i ( j)δ2i pi j

1 − exp[−{�(d)(Ui ) − �(d)(Vi )}exp(β(d)′
1 Xi

obs + β
(d)′
2 xmis

i ( j))]
.

The proposed EM algorithm can be summarized as follows.
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Step 1. Select the initial estimates β
(0)
1 , β

(0)
2 , α

(0)
l and γ (0).

Step 2. At the (d +1)th iteration, compute the conditional expectations E(ZiXi
mis|

Oi, θ
(d)), E(WiXi

mis|Oi, θ
(d)), E(Zil |Oi, θ

(d)), E(Wil |Oi, θ
(d)), E(Zi |Oi, θ

(d)), and
E(Wi |Oi, θ

(d)).
Step 3. Obtain β̂

(d+1)
1 and β̂

(d+1)
2 by solving the Eqs. (6) and (7) with

α
∗(d)
l (β) =

∑n
i=1{E(Zil |Oi, θ

(d)) + δ2i E(Wil |Oi, θ
(d))}

∑n
i=1[{(δ2i + δ1i )Il(Vi ) + δ3i Il(Ui )}exp(β ′

1Xi
obs)E(exp(β ′

2Xi
mis|Oi, θ(d)))]

(10)

Step 4. Obtain α̂
(d+1)
l (β) by solving the Eq. (8) and applying the Quasi-Newton

method or the Eq. (10) given β̂
(d+1)
1 , β̂(d+1)

2 .
Step 5. Obtain γ̂ (d+1) by solving the Eq. (9).
Step 6. Repeat Steps 2–5 until a pre-specified converge criterion is satisfied.
Note that for the application of the method proposed above, one needs to specify

f (X; γ ), the density function of the covariates. For this, based on Herring and Ibrahim
(2001), the standard option is joint normal distribution, Bernoulli distribution or the
logistic regression model if missing covariates are continuous, binary, or categorical,
respectively. More discussion on this is given below.

4 Asymptotic properties

Let θ̂n = (β̂n, γ̂n, �̂n) denote the sieve maximum likelihood estimator of θ defined
in the previous section and θ̂∗

n = (β̂n, �̂n). Now we will establish the asymptotic
properties of θ̂∗

n . For this, let θ
∗
0 = (β0,�0) denote the true value of θ∗ and define the

distance between θ1 = (β1
1, β2

1,�1) and θ2 = (β1
2, β2

2,�2) as

d(θ1, θ2) = { ||β1
1 − β1

2||2 + ||β2
1 − β2

2||2 + ||�1 − �2||22 }1/2.

In the above, ||v|| denotes the Euclidean norm of a vector v and ||�1 − �2||22 =∫ [{�1(u)−�2(u)}2+{�1(v)−�2(v)}2]d f (u, v), where f (u, v) represents the joint
density function of U and V . Then we have the following consistency and asymptotic
normality results.

Theorem 1 Assume that the regularity conditions given in “Appendix A.2” hold. Then
as n → ∞, we have that d(θ̂n, θ0) → 0 almost surely and

√
n(β̂n − β0) → N (0, 	)

in distribution with 	 given in “Appendix A.2”.
The proof of the results above is sketched in “Appendix A.2”. For inference about

β, it is apparent that one needs to estimate 	 and one common approach would
be to employ the Louis’s Formula. However, it can be seen below that this would
be computationally intensive for the situation considered here and thus by following

123

343



R. Zhou et al.

Wen and Lin (2011) and others, we propose to employ the nonparametric bootstrap
method (Efron 1981; Su and Wang 2016). Specifically, let Q be an integer and for
each 1 ≤ q ≤ Q, draw a new data set, denoted by O(q), of the sample size n with
replacement from the original observed data { Oi ; i = 1, . . . , n }. Let β̂

(q)
n denote

the estimator of β defined above based on the bootstrap samples O(q), q = 1, ..., Q.
respectively. Then one can estimate the covariance matrix of β̂n by using the sample
covariance matrix of the β̂

(q)
n ’s and the numerical results below suggest that this

approach seems to work well.

