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Abstract
In this paper, we first propose a dependent Dirichlet process (DDP) model using a
mixture of Weibull models with each mixture component resembling a Cox model for
survival data. We then build a Dirichlet process mixture model for competing risks
data without regression covariates. Next we extend this model to a DDP model for
competing risks regression data by using a multiplicative covariate effect on subdis-
tribution hazards in the mixture components. Though built on proportional hazards
(or subdistribution hazards) models, the proposed nonparametric Bayesian regression
models do not require the assumption of constant hazard (or subdistribution hazard)
ratio. An external time-dependent covariate is also considered in the survival model.
After describing the model, we discuss how both cause-specific and subdistribution
hazard ratios can be estimated from the same nonparametric Bayesian model for com-
peting risks regression. For use with the regression models proposed, we introduce
an omnibus prior that is suitable when little external information is available about
covariate effects. Finally we compare the models’ performance with existing methods
through simulations.We also illustrate the proposed competing risks regression model
with data from a breast cancer study. An R package “DPWeibull” implementing all of
the proposed methods is available at CRAN.
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1 Introduction

Among survival regression models, Cox model is used most frequently (Cox 1972).
Taking the multiplicative covariate effect assumption from the Cox model, Fine and
Gray (1999) proposed amodel based on the subdistribution hazards for competing risks
data. As both models are valid only when the proportional hazards (subdistribution
hazards) assumption is not strongly violated, it is desirable to have a model without
such an assumption that provides robust yet interpretable results.

To provide such a flexible model, De Iorio et al. (2004) proposed a nonparametric
BayesianANOVAmethod employing a dependent Dirichlet process (DDP). They then
adapted their model for continuous covariates in De Iorio et al. (2009). Inspired by the
latterDDPmodel based onmixture of normal distributions andKottas (2006)’smixture
ofWeibull distributionsmodel, we propose here a dependent Dirichlet processmixture
model that combines both. Our model inherits many good properties from theWeibull
kernel such as a positive domain for observations and explicit likelihood expressions
for censored data, while maintaining flexibility in hazard and density functions of the
observed data.

Nonparametric Bayesian methods have been proposed for competing risks data,
including those based on frailty models (Naskar et al. 2005; Zhang et al. 2014; de
Castro et al. 2015) or on the pseudo-likelihood in the Fine and Gray model (Ge and
Chen 2012; Lee et al. 2016). The DDP competing risks model we propose in this paper
is also based on the subdistribution hazard of Fine and Gray, but we utilize the full
likelihood with the data generating distribution taken as a mixture of Weibull-based
kernels.

The paper is arranged in the following order. Section 2 shows ourmodel for survival
regression data without competing risks. Section 3 enriches the survival model by
adding an external time-dependent covariate. Section 4 describes our competing risks
model without regression covariates. Section 5 extends the competing risks model to
the regression case and discusses how (time varying) cause-specific hazard ratios can
also be estimated from posterior samples. Section 6 recommends a prior specification
when little external information is available. Section 7 compares results from our
model with those from traditional non-Bayesian methods through simulation studies.
Section 8 implements the proposed competing risks regressionmodel in a breast cancer
dataset. Section 9 concludes the paper with some future plans.

2 Survival model with covariates

Our proposed model combines two models designed specifically for time-to-event
data, theCox proportional hazardsmodel (Cox 1972) and theDirichlet processmixture
(DPM) of Weibull distributions model (Kottas 2006). Although it uses the multiplica-
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tive covariate effect assumption on the hazards for each mixture component, this
assumption is not inherited by the proposed mixture model.

To incorporate covariates in the Dirichlet process mixtures, we adopt the “fixed-p”
dependent Dirichlet process proposed by MacEachern (1999), whose implementation
can be achieved using the methods developed for posterior sampling of Dirichlet
process mixture models. To write down the model, let ti be the event time for the i th
patient. While this time may or many not be exactly observed due to censoring, we
take it to be drawn from a Weibull distribution as

ti |αi , λi
ind.∼Weib(αi , λi ) i = 1, 2, . . . , n.

We use the shape and rate parametrization, i.e., Weib(α, λ) with shape parameter
α > 0 and rate parameter λ > 0 has density fWeib(t |α, λ) = αλtα−1 exp(−λtα),
t > 0. Denoting θ i , (αi , λi ) � θ i , we take

θ i |Zi ∼ GZi ,

where Zi is the covariate vector of the i th patient. Under the dependent Dirichlet pro-
cess (DDP) framework, the discrete distributionGZi , is one instance from a collection
of random distributions {GZ,Z ∈ Z}, whereZ is the covariate space. For eachZ ∈ Z ,
GZ can be represented through the stick-breaking method for the Dirichlet process,
i.e.,

GZ =
∞∑

s=1

ρsI(θZ,s),

where weights ρs’s are controlled by the concentration parameter of this Dirichlet
process, ν (Sethuraman 1994). The connection with the covariate space is achieved
by linking θZ,s = (αZ,s, λZ,s) with covariate Z via

αZ,s = αs, λZ,s = λs exp(ZTβs).

