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Abstract
The hazard ratio is one of the most commonly reported measures of treatment effect in
randomised trials, yet the source of muchmisinterpretation. This point was made clear
by Hernán (Epidemiology (Cambridge, Mass) 21(1):13–15, 2010) in a commentary,
which emphasised that the hazard ratio contrasts populations of treated and untreated
individuals who survived a given period of time, populations that will typically fail
to be comparable—even in a randomised trial—as a result of different pressures or
intensities acting on different populations. The commentary has been very influential,
but also a source of surprise and confusion. In this note, we aim to provide more
insight into the subtle interpretation of hazard ratios and differences, by investigating in
particular what can be learned about a treatment effect from the hazard ratio becoming
1 (or the hazard difference 0) after a certain period of time. We further define a hazard
ratio that has a causal interpretation and study its relationship to the Cox hazard ratio,
and we also define a causal hazard difference. These quantities are of theoretical
interest only, however, since they rely on assumptions that cannot be empirically
evaluated. Throughout, we will focus on the analysis of randomised experiments.

Keywords Causality · Cox regression · Hazard difference · Hazard ratio ·
Randomised study · Survival analysis

1 Introduction

The popularity of the Cox regression model has contributed to the enormous success
of the hazard ratio as a concise summary of the effect of a randomised treatment on
a survival endpoint. Notwithstanding this, use of the hazard ratio has been criticised
over recent years. Hernán (2010) argued that selection effects caused by unobserved
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heterogeneity (“frailty”) render a causal interpretation of the hazard ratio difficultwhen
treatment affects outcome. While the treated and untreated people are comparable by
design at baseline, the treated people who survive a given time t may then tend to be
more “frail” (as a result of lower mortality if treatment is beneficial) than the untreated
people who survive the given time t , so that the crucial comparability of both groups
is lost at that time. Aalen et al. (2015) re-iterated Hernán’s concern. They viewed
the problem more as one of non-collapsibility (Martinussen and Vansteelandt 2013),
which is a concern about the interpretation of the hazard ratio, though not about its
justification as a causal contrast. In particular, they argued that the magnitude of the
hazard ratio typically changes as one evaluates it in smaller subgroups of the population
(e.g. frail people), even in the absence of interaction effects on the log hazard scale.

In this paper, we aim to develop more insight into these matters. We pay special
attention to what can be learned about the treatment effect from the hazard contrast
vanishing after a certain point in time, i.e. the hazard ratio becoming 1 or the hazard
difference becoming 0. Throughout, we will assume that data are available from a
randomised experiment on the effect of a dichotomous treatment A (coded 1 for
treatment and 0 for control) on a survival endpoint T , so that issues of confounding
can be ignored. Time-changing hazard ratios are often interpreted as a change in
treatment effect. Two recent examples of this are Lederle et al. (2019) and Primrose
et al. (2019). We argue that there is no causal support for such reporting, however.

A causal contrast compares the same population under the hypothetical scenarios
‘everybody treated’ versus ‘everybody untreated’ and we furthermore define a causal
hazard ratio, which contrasts the intensities at time t between the treatment and con-
trol groups of subjects who would survive up to time t regardless of treatment. Its
magnitude is indeed causally interpretable in the sense that it makes a contrast for the
same principal stratum of subjects with (T 0 ≥ t, T 1 ≥ t), where T a , a = 0, 1, is the
potential lifetime under treatment a. This is related to earlier work on defining causal
effects based on principal strata, see Frangakis and Rubin (2002) and Bartolucci and
Grilli (2011). We show that this causal hazard ratio, HR(t), is smaller than the Cox
hazard ratio at all times t > 0 if the joint distribution of (T 0, T 1) is governed by
a so-called Archimedean copula as generated by a frailty setting. This corroborates
intuition, also given in Hernán (2010), that the Cox hazard ratio underestimates the
causal effect (on the hazard scale) of a beneficial treatment as a result of the treatment
group then containing relatively more frail subjects compared to the control group at
each time t > 0. We surprisingly find this intuition to break down in a more general
setting where there is still positive correlation between T 0 and T 1, but the joint distri-
bution of (T 0, T 1) is not governed by an Archimedean copula. We also define a causal
hazard difference, however, both this measure and the suggested causal hazard ratio
have the drawback that their causal interpretations rely on untestable assumptions.

If the Cox model (or an extended version with a time-changing coefficient) is
correctly specified then the parameters of the Cox model are estimated consistently
by use of the Cox partial score function and the Breslow estimator. Also the standard
estimators of the variability of these estimators are consistent. Therefore, inference
based on these classical tools, such as the log-rank test, is valid. Our point with this
paper, however, is that the obtained hazard ratio cannot generally be given a causal
interpretation when interpreted as a hazard ratio, except in the trivial case where there
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Subtleties in the interpretation of hazard contrasts 835

is no causal effect, i.e. a hazard ratio of 1 or if an unverifiable assumption holds to
which we return later.