5 A simulation study

In this section, we present some results obtained from a simulation study to evaluate
the finite sample performance of the sieve maximum likelihood estimation proce-
dure proposed in the previous sections. In the study, it was assumed that there
exist two covariates Xobs

i and Xmiss
i . Note that as discussed above, we can write

f (Xobs,Xmiss; γ ) as

f (Xobs
i ,Xmis

i ; γ ) = f (Xobs
i ) f (Xmis

i |Xobs
i ; γ ).

For the generation of the covariates, we assumed that f (Xobs
i ) is Bernoulli(0.6) or

normal(1, 0.25), and set f (Xmiss
i | Xobs

i ) to be

Bernoulli
(
0.5Xobs

i + 0.73(1 − Xobs
i )
)
or normal(1.5 + Xobs

i , 0.25).

Given the covariates, the failure times of interest Ti ’s were generated based on model
(1) with �0(t) = t3, t or �0(t) = log(1 + t). For the missing mechanism, we
considered the following two situations

P(Ri = 1|Oi ) = exp{U + V + Xobs
i }

1 + exp{U + V + Xobs
i } ,

and

P(Ri = 1|Oi ) = exp{0.22U + 0.22V + 0.22Xobs
i }

1 + exp{0.22U + 0.22V + 0.22Xobs
i } ,

which will be referred to as set-ups I and II and correspond to the missing rates of
30% and 40%, respectively. For the generation of the observation times or censoring
intervals, it was assumed that the Ui ’s and Vi ’s follow the uniform distribution over
the region {(u, v) : 0 ≤ u ≤ 0.28, u + 0.8 ≤ v ≤ 1.2}. The results given below are
based on the sample size n = 200 with 1000 replications.

Table 1 gives the obtained results on estimation of the regression parameters β1
and β2 with their true values being {0.2, 0.5} and {0.5, 1}, respectively, and under
the set up I for the missing mechanism. Here for the I -spline approximation to the
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Table 1 Estimation of regression parameters β1 and β2 with �0(t) = t3, 30% missing and censoring rates

True values Method β̂1 β̂2

β1 β2 Bias SE ESE CP Bias SE ESE CP

0.5 0.5 Proposed − 0.021 0.199 0.196 95.2 − 0.018 0.225 0.227 94.7

CC 0.064 0.254 0.261 93.7 0.041 0.248 0.240 94.6

MI − 0.063 0.195 0.195 93.5 − 0.220 0.152 0.151 66.8

Full − 0.026 0.196 0.205 94.2 0.000 0.197 0.200 95.8

0.2 0.5 Proposed − 0.024 0.198 0.198 94.7 − 0.010 0.226 0.232 94.4

CC 0.041 0.246 0.246 94.2 0.038 0.242 0.248 94.6

MI − 0.049 0.192 0.191 94.3 − 0.204 0.154 0.153 72.3

Full − 0.017 0.196 0.195 95.4 0.014 0.193 0.196 95.4

0.5 1 Proposed − 0.093 0.211 0.212 92.8 − 0.052 0.229 0.228 95.2

CC 0.091 0.306 0.306 93.4 0.125 0.307 0.313 92.2

MI − 0.180 0.185 0.185 83.3 − 0.453 0.142 0.141 9.30

Full − 0.032 0.212 0.212 94.8 − 0.009 0.211 0.212 95.2

cumulative baseline hazards function, we took s = 3, the degree or order of the
spline basis functions, and kn = 5, the number of knots, and chose the knots equally
spaced between the smallest and largest observation times by following Wang et al.
(2016). In the table, we calculated the estimated bias given by the average of the
estimates minus the true value (Bias), the sample standard error (SE), the average of
the estimated standard error (ESE), and the 95% empirical coverage probability (CP).
For comparison, we also applied the naive or complete data approach, which deletes
the subjects with missing covariates, and the full data approach, assuming no missing
covariates, which are denoted by CC and Full in the table, respectively. In addition,
we also considered the most commonly used multiple imputation method (Horton and
Kleinman 2007; Schomaker and Heumann 2018), denoted by MI in the table.