We assume the covariates only affect the rate parameter of the Weibull distribution.
The covariate coefficient for component s is βs . Given covariate Z, where Z ∈ Z , the
distribution of the event time is a mixture of Weibull distributions:

t |Z ∼
∞∑

s=1

ρsWeib(t |αs, λs exp(ZTβs)).

Observations having the same parameter values are considered as belonging to the
same cluster. For each component, the hazard function with respect to time t is

hs(t) = αsλs exp(ZTβs)t
αs−1 = exp(ZTβs)h0s(t).
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Componentwise, covariates have a multiplicative effect on hazard, similar to the Cox
model. It is interesting to note that themultiplicative covariate effect on the hazard func-
tion is equivalent to an inverse multiplicative effect on the mean survival time and the
median survival time. This follows from the expression for themean and themedian of

the Weibull component as Γ (1+ 1
αs

)/[λs exp(ZTβs)] and log(2)
1
αs /[λs exp(ZTβs)],

respectively. Changing the sign of the regression coefficient, this means that the model
is also componentwise multiplicative in the mean as well as the median.

The parameters in each cluster, i.e., αs , λs and βs are modeled as arising from the
base distribution of the Dirichlet process, denoted by G0. With the hyperparameter
specification of Shi et al. (2019) for G0, we complete the model construction as

G0 = Ga(λ|α0, λ0)I(g(λ),∞)(α)Ga(α|αα, λα)C(β);
λ0 ∼ Ga(α00, λ00); ν ∼ Ga(a, b). (1)

To clarify, Ga(ω, ζ ) denotes a Gamma distribution with shape parameter ω > 0 and
rate parameter ζ > 0. Its density function is fGa(x |ω, ζ ) = ζω

Γ (ω)
xω−1 exp(−ζ x).

Choice of prior parameters αα, λα, α00, λ00, a, b as well as the distribution C(β) are
discussed in Sect. 6.

To sample the posterior, we implemented Neal (2000)’s method, which is based
on the Pólya urn scheme representation of the Dirichlet process. Denoting the cluster
indicator of the samples as r = (r1, r2, . . . , rn), the sampling processes are essentially
the iterations between two steps.

1. Assign observations sequentially to mixture clusters. For the i th observation, we
generate m new possible clusters besides the existing k− clusters, (If the i th obser-
vation is the only one in its cluster, then k− is the current number of clusters −1,
otherwise k− is the current number of clusters.) and denote the total number of
candidate clusters as V . The probability of being assigned to cluster r is

P(ri = r |r−i , ti ,Zi , θ1, . . . , θV ) ∝
⎧
⎨

⎩

n−i,r
n−1+ν

L(ti |Zi , θr ) for 1 ≤ r ≤ k−;
ν/m

n−1+ν
L(ti |Zi , θr ) for k− < r ≤ V .

Here r−i is the cluster assignment for all the observations except for the i th obser-
vation. θ1, . . . , θV are the parameters in each candidate cluster. For clusters from
1 ≤ r ≤ k−, θr is the posterior given the observations assigned to the r th cluster.
For the rest m clusters, θr ’s are sampled directly from the base distribution. L is
the likelihood of the i th observation.

2. Update the θ in each cluster, which contains α, λ, β for this case.

One advantage of using the Weibull distribution as mixing kernel for time-to-event
data is the closed mathematical form of the likelihood for censored observations.
If patient i is right censored at time t , the likelihood is exp(−λi tα). If a patient is
interval censored and the event time lies between [t1, t2], the corresponding likelihood
is exp(−λi t

αi
1 ) − exp(−λi t

αi
2 ).

It is worth noticing that although the covariate effect is constant in time for each
component, the mixture model is not restricted to constant covariate effects. This can
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(a) Data with proportional hazards assumption
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(b) Data without proportional hazards assumption
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Fig. 1 Visual inspection of proportional hazard assumption. Red lines represent true true log hazard ratio;
black solid lines are estimates from the DDP model, dashed lines show 95% pointwise credible intervals
(Color figure online)

be seen by writing the hazard ratio given covariate Z to that given Z = 0 as

h(t |Z)

h(t |0) =
∑∞

s=1 ρsdWeib(t |αs, λs exp(ZTβs))/
∑∞

s=1 ρs SWeib(t |αs, λs exp(ZTβs))∑∞
s=1 ρsdWeib(t |αs, λs)/

∑∞
s=1 ρs SWeib(t |αs, λs)

.

Clearly, this is time dependent and the model is more flexible than allowing only con-
stant hazard ratios. Also notice that because covariates are linked through the scale
parameter of theWeibull kernel, the shape of the hazard function is fixed in each cluster,
however, the shape of the hazard function can be different across the covariate space
through the mixture. The log of the hazard ratio provides an interpretable effect size
in a familiar form and is a useful tool for inspecting time varying covariate effects. To
illustrate, we generated 1000 observations with the proportional hazard assumption:

x ∼ Bernulli(0.5), y ∼
{
Weib(2, 1) if x = 0
Weib(2, 2) if x = 1.

The resulting estimates are shown in

Fig. 1a. Also, 1000 observationswithout the proportional hazard assumptionwere gen-

erated as: x ∼ Bernulli(0.5), y ∼
{
Weib(1.3, 0.19) if x = 0
Weib(0.8, 0.48) if x = 1.

Estimates are shown

in Fig. 1b. The red lines represent the true log hazard ratio from the data generating
distributions. The black solid lines represent the estimates from the DDPmodel, while
the dashed lines represent 95% pointwise credible intervals. As can be seen readily,
the log hazard ratio estimate remains constant with the proportional hazards data and
varies with time for the nonproportional hazards data.

3 Survival model with a time-dependent covariate

We address a situation that often appears in clinical studies, namely, patients are
allowed to switch from the initially assigned treatment to an alternative treatment.
This is results in an external and binary time-dependent covariate. Notationally, we
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(a) Patients start with drug A
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(b) Patients start with drug B
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Fig. 2 Estimated survival for dataset with time-dependent covariate. Solid lines are estimates, dashed lines
show 95% pointwise credible (in blue) and confidence (in black) intervals (Color figure online)

define the covariate as Zd(t) =
{
0, t < td
1, t ≥ td

, where td is the treatment switching time.

If we assume the event time for the baseline is from a Weib(α, λ) distribution and the
effect on hazard is multiplicative h(t) = h0(t) exp(Z(t)β), where β is the regression
coefficient for the time-varying covariate, the survival and density functions can be
written as

S(t) =
{
exp(−λtα), t < td
exp(−λ(td)α + λ exp(β)(td)α − λ exp(β)tα), t ≥ td

f (t) =
{

λαtα−1 exp(−λtα), t < td
λ exp(β)αtα−1 exp(−λ(td)α + λ exp(β)(td)α − λ exp(β)tα), t ≥ td .

While a likelihood resulting from this density function can be employed in pos-
terior calculations, we find that a technique similar to the extended Kaplan–Meier
method proposed by Snapinn et al. (2012) simplifies expressions and provides numer-
ical stability. This consists of splitting the likelihood contribution of one patient into
the product of the likelihoods of two “pseudo” patients. For a patient with time-
varying covariate changing from 0 to 1 at time td and experiencing an event at time
t , the likelihood contribution is equivalent to the product of: (i) the likelihood of one
pseudo patient with time-varying covariate being the constant 0 and censored at time

td , equaling L1(t) =
{

λαtα−1 exp(−λtα) t < td
exp(−λ(td)α) t ≥ td

, and (ii) the likelihood of another

patient with time-varying covariate being the constant 1 left-truncated at time td ,
equaling L2(t) = λ exp(β)αtα−1 exp(−λ exp(β)tα + λ exp(β)tαd ), t ≥ td . We have
employed this method in the reported calculations.

To illustrate, we simulated a dataset with 200 observations all starting with drug
A. During the study, some patients may switch to drug B, and the switching times
in this simulation are uniformly sampled on the interval [0, 2]. For patients using
drug A, the hazard is t2, whereas for patients using drug B, the hazard is 2.718t2.
In Fig. 2, the black and gray lines are the extended Kaplan Meier estimates provided
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by the R package “survival” (Therneau 2015). The red lines are the “true” survival
for patients who start with drug A and B separately, while the blue lines are the
estimates and pointwise credible intervals provided by our DDP model. The latter
are consistent with the estimates provided by the “survival” package and the credible
intervals contain the true survival distributions. When the time-varying covariate does
not have a simple binary form, one can still derive the survival and the density function
from the relationship h(t) = h0(t) exp(Z(t)β) and calculate the likelihood, though
the likelihood may not have a closed form that is easy to compute and would not bear
the analogy with the extended Kaplan Meier method.

4 Competing risks model without covariates

In competing risks data, multiple causes of events can lead to the final outcome while
we only observe the event time due to the first cause of the event. This is because the
occurrence of one type of event precludes us from observing events of other types.
Time until the first of any type of event T and event type k are recorded, k = 1, . . . , K .

Following Fine and Gray (1999)’s suggestion of combining multiple causes of
secondary interests, we assume there are only two potential causes of events. For the
i th observation, ci = 1 indicates event from cause 1 (primary), ci = 2 indicates
event from cause 2 (secondary), and ci = 0 indicates right censoring. Fk(t) is the
cumulative incidence function (CIF), Fk(t) = P(T ≤ t, ci = k), k = 1, 2. The
lim
t→∞ F1(t) = P(c = 1) is denoted as p. The cause specific density for the kth cause

is fk(t) = lim
Δ→0

P(t ≤ T < t + Δ, c = k)

Δ
, and Fk(t) =

t∫

0

fk(s)ds. The overall

survival function has a relationship with the two CIFs that S(t) = P(T > t) =
1−

2∑

k=1

Fk(t). The subdistribution hazard for cause k is defined as ηk(t) = −d log{1−
Fk(t)}/dt . For individual i the likelihood can be written as