One can see fromTable 1 that the proposedmethod seems to give good performance,
which is similar to that of the Full approach. Both are better than the CCmethod and in
particular, theCCmethods gave larger biases. The results also suggest that the proposed
method gave much better performance than the multiple imputation method, which
clearly should not be used for estimation of β2. In addition, the results on the coverage
probabilities indicate that the normal approximation to the distribution of the proposed
estimator appears to be reasonable. To further see this, we investigated the quantile
plots of the standardized estimator against the standard normal distribution and present
them in Fig. 1, which again suggest the normal approximation is appropriate.

Tables 2, 3, 4, 5 and 6 present the estimation results obtained similarly as Table 1.
Specifically, in Tables 2 and 3, the same set-up as Table 1 was used except that Table 2
considered the set up II for the missing mechanism and Table 3 used �0(t) = t .
In Table 4, instead of discrete covariates, both covariates were generated from the
normal distribution mentioned above and Table 5 investigated the situation where
�0(t) = log(1 + t) with all other set-ups being the same as in Table 1. Instead of
30% censoring rate, we considered 50% censoring rate in Table 6 also with the other
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Fig. 1 Quantile plots of the standardized estimates of a β1 with β1 = β2 = 0.5, (b) β2 with β1 = β2 = 0.5,
c β1 with β1 = 0.5 and β2 = 1, and d β2 with β1 = 0.5 and β2 = 1

Table 2 Estimation of regression parameters β1 and β2 with �0(t) = t3 and 40% missing rate and 30%
censoring rate

True values Method β̂1 β̂2

β1 β2 Bias SE ESE CP Bias SE ESE CP

0.5 0.5 Proposed − 0.031 0.200 0.198 94.9 − 0.021 0.245 0.243 94.6

CC 0.036 0.279 0.285 94.8 0.062 0.275 0.285 94.5

MI − 0.078 0.193 0.192 92.7 − 0.281 0.145 0.143 49.6

Full − 0.023 0.196 0.196 95.4 − 0.024 0.197 0.198 94.6

0.2 0.5 Proposed − 0.035 0.199 0.199 94.5 − 0.010 0.246 0.251 95.1

CC 0.014 0.269 0.265 94.6 0.026 0.267 0.274 93.4

MI − 0.063 0.191 0.190 94.0 − 0.267 0.146 0.145 53.2

Full − 0.017 0.195 0.196 95.4 − 0.014 0.196 0.195 95.4

0.5 1 Proposed − 0.117 0.213 0.212 92.8 − 0.070 0.247 0.250 93.0

CC 0.074 0.349 0.339 94.5 0.124 0.398 0.350 92.9

MI − 0.210 0.184 0.185 79.7 − 0.564 0.135 0.134 1.00

Full − 0.055 0.212 0.210 94.1 − 0.037 0.211 0.204 95.4

set-ups being the same as in Table 1. One can see that in all situations, the proposed
method and the Full approach gave similar performance and both seem to do well. In
contrast, both the CC method and the multiple imputation method may yield biased
estimates and low coverage probabilities.

As pointed out above, the focus here has been on the situation with missing at
random and a natural question is how the proposed method would perform if one faces
non-ignorable missing. To see this, we repeated the study giving Table 1 except that
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Table 3 Estimation of regression parameters β1 and β2 with �0(t) = t and 30% missing rate and 30%
censoring rate

True values Method β̂1 β̂2

β1 β2 Bias SE ESE CP Bias SE ESE CP

0.5 0.5 Proposed 0.021 0.203 0.213 94.7 0.049 0.243 0.247 94.3

CC 0.101 0.250 0.248 93.3 0.082 0.245 0.237 93.0

MI − 0.041 0.185 0.185 94.6 − 0.200 0.149 0.150 74.0

Full 0.016 0.194 0.196 94.4 0.005 0.194 0.189 95.3

0.2 0.5 Proposed − 0.015 0.196 0.196 95.4 0.004 0.235 0.230 94.8

CC 0.056 0.242 0.238 94.5 0.064 0.239 0.227 93.3

MI − 0.043 0.185 0.185 94.1 − 0.197 0.151 0.150 74.1

Full 0.007 0.191 0.189 95.2 − 0.000 0.191 0.188 95.1

0.5 1 Proposed 0.013 0.250 0.247 95.2 0.148 0.290 0.278 92.5

CC 0.150 0.297 0.308 92.0 0.198 0.303 0.312 89.9

MI − 0.109 0.191 0.190 90.9 − 0.371 0.155 0.155 31.7

Full 0.071 0.223 0.221 94.0 0.108 0.222 0.227 92.6

Table 4 Estimation of regression parameters β1 and β2 with continuous covariates, �0(t) = t3, and 30%
missing and censoring rates