L(ti ) = { f1(ti )}I (ci=1){ f2(ti )}I (ci=2){1 − F1(ti ) − F2(ti )}I (ci=0). (2)

By implementingFan (2008)’s ideaof normalizing cause specificdensity functions into
legitimate density functions d1(t) = f1(t)/p, d2(t) = f2(t)/(1 − p) and cumulative
incidence functions into legitimate cumulative distribution functions D1(t) = F1(t)/p
and D2(t) = F2(t)/(1 − p), where the normalizing parameter p is set to be p =
F1(∞), the likelihood can be written as

L(ti ) = {pd1(ti )}I (ci=1){(1 − p)d2(ti )}I (ci=2){1 − pD1(ti ) − (1 − p)D2(ti )}I (ci=0).

Considering d1(t) and d2(t) as Weibull densities within each component, we obtain a
DPM model as follows:

ti |αi1, λi1, αi2, λi2, pi , ci
ind.∼ L(ti |αi , λi , pi , ci ) for i = 1, 2, . . . , n;
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(αi1, λi1, αi2, λi2, pi )|G ind.∼ G;
G ∼ DP(G0, ν);
G0 = [Ga(λ|α0, λ0)I(g(λ),∞)(α)Ga(α|αα, λα)]2Unif [0,1](p).

(3)

We use a Unif(0, 1) as the base distribution for the scaling factor p (Fan 2008).
Compared with various frequentists’ strategies for censoring (Fine and Gray 1999;
Chen et al. 2012), our model takes advantage of the simple form of Weibull survival
function and handles censoring without extra modeling or imputation.

5 Competing risks data with covariates

Fine andGray (1999) incorporated the core idea of the Coxmodel with the subdistribu-
tion hazard and proposed a model assuming that covariates modify the subdistribution
hazard of the primary interest, η1(t), in a proportional manner. In particular,

η1(t |Z) = η01(t) exp(ZTβ1).

where η01(t) is the baseline subdistribution hazard function for cause 1. Equivalently,
one can write the Fine and Gray model in terms of cumulative incidence function as

F1(t |Z,β1) = 1 − (1 − F01(t))
exp(ZTβ1). (4)

Here F01(t) is the cumulative incidence function of a patient with baseline covari-
ate (Z = 0) for cause 1. Similarly, we define the cumulative incidence function of
a patient with baseline covariate for cause 2 as F02(t), and the corresponding base-
line cause specific density functions as f01(t) and f02(t). If we use the normalizing
constant p = F01(∞) to normalize F01(t), F02(t), f01(t) and f02(t), the normal-
ized baseline cumulative incidence functions are denoted as D01(t) = F01(t)/p,
D02(t) = F02(t)/(1 − p), and the normalized cause specific densities are denoted as
d01(t) = f01(t)/p and d02(t) = f02(t)/(1 − p). Equation 4 can be rewritten as:

F1(t |Z,β1) = 1 − (1 − pD01(t))
exp(ZTβ1). (5)

Differentiating Eq.5, we obtain the cause specific density for cause 1:

f1(t |Z,β1, p) = exp(ZTβ1)[1 − pD01(t)]exp(ZTβ1)−1 pd01(t). (6)

Because of the constraint F1(∞|Z) + F2(∞|Z) = 1, we can not apply the
same regression model on both causes at the same time. With the information that
F1(∞|Z,β1) = 1 − (1 − p)exp(Z

Tβ1), we use the method proposed by Fan (2008) to
model cause 2 as

F2(t |Z,β1,β2, p) = (1 − p)exp(Z
Tβ1)(1 − (1 − D02(t))

exp(ZTβ2)). (7)
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Differentiating 7 can lead to the cause specific density function for cause 2,

f2(t |Z,β1,β2, p) = (1− p)exp(Z
Tβ1)(1−D02(t))

exp(ZTβ2)−1 exp(ZTβ2)d02(t). (8)

Plugging Eqs. 5, 6, 7 and 8 into the likelihood described in Eq.2, the DDP model with
competing risks can be written as

ti |αi1, λi1, αi2, λi2, pi ,β1i ,β2i , ci ,Zi
ind.∼ L(ti |αi1, λi1, αi2, λi2, pi ,β1i ,β2i , ci ,Zi) (9)
for i = 1, 2, . . . , n;

(αi1, λi1, αi2, λi2, pi ,β1i ,β2i )|G ind.∼ G;
G ∼ DP(G0, ν);

G0 = [Ga(λ|α0, λ0)I(g(λ),∞)(α)Ga(α|αα, λα)C(β)]2Unif [0,1](p).

Remark In traditional approaches to competing risks data, there has been a healthy
debate about whether to model the subdistribution hazards or the cause-specific haz-
ards as time-constant multiplicative functions of covariates. The two approaches
clearly lead to different interpretations of the regression coefficients, as is also well-
empahsized (Dignam et al. 2012; Allison 2018). In our model in Eq.9, although the
mixture employs component models that are formulated in terms of multiplicative
subdistribution hazards, cause-specific (as well as subditribution) hazard ratios can
be recovered from posterior samples, as may be convenient for interpretation. (As
noted before, both types of hazard ratios are allowed to be functions of time in the
mixture model.) In particular, since the cause specific hazard for cause 1 at time t
is f1(t |Z)/S1(t |Z), where S1(t |Z) = 1 − F1(t |Z)/F1(∞|Z) is the marginal survival
function, the cause specific hazard ratio can be written as:

h1(t |Z)/h01(t) = f1(t |Z)/S1(t |Z)

f01(t)/S01(t)

= f1(t |Z)/(1 − F1(t |Z)/F1(∞|Z))

f01(t)/(1 − F01(t)/F01(∞))
,

where f1(t |Z), f01(t), F1(t |Z), F01(t), F1(∞|Z) and F01(∞) can be estimated from
the MCMC posteriors of the DDP mixture of proportional subdistribution hazards
model.

6 Prior for DDPmodel

For the DPM model without covariates and with a Weibull kernel, Shi et al. (2019)
have proposed and studied a low-information omnibus (LIO) prior. For the regression
model of Sect. 2 (Eq.1) above, we use and recommend this prior in the absence of
external information. Specifically, in Eq.1 we take αα = 0.2, λα = 0.1, α0 = 0.035,
α00 = 1.354 and λ00 = 7.181. The lower limit for α is defined as a function of λ,
g(λ) = max(0, log(3/λ)

3.22 ). This specification is intended to avoid near-zero values for
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both shape parameterα and rate parameterλ, as such values correspond to distributions
that have an infinite spike at 0 yet assign substantial probabilities to large values. The
concentration parameter of the DP, ν, is given a Gamma prior with a = 1 and b = 1
(Escobar and West 1995).

For competing risks data without covariates (Sect. 4, Eq. 3), we recommend the
same prior for the two normalized cumulative incidence functions D1(t) and D2(t).
The main idea is to ensure the availability of a suitably wide variety of mixture com-
ponents in the DPM. If p has a Unif(0, 1) distribution, the desirable components from
distribution pD1(t) + (1 − p)D2(t) are the same components needed for D1(t) or
D2(t), thus our previous specification is portable to the competing risks data.

We now address the prior for regression coefficients, namely C(β) in Eqs. 1 and 9
bymainly following and adapting to models for time-to-event data the recommedation
of Gelman et al. (2008). The first step is to standardize covariates as follows:

– Binary covariates are coded to have a mean of 0 and a difference of 1 between
their lower and upper conditions. For example, if 10% of the study cohort uses
drug A, and 90% uses drug B, define the centered “Drug Assignment” covariate to
take 0.9 for drug A users and −0.1 for drug B users. Covariates with m categories
are first converted to m − 1 binary covariates;

– Continuous covariates are shifted to have a mean of 0 and scaled to have a standard
deviation of 0.5.

To specify priors for regression coefficients in the case of time-to-event data, we
follow reasoning similar to that in Gelman et al. (2008). Consider a trial with only two
patients, A and B, and only one binary covariate Z . The covariate value for patient B is
0.5, while for patient A is−0.5. The time that A dies is a random variable TA, while the
time that B dies is a random variable TB . Denote the corresponding density functions
for event times by f A(t) and fB(t), the survival functions by SA(t) and SB(t), and
the hazard functions by hA(t) and hB(t). If we assume that the proportional hazards
assumption is valid, then fB(t) = hB(t)SB(t) = exp(β)hA(t)SB(t). We thus have

P(TA < TB) =
∫ ∞

0
SB(t) f A(t)dt =

∫ ∞

0
SB(t)hA(t)SA(t)dt

and

P(TA > TB) =
∫ ∞

0
SA(t) fB(t)dt =

∫ ∞

0
exp(β)SB(t)hA(t)SA(t)dt .

Given the sum of the two probabilities is 1, one can compute the probability of A dying
first as 1/(1+ exp(β)), while the probability of B dying first is exp(β)/(1+ exp(β)).

By assuming each of these equals 1/2, the likelihood of β is exp(β)
1
2 /(1 + exp(β)).

As shown in Fig. 3, we borrow Gelman et al. (2008)’s approximation to the likelihood
with a Cauchy(0, 2.5). When combined with the standardization, this prior implies
that the absolute difference in log hazard ratio should be less then 5 (equivalent to 148
fold change in terms of hazard) when moving from one standard deviation below the
mean, to one standard deviation above the mean for any covariate, which is adequate
for most data situations in practice.
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Fig. 3 Regression coefficient prior selection

7 Simulation study

We examine three models with repeated data simulations: survival regression model;
competing risks without covariates model; competing risks with covariates model.
For each, we first lay out the simulation settings and then discuss the results. All
simulations use the LIO prior (Shi et al. 2019) as well as the prior for all regression
coefficients of centered and scaled covariates as described in Sect. 6.