Scenario Estimator β̂1 β̂2

β1 β2 Bias SE ESE CP Bias SE ESE CP

0 − 0.1 Proposed 0.032 0.232 0.230 96.0 − 0.068 0.096 0.112 93.0

CC 0.196 0.404 0.308 81.0 − 0.156 0.231 0.179 77.0

MI − 0.069 0.321 0.324 94.3 − 0.109 0.210 0.209 92.7

Full − 0.058 0.349 0.325 95.0 0.034 0.247 0.241 97.0

0.5 − 0.5 Proposed − 0.078 0.267 0.271 95.0 0.011 0.142 0.139 96.0

CC 0.364 0.369 0.370 86.0 − 0.294 0.256 0.286 81.0

MI 0.051 0.246 0.244 94.6 − 0.088 0.172 0.176 92.3

Full − 0.041 0.382 0.363 96.0 − 0.023 0.270 0.264 95.0

0.25 − 0.25 Proposed − 0.013 0.215 0.180 94.0 − 0.017 0.129 0.138 95.0

CC 0.103 0.202 0.224 87.0 − 0.246 0.109 0.102 38.0

MI 0.049 0.261 0.255 93.3 − 0.083 0.185 0.180 91.1

Full − 0.007 0.257 0.242 92.0 − 0.023 0.186 0.180 93.0

instead of set up I for themissingmechanism,we considered the followingmechanism

P(Ri = 1|Oi ) = exp{0.5U + 0.22V + 0.22Xobs
i + 0.22Xmiss

i }
1 + exp{0.5U + 0.22V + 0.22Xobs

i + 0.22Xmiss
i } .

Table 7 gives the results on estimation of the regression parameters β1 and β2 given
by the four methods discussed above and they suggest that again both the proposed
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Table 5 Estimation of regression parameters β1 and β2 with �0(t) = log(1 + t) and 30% missing and
censoring rates

Scenario Estimator β̂1 β̂2

β1 β2 Bias SE ESE CP Bias SE ESE CP

0.5 0.5 Proposed 0.018 0.210 0.207 94.7 0.041 0.247 0.247 94.3

CC − 0.242 0.209 0.212 80.1 − 0.289 0.211 0.207 71.3

MI − 0.028 0.194 0.190 94.3 − 0.191 0.161 0.160 77.3

Full 0.016 0.197 0.200 94.7 0.017 0.203 0.200 95.4

0.2 0.5 Proposed − 0.012 0.206 0.206 95.1 − 0.032 0.251 0.251 95.1

CC − 0.200 0.219 0.221 85.4 − 0.266 0.217 0.214 75.8

MI − 0.039 0.198 0.194 94.1 − 0.192 0.166 0.165 79.0

Full 0.008 0.201 0.202 94.5 0.000 0.203 0.204 95.6

0.5 1 Proposed 0.020 0.244 0.235 95.5 0.080 0.266 0.262 94.8

CC − 0.101 0.231 0.231 92.2 − 0.121 0.226 0.221 92.3

MI − 0.085 0.196 0.194 92.6 − 0.345 0.155 0.55 38.3

Full 0.016 0.197 0.200 94.7 0.017 0.203 0.200 95.4

Table 6 Estimation of regression parameters β1 and β2 with �0(t) = t3 and 30% missing rate and 50%
censoring rate

True values Method β̂1 β̂2

β1 β2 Bias SE ESE CP Bias SE ESE CP

0.5 0.5 Proposed − 0.013 0.218 0.216 95.0 0.018 0.269 0.264 94.8

CC − 0.268 0.237 0.233 80.0 − 0.300 0.231 0.228 74.5

MI − 0.052 0.208 0.203 94.3 − 0.226 0.170 0.170 72.7

Full 0.005 0.209 0.212 94.8 − 0.004 0.202 0.211 95.6

0.2 0.5 Proposed − 0.025 0.220 0.221 95.6 0.014 0.280 0.280 95.5

CC − 0.206 0.253 0.250 86.3 − 0.273 0.241 0.243 80.5

MI − 0.057 0.218 0.213 93.8 − 0.223 0.184 0.181 75.4

Full 0.002 0.214 0.218 95.2 − 0.005 0.214 0.223 95.9

0.5 1 Proposed − 0.051 0.214 0.216 94.9 0.030 0.264 0.259 94.0

CC − 0.116 0.241 0.234 90.6 − 0.187 0.242 0.243 88.2

MI − 0.112 0.192 0.190 90.2 − 0.424 0.164 0.162 24.7

Full 0.041 0.207 0.213 96.0 − 0.055 0.212 0.212 94.5

method and the Full method gave good performance. However, the CC and multiple
imputation methods did not seem to provide reasonable results. Of course, one may be
careful about the proposed method since no theoretical justification can be provided
yet.
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Table 7 Estimation of regression parameters β1 and β2 with �0(t) = t3 and 30% missing and censoring
rates under the non-ignorable missing mechanism

True values Method β̂1 β̂2

β1 β2 Bias SE ESE CP Bias SE ESE CP

0.5 0.5 Proposed − 0.035 0.193 0.198 95.1 − 0.024 0.236 0.234 95.0

CC 0.022 0.427 0.419 94.1 − 0.091 0.408 0.401 94.3

MI − 0.071 0.194 0.194 92.7 − 0.246 0.147 0.146 58.5

Full − 0.026 0.196 0.205 94.2 0.000 0.197 0.200 95.8

0.2 0.5 Proposed − 0.038 0.196 0.197 94.9 − 0.015 0.237 0.234 94.6

CC 0.022 0.245 0.241 94.7 − 0.097 0.397 0.404 94.2

MI − 0.056 0.192 0.191 94.1 − 0.231 0.150 0.150 65.7

Full − 0.017 0.196 0.195 95.4 0.014 0.193 0.196 95.4

0.5 1 Proposed − 0.061 0.208 0.213 94.2 − 0.010 0.228 0.228 95.1

CC 0.038 0.256 0.252 94.3 − 0.141 0.404 0.398 93.6

MI − 0.197 0.185 0.186 81.8 − 0.503 0.137 0.138 3.90

Full − 0.032 0.212 0.212 94.8 − 0.009 0.211 0.212 95.2

6 An application

Now we apply the sieve maximum likelihood estimation procedure proposed in the
previous sections to the set of data arising from Alzhehelmer’s Disease Neuroimaging
Initiative, discussed by Li et al. (2020) among others. It is a longitudinal study and
among others, one variable of interest is the Alzheimers disease (AD) conversion.
Due to the nature of the study, only interval-censored data are available on the occur-
rence time of the AD conversion, and the participants in the study are classified into
three groups based on their cognitive conditions, cognitively normal, mild cognitive
impairment and Alzheimer’s disease. By following Li et al. (2020) and others, we will
focus on the patients in the mild cognitive impairment group to determine significant
baseline prognostic factors or covariates for the AD conversion.

The data consist of five baseline covariates. They are the Rey Auditory Verbal
Learning Test (RAVLT), the Middle temporal gyrus (MidTemp) from Neuroimaging,
the participants’s Alzheimer’s Disease Assessment Scale 13 items (ADAS13), the
functional assessment questionnaire score (FAQ), and the participant’s baseline age
(Age). Among the 396 participants in the mild cognitive impairment group, around
20% of them have missing information on the MidTemp. Also there are 3 subjects
with missing ADAS13 and 3 subjects with missing FAQ, and in the analysis below,
we will exclude these six subjects for simplicity. As mentioned above, Li et al. (2020)
discussed the same problem but they only considered the situation where there do not
exist missing covariates.