7.1 Survival data with covariates

We compare posterior estimates obtained by Bayesian analysis of our model with
two popular methods, the Cox model estimates provided by the R package “survival”
(Therneau 2015), and random survival forest estimates from the R package “ran-
domForestSRC” (Ishwaran and Kogalur 2018). Because of restrictions of these two
packages, we only simulate right censored data. Our DDP model and its posterior
sampling available in the DPWeibull package have the flexibility to handle interval
censored data also. We include both categorical and continuous covariates.

7.1.1 Categorical covariates

We borrow the binary covariate simulation settings from Sparapani et al. (2016),
which cover both the proportional hazards scenario as well as the non-proportional
hazards scenario. In each scenario, we generate 200 datasets, each of which contains
400 observations with 20% censoring and 9 covariates that are equally likely to be
0 or 1. Censoring is achieved through an exponential distribution. For observations
from proportional hazards setting, the event times without censoring come from the
following distribution: y|α, λ ∼ Weib(α, λ) with α = 2 and λ = exp(−6 − 0.2(x1 +
x2+x3+x4+x5+x6)−2x7). For non-proportional hazards setting, the data generating
distribution is y|α, λ ∼ Weib(α, λ) with α = 0.7 + 1.3x7, λ = 1/[20 + 5(x1 +
x2 + x3 + x4 + x5 + x6 + 10x7)]0.7+1.3x7 . Here Covariates x8 and x9 are used as
noises. All 29 = 512 data generating distributions are shown in Fig. 4, with red lines
representing all possible proportional hazard data generating distributions and the
blue ones representing all possible non-proportional data generating distributions. The
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Fig. 4 Simulation settings for
survival data with categorical
covariates
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obvious crossings in the non-proportional data generating indicate clear violations of
the hazard proportionality assumption.

Though the flexible DDP-of-Weibulls model can provide a wide variety of infer-
ences, we focus on estimation of the survival function at certain times for comparison
purposes. These time points are chosen such that the average of all 512 possible data-
generating survival functions at these points reaches 0.90, 0.75, 0.50, 0.25 and 0.10.
Figure 5 and the supplemental Figure 1 summarize the performance of three estimation
methods. Due to a limitation of the package “randomForestSRC”, we cannot provide
confidence intervals for random survival forest. The x-axes mark the 5 time points of
interest by the average survival. Each box-plot is based on the predicted values of all
512 possible combinations of covariates. In Supplement Figures 1–5, CI stands for
confidence interval for frequentist methods and credible interval for Bayesian meth-
ods; RMSE stands for root mean squared error. In Fig. 5a, we see that for proportional
hazards data, our method does not lose much even compared with Cox model esti-
mates and greatly outperforms random survival forest model in terms of RMSE. For
the non-proportional hazards setting, where Cox model is inappropriate, our model
gives reasonable RMSE and credible intervals. However, in both cases the Bayesian
method shows slightly more bias than RSF; and greater bias than Coxmodel estimates
for proportional hazards. The proposed Bayesian method provides higher CI coverage
in most cases.

7.1.2 Continuous covariates

Here, we use Friedman’s function (also employed by Sparapani et al. (2016) in their
simulations). There are 10 covariates x1, . . . , x10, each of which is generated from
a Unif(0, 1), with 5 of these covariates actually affecting data generation. The data
are drawn from a Weibull distributions y|α, λ ∼ Weib(α, λ) with α = 2 and λ =
exp{−6 − 5 sin(πx1x2) − 2(x3 − 0.5)2 − x4 − 0.5x5}.
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(a) Proportional hazards data
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(b) Nonproportional hazards data
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Fig. 5 Comparison of DDP posterior estimates (D) with frequentist methods (Cox model (C) and random
survival forest (R)) at 5 time-points where the average survival equals 0.9, 0.75, 0.5, 0.25 and 0.1

In this simulation, we first randomly generate 10,000 covariate combinations and
calculate the time when the averaged survival function reaches 9 deciles (denoted as
tbase). Conditioning on N Weibull observations generated at randomly sampled covari-
ate values, we generate posterior MCMC samples. We then use another K randomly
generated covariate combinations for out-of-sample prediction, comparing true sur-
vivals with predicted survival probabilities from posterior samples for pre-fixed tbase.

Figure 6 plots the predicted survival versus the true survival for K = 100 when
N = 400 and 4000. The dots in the “Zeppelin plot” lie around the 45-degree line, with
a high coefficient of determination and a low median absolute error. These together
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(a)N= 400
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Fig. 6 True survival vs DDP estimates for survival data with continuous covariates

suggest that our method performs well even for a complicated data structure. For
comparison purpose, we also test the same data on Cox model and the results are
presented in supplemental Figure 6. For this complicated data structure, Cox model
does worse in terms of coefficient of determination (0.76 for N = 400 and 0.79 for
N = 4000) and median absolute error (0.087 for N = 400 and 0.085 for N = 4000).
As shown in supplemental Figure 6, the zepplin shape for Cox model is much wider
than the zepplin for the DDP survival model.