Table 8 presents the analysis results given by the proposed sieve maximum like-
lihood estimation procedure, including the estimated covariate effect (Estimate), the
estimated standard error (SE) and the p-value for testing the covariate effect being
zero. For comparison, we also include in the table the results given by Li et al. (2020)
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Table 8 Analysis results of
Alzhehelmer’s Disease data

Covariate Method Estimate SE p-value

RAVLT Li et al. (2020) − 0.679 0.324 0.018

Proposed − 0.305 0.096 0.001

Midtemp Li et al. (2020) − 0.434 0.290 0.072

Proposed − 0.291 0.075 0.000

ADAS13 Li et al. (2020) 0.380 0.690 0.291

Proposed 0.410 0.094 0.000

FAQ Li et al. (2020) 0.426 0.244 0.040

Proposed 0.410 0.071 0.000

Age Li et al. (2020) − 0.364 0.274 0.092

Proposed − 0.087 0.083 0.147

based on the 316 subjects with complete information on the MidTemp. One can see
that the proposed method suggests that except Age, all other four covariates, RAVLT,
MidTemp, ADAS13 and FAQ, had significant effects on the AD conversion. In con-
trast, the approach that ignored the missing information indicates that MidTemp may
only have some mild effect and ADAS13 had no effect on predicting the AD conver-
sion. In addition, as expected, the proposed method gave more efficient estimates than
Li et al. (2020) for all covariates.

7 Discussion and concluding remarks

In this paper, we discussed the inference about the proportional hazards model when
one faces interval-censored failure time data with missing covariates, and for the prob-
lem, a sieve maximum likelihood estimation procedure was proposed. In the method,
I -spline functions were employed to approximate the unknown baseline cumulative
hazard function and a Poisson-based EM algorithm was developed. The proposed
estimator of regression parameters were shown to be consistent and asymptotically
normal, and the numerical studies indicated that the proposed method seems to work
well for practical situations and should be usedwhen covariates aremissing at random.

As pointed out above, the focus here has been on the situation where covariates may
be missing at random, meaning that the missingness depends only on the observed
values. It is worth to note that sometimes one may face more complicated situations
where the missingness could depend on both observed and missing values, which is
often referred to as nonignorable missing (Du et al. 2021). For the latter case, a valid
inference procedure usually requires one to make some assumptions on or model the
missingness, and it is easy to see that for the situation, one could often have to deal
with the model misspecification issue.

There exist several directions for future research. One is that the focus here has been
on the proportional hazards model (1) and it is apparent that the same type of missing
data could happen to other commonly used regression models such as the additive
hazards model or the linear transformation model. It would be useful to develop some
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estimation procedures similar to that proposed above for these latter models. In the
preceding sections, we have assumed that covariates are time-independent and it is
clear that sometimes there may exist time-dependent covariates. Thus it would be
helpful to generalize the proposed approach to allow for time-dependent covariates.
Also in the above, it has been assumed that we observe case II interval-censored data
and as pointed out by some authors, in practice, one may face a more general type of
interval-censored data, case K interval-censored data (Sun 2006; Wang et al. 2016).
It is apparent that the method given above cannot be directly applied to this latter
situation and in other words, some generalizations of it are needed.
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Appendix

A.1. E-step of the EM algorithm for continuous covariates

In the E-step of the EM algorithm developed in Sect. 3, we need to calculate the
expectations E(Zi |Oi, θ

(d)) and E(Wi |Oi, θ
(d)). As described there, when missing

covariates are categorical, they are some summations and can be expressed in the
closed form. However, for continuous covariates, this will not be the case and instead
we have to deal with the integrals that do not have a closed form. More specifically,
we have that

E(Zi |Oi, θ
(d)) =

∫

Xmiss

�(d)(Vi)exp(β
(d)′
1 Xi

obs + β
(d)′
2 Xmiss

i )δ1i

1 − exp{−�(d)(Vi)exp(β
(d)′
1 Xi

obs + β
(d)′
2 Xmiss

i )}
×p(Xmiss

i |Oi, θ
(d))dXmiss

i ,

and

E(Wi |Oi, θ
(d)) =

∫

Xmiss
i

{�(d)(Ui) − �(d)(Vi)}exp(β
(d)′
1 Xi

obs + β
(d)′
2 Xmiss

i )δ2i

1 − exp[−{�(d)(Ui) − �(d)(Vi)}exp(β(d)′
1 Xi

obs + β
(d)′
2 Xmiss

i )]
×p(Xmiss

i |Oi, θ
(d))dXmiss

i

by using the notation defined before.
To calculate the integrals above, by following Herring and Ibrahim (2001), one can

employ the Monte-Carlo estimation approach, which draws the sample from
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pi j = P(Xmis
i |Oi, θ