7.2 Competing risks data without covariates

We compare our DPMmethod for competing risks data with empirical estimates with
200 datasets, each of which contains 200 observations. The two causes have identical
hazard before t = 0.5. The cause specific hazard function for cause 1 is piecewise

constant, η1(t) =
{
1/3 before t = 0.5
1 after t = 0.5

, while the cause specific hazard for cause 2

is set to be a constant η2(t) = 1/3. The true cumulative incidence functions can be
calculated as

F1(t) =
{ 1

2 − 1
2 exp(− 2

3 t) t ≤ 0.5

1
2 + 1

4 exp(− 1
3 ) − 3

4 exp(
1
3 − 4

3 t) t > 0.5
,

and

F2(t) =
{ 1

2 − 1
2 exp(− 2

3 t) t ≤ 0.5

1
2 − 1

4 exp(− 1
3 ) − 1

4 exp(
1
3 − 4

3 t) t > 0.5
.

The censoring distribution is set to be Unif(0, 2.5), which results in 35.91% events
from cause 1, 23.83% events from cause 2, with 40.27% right censoring.
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(a) Cause 1
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Fig. 7 Comparison of the DPM competing risks posterior estimates (D) with Aalen–Johansen empirical
estimates (A) at 5 time-points where the survival equals 0.9, 0.75, 0.5, 0.25 and 0.1

Figure 7 shows the comparison of our estimates withAalen–Johansen’s estimates in
terms of bias and RMSE. Comparisons of confidence/credible interval (CI) coverage
and length are included in the supplemental materials, together with additional sim-
ulation results (supplemental Figure 2–4). The CIFs are compared at the times when
the overall survival reaches 0.9, 0.75, 0.5, 0.25 and 0.1. For cause 1 with piecewise
constant hazard function, our estimate provides some protection against extremely low
CI coverage (see supplemental Figure 2) and from strong bias (at 50th percentile of
the overall survival in Fig. 7a), whereas for cause 2 with constant hazard, it produces
larger bias and RMSE. However, the performance of DPM estmates is still acceptable
as almost all biases are less than 0.1 and all RMSEs are well below 0.15. As shown
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(a) Proportional subdistribution setting
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Fig. 8 Simulation settings for competing risks regression data

in supplemental Figure 2, the coverage is better for Scrucca et al. (2007)’s confidence
intervals before the median overall survival time, while the credible intervals from
DPM catch up later in their coverage.

7.3 Competing risks data with covariates

The comparisons are made first under a scenario where the subdistribution haz-
ard has a multiplicative relationship with the covariates, i.e., Fine and Gray model
assumption holds; then under a scenario where the subdistribution hazard does
not have a multiplicative relationship with the covariates. There are 100 datasets
for each scenario, each of which has 400 observations with 9 binary covariates
x = (x1, x2, x3, x4, x5, x6, x7, x8, x9), and each covariate has 50% chance of taking
the value 1. All inferences shown are for cause 1.

In the multiplicative hazard scenario, the regression coefficients for the two causes
are set equal: β1 = β2 = (−0.2, 0.2, 0.5,−0.5, 0,−1, 1, 0, 0). The normalized
cumulative incidence functions G01 and G02 are also identical Weibull distributions
with shape parameters α1 = α2 = 2 and rate parameters λ1 = λ2 = exp(−6). The
censoring times come from aUnif(0, 200) distribution, while F01(∞) = p = 0.5. It is
worth mentioning that though the normalized baseline distributions and the regression
coefficients are the same for the two causes, the CIFs do not overlap.

In the non-multiplicative hazard scenario, the two competing risks are set to have the
sameCIF and there is no censoring. The data are generated by taking the smaller of two
values generated from aWeibull distribution with shape parameter α(x) = 0.7+0.5x7
and rate parameter λ(x) = (20+ 5(x1 + x2 + x3 + x4 + x5 + x6 + 10x7))−α(x). This
corresponds to the common CIF(t |x) = (1 − S2Weib(t |α(x), λ(x)))/2 for both causes.
Figure8 shows the true CIFs in the two simulation scenarios.

We focus on CIF estimates when the averaged overall survival over all possible
512 configurations of the 9 binary covariates reaches 0.9, 0.75, 0.5, 0.25 and 0.1.
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Fig. 9 Comparison of DDP competing risks regression model posterior estimates (D) with Fine and Gray
estimates (F) of cause 1 CIF at time points where the average overall survival reaches 0.9, 0.75, 0.5, 0.25
and 0.1

The boxplots in Fig. 9 are made from the 512 estimates corresponding to all covariate
configurations, where each estimate is an average over 100 simulated datasets. We
compare our method with the Fine and Gray estimates from R package “timereg” in
terms of bias, RMSE, CI coverage and CI length. The Fine and Gray estimates are in
red and our DDP estimates are in blue.

As shown in Fig. 9, when the proportional subdistribution hazards assumption holds
(Fig. 9a), the proposed DDP model gives larger bias, with the vast majority of the bias
confined in the interval [−0.1, 0.1] and just a few beyond this range. However, the pro-
posed method shows comparable performance in terms of RMSE with a few deviants.
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When the proportional subdistribution hazards assumption is violated (Fig. 9b), pro-
posed DDP method substantially outperforms the Fine and Gray estimates for most
time points in terms of bias and RMSE. As shown in the supplemental Figure 5, the
credible intervals provided by theDDPmethod arewider in both scenarios, yet provide
more coverage than the confidence intervals from the Fine and Gray method.

8 A breast cancer study

In this study, we focus on comparing the risk of bone fracture under two hormone
therapy drugs for breast cancer survivors: Tamoxifen, which is thought to be protective
for bone fracture, but carries risk for endometrial cancer andvenous thromboembolism;
and aromatase inhibitors (AIs), which arewell tolerated bymost patients (Murthy et al.
2004), and are suggested to reduce breast cancer mortality, but may increase the risk
of fracture as shown by a previous clinical trial (Greep et al. 2003).

Our study is based on the Medicare Part D and SEER records of 20,119 post-
menopausal breast cancer survivors aged 65 and over from across the U.S. The event
of interest is the occurrence of first fracture, and death without having a fracture is
considered as a competing risk in this study. Except for 2375 fractures (cause 1) and
2657 deaths (cause 2), this dataset contains 15,087 censored observations which indi-
cate that either a patient has no event over the observation period or is lost to follow-up
via a change in Medicare coverage to a type that does not provide patient-level billing
data. Fracture was observed in 1870 out of 15,605 patients who started with AIs, and
505 had a fracture out of 4514 patients who began with Tamoxifen. In addition to
hormonal therapy drug assignment, fracture and death information, the dataset has ten
categorical covariates listed below. Five of these have more than one category, while
the others are binary.

– Covariates with multiple categories:

Age groups: 65–69, 70–74, 75–79, 80–84, 85+
Race group: White, Black, Hispanic, Other
Income Per capita income at zipcode level:< 16,483, 16,483–19,612, 19,612–
25,541, > 25,541, Missing
Education Percentage of population with less than high school education level:
> 0.09, 0.06–0.09, 0.03–0.06, 0–0.03, Missing
Comorbidities Index (Klabunde et al. 2007): 0, 0–0.72, > 0.72

– BinaryCovariates: Prior Fracture,RegularAnticonvulsants, Pregabalin/Gabapentin,
IV Bisphosphonate, Low Income Subsidies.

We apply our method to explore whether AIs will give breast cancer survivors a
higher chance of having a fracture. To be brief, we present only two plots: predicted
cumulative incidence functions at the average values of other covariates (Fig. 10a) and
log subdistribution hazard ratio of AIs versus Tamoxifen over time (Fig. 10b) from a
rich variety of inference that the DDP method can make. The blue and red solid lines
in Fig. 10a represent predicted CIFs for patients who assigned AIs and Tamoxifen
throughout the 60 months period. The shaded areas bordered by the dashed lines show
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(a) Comparison of CIFs with 95% CIs
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Fig. 10 Effect of AIs versus Tamoxifen

the 95% pointwise CIs of our estimates. Results from the DDP model do not support
the hypothesis that AIs increase fracture risk. This is consistent with the conclusion
reached using the Fine and Gray model, where the subdistribution hazard ratio for
AI versus Tamoxifen is estimated as 1.09, 95% CI [0.99, 1.20] with a p value of
0.09. Results of the original study, using traditional methods and including propensity
adjustments, are reported in Neuner et al. (2018).

9 Discussion

In this paper, we present nonparametric Bayesian regression methods for survival and
competing risks data, applying this method to a breast cancer study. The R package
“DPWeibull” containing an implementation of the proposed methods with functions
for result visualization is available at CRAN (Shi 2019). Its data structure and syntax is
similar to the “survival” package (Therneau 2015). The “DPWeibull” package provides
reasonable computing speed with moderate sample size and number of covariates. On
a computer with an Intel Core i7 2.9GHz processor and 16GB memory, it takes 163s
for 10,000 MCMC iterations with 2 covariates and 400 observations for the Weibull
DDP competing risks model, yet the time is linear with respect to the sample size and
the number of covariates.

The breast cancer dataset in Sect. 8 motivates us to extend our model in several
directions in the future. First, drug assignment is treated as a binary covariate for now,
using only the initial drug choice. In reality, long-term AIs takers may have higher
chance of having a fracture than short-term AIs takers, which requires a model to
accommodate cumulative effects. Second, in our example, event of secondary interest
is defined as death without having a fracture. However, death will preclude fracture,
but not vise versa. It would be meaningful to adapt our model to a semi-competing
risks model to account for this fact. Third, some adverse events of breast cancer drugs,
such as peripheral neuropathy can be precursors of fracture. It would be ideal to extend
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the current model to amultistate model which addresses transfer probabilities between
various states over time.
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