(d)) = f(Ui,Vi, δ1i, δ2i, δ3i|Xi
obs,Xi

mis)f(Xi
obs,Xi

mis; γ (d))
∫
Xmis
i

f(Ui,Vi, δ1i, δ2i, δ3i|Xi
obs,Xi

mis)f(Xi
obs,Xi

mis; γ (d))

∝ f(Ui,Vi, δ1i , δ2i , δ3i |Xi
obs,Xi

mis)f(Xi
obs,Xi

mis; γ (d)).

Note that f (Ui , Vi , δ1i , δ2i , δ3i |Xi
obs,Xi

mis) is log-concave (Ibrahim et al. 1999)
and if f (Xi

obs,Xi
mis; γ (d)) belongs to the exponential family, the logrithm of

P(Xmis
i |Oi, θ

(d)) is concave. It follows that one can use the Gibbs sampler (Gilks
and Wild 1992) and adaptive rejection algorithm (Gilks and Wild 1992) to sample
from P(Xmis

i |Oi, θ
(d)).

More specifically for the determination of E(Zi |Oi, θ
(d)), for each subject with

missing covariateXmiss
i , we first apply theGibbs sampler and adaptive reject algorithm

to draw the sample si,1, ..., si,ni of size ni from p(Xmiss
i |Oi, θ

(d)). Then the conditional
expectation can be approximated by

E(Zi |Oi, θ
(d)) = 1

ni

ni∑

k=1

�(d)(Vi)exp(β
(d)′
1 Xobs

i + β
(d)′
2 si,k)δ1i

1 − exp{−�(d)(Vi)exp(β
(d)′
1 Xobs

i + β
(d)′
2 si,k)}

.

In comparison to the categorical covariate situation, the above operation can be
regarded as replacing each xmiss

i by ni sampled values with equal weight. It is apparent
that E(Wi |Oi, θ

(d)) can be calculated similarly.

A.2. Proofs of the asymptotic properties

In this Appendix, we will sketch the proof for the consistency and asymptotic nor-
mality of the proposed estimators given in Theorem 1 by employing the empirical
process theory and nonparametric techniques. Define P f = ∫

f (x)d P(x) and

Pn f = n−1
n∑

i=1
f (Xi ) for a function f , a probability function P and a sample

X1, . . . , Xn . For the proof, we need the following regularity conditions.

(A1) Assume that �(τ1) < ∞, �(τ2) < ∞, and there exists a positive constant a
such that P(V − U > a) > 0. Also the union of the supports of U and V is
contained in the interval [r1, r2] with 0 < r1 < r2 < +∞.

(A2) The function �0 is continuously differentiable on [r1, r2], and satisfies M−1 <

�0(r1) < �0(r2) < M for some positive constant M .
(A3) The set of covariates (X , Z) has bounded support.
(A4) The conditional distribution f (Xmis

i |Xobs
i ; γ ) is identifiable and has continuous

second-order derivatives with respect to γ , and −E0[∂2/∂γ 2)log f (Xmis
i |Xobs

i ;
γ0)] is positive definite.

(A5) For any (θ,�) near (θ0,�0), P0(logL(θ,�)−logL(θ0,�0) ≤ −K (||θ−θ0||2+
||� − �0||2) for a fixed constant K > 0.

First we will prove the consistency and for this, we will verify the conditions of
Theorem 5.7 of Van der Vaart (1998). Let BVω[r1, r2] denote the functions whose
total variation in [r1, r2] are bounded by a given constant. Then the class of functions
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Fω =
⎧
⎨

⎩

Uk∫

0

exp{βT Xi }d�(s) : � ∈ BVω[r1, r2]
⎫
⎬

⎭

is a convex hull of functions {I (Uk ≥ s)exp{βT Xi } and thus it is a Donsker class.
Furthermore,

exp

⎛

⎝−
Uk∫

0

exp{βT Xi }d�(s)

⎞

⎠− exp

⎛

⎜⎝−
Uk+1∫

0

exp{βT Xi }d�(s)

⎞

⎟⎠

is bounded away from zero. Therefore, l(θ, α̂|O) = logL(θ, α̂|O) belongs to some
Donsker class due to the preservation property of the Donsker class under Lipschitz-
continuous transformations. Then we can conclude that supθ∈�n

|Pnl(θ, α̂|O) −
Pnl(θ0, α̂|O)| converges in probability to 0 as n → 0.

Now we verify that another condition of Theorem 5.7 of Van der Vaart (1998) also
holds. That is, for any ε > 0, we have

sup
d(θ,θ0)>ε

Pl(θ, α̂|O) < Pl(θ0, α̂|O).

Note that this condition is satisfied if we can prove themodel is identifiable. According
to condition (A4) and similar arguments to the proof of Theorem 2.1 of Chang et al.
(2007), we can show the identifiability of the model parameters. Now, by Theorem
5.7 of Van der Vaart (1998), we have d(θ̂n, θ0) = op(1), which completes the proof
of consistency.

Before proving the asymptotic normality, we will need to establish the convergence
rate. For this, we will first define the covering number of the class L = {l(θ, α̂|O) :
θ ∈ �} and establish a needed lemma.

Lemma 1 Assume that Conditions (A1), (A3)–(A4) hold. Then the covering number
of the class L = {l(θ, α̂|O) : θ ∈ �} satisfies

N (ε,L, L2(P)) = O(ε−1).

Proof of Lemma 1 The proof is similar to that of Zeng et al. (2016) and Hu et al. (2017)
and thus omitted.

To establish the convergence rate, for any η > 0, define the class Fη =
{l(θn0, α̂|O) − l(θ, α̂|O) : θ ∈ �, d(θ, θn0) ≤ η} with θn0 = (β0,�n0). Fol-
lowing the calculation of (Shen and Wong 1994, p. 597), we can establish that
logN[](ε,Fη, ‖ . ‖2) ≤ C N log(η/ε) with N = m + 1, where N[](ε,Fη, d)

denotes the bracketing number (see the Definition 2.1.6 in Van Der Vaart and Wellner
1996) with respect to the metric or semi-metric d of a function class F . Moreover,
some algebraic calculations lead to ‖ l(θn0, α̂|O) − l(θ, α̂|O) ‖22≤ Cη2 for any
l(θn0, α̂|O) − l(θ, α̂|O) ∈ Fη. Therefore, by Lemma 3.4.2 of Van Der Vaart and
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Wellner (1996), we obtain

E p ‖ n1/2(Pn − P) ‖Fη
≤ C Jη(ε,Fη, ‖ . ‖2)

{
1 + Jη(ε,Fη, ‖ . ‖2)

η2n1/2

}
, (S)

where J[](η,Fη, ‖ . ‖2) = ∫ η

0 {logN[](ε,Fη, ‖ . ‖2)}1/2dε. The right-hand side of (S)

yields φn(η) = Cη1/2(1+ η1/2

η2n1/2
M1), where M1 is a positive constant. Then φn(η)/η

is a decreasing function, and n2/3φn(−1/3) = O(n1/2). According the theorem 3.4.1
of Van Der Vaart and Wellner (1996), we can conclude that d(θ̂ , θ0) = Op(n−1/3).

Now we prove the asymptotic normality of β̂n . Following the proof of Theorem 2
in Zeng et al. (2016), one can obtain that

√
n(β̂n − β0) = (E[{lβ − l�(s∗)}{lβ − l�(s∗)}T )−1Gn{lβ − l�(s∗)} + op(1),

where lβ is the score function for β, l�(s∗) is the score function along this submodel
d�ε,s∗ = (1 + εs∗)d�. This implies that the influence function for β̂n is exactly the
efficient influence function, so that

√
n(β̂n − β0) converges to a zero-mean normal

random vector whose covariance matrix attains the semiparametric efficiency bound.
�
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