2 The Coxmodel and causal reasoning

2.1 Hazard ratios

Analyses of time-to-event endpoints in randomised experiments are commonly based
on the Cox model

λ(t; a) = λ0(t)e
βa,

where λ(t; a) denotes the hazard function of T given A = a, evaluated at time t , and
λ0(t) is the unspecified baseline hazard function. This model implies that for all t

P(T > t |A = 1) = P(T > t |A = 0)exp(β), (1)

so that exp (β) can be interpreted as

exp(β) = log P(T > t |A = 1)

log P(T > t |A = 0)
,

a ratio between cumulative hazards. This represents a causal contrast (i.e., it compares
a functional of the survival time distribution for the same population under different
interventions). Since randomisation ensures that T a ⊥⊥ A for a = 0, 1, we have by
consistency, T = T a ifA = a, that

exp(β) = log P(T 1 > t)

log P(T 0 > t)
.

This shows that, under the proportional hazard assumption, exp(β) forms a valid one-
number summary providing a relative and causal contrast of what the log survival
probability would be at an arbitrary time t if everyone were treated, versus what it
would be at that time if no one were treated.

The log-transformation makes the above interpretation of exp(β), while causal,
difficult. It is therefore more common to interpret exp(β) as a hazard ratio

exp(β) = limh→0 P(t ≤ T < t + h|T ≥ t, A = 1)

limh→0 P(t ≤ T < t + h|T ≥ t, A = 0)

= limh→0 P(t ≤ T 1 < t + h|T 1 ≥ t)

limh→0 P(t ≤ T 0 < t + h|T 0 ≥ t)
.
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Interpretation appears simpler now, but this is somewhat deceptive for two reasons.
First, the righthand expression shows that exp(β) contrasts the hazard functions with
and without intervention for two separate groups of individuals, those who survive
time t > 0 with treatment (T 1 ≥ t) and those who survive time t > 0 without
treatment (T 0 ≥ t). Those groups will typically fail to be comparable if treatment
affects outcome (Hernán 2010). In particular, when treatment has a beneficial effect
then, despite randomisation, the subgroup T 1 ≥ t in the numerator will generally
contain more frail people than the subgroup T 0 ≥ t in the denominator, where the
frailest peoplemay have died already.When viewed as a hazard ratio, exp(β) therefore
does not represent a causal contrast and it would be unwise to state that ‘treatment
works in the same way throughout time’. Second, the interpretation of exp(β) as a
hazard ratio is further complicated by it being non-collapsible, so that its magnitude
typically becomes more pronounced as one evaluates smaller subgroups of the study
population (Martinussen and Vansteelandt 2013; Aalen et al. 2015).

2.2 MRC RE01 study

Asan illustration,we reconsider the kidney cancer data described inWhite andRoyston
(2009). These data are from the MRC RE01 study which was a randomised controlled
trial comparing interferon-α (IFN) treatmentwith the best supportive care andhormone
treatment withmedroxyprogesterone acetate (control) in patients withmetastatic renal
carcinoma. We use the same 347 patients as in White and Royston (2009). In this
illustrative analysis we consider only the first 30 months of follow up. The median
follow-up time was 242 days, and 85% of the patients died within the considered time
frame. The two Kaplan-Meier estimates in Fig. 1 contain all the available information
about the treatment effect. IFN treatment seems superior to the standard treatment
(control), although a supremum test comparing the two survival curves results in
a non-significant p value of 0.09. The score process plot of Lin et al. (1993) was
calculated using the R-package timereg (Martinussen and Scheike 2006), giving
no evidence against the proportional hazards assumption (P = 0.43 according to the
supremum test). We therefore fitted the Cox model, giving the estimate β̂ = −0.29
(SE 0.12, P = 0.01). The corresponding hazard ratio of 0.75 expresses that IFN
treatment reduces the log survival probability at each time by 25% (on a relative
scale), as compared to control. This interpretation is causal, but not insightful. Results
are therefore best communicated by visualising identity (1) in terms of estimated
survival curves with versus without treatment (Hernán 2010). This has the advantage
that it provides better insight into the possible public health impact of the intervention,
but the drawback that it does not permit a compact way of reporting and that survival
curves do not provide an understanding of a possible dynamic treatment effect. To
enable a more in-depth understanding, it is tempting to interpret exp(β) as a hazard
ratio, but then interpretation becomes subtle. We will demonstrate this in more detail
in the next section, where we will investigate to what extent hazard ratios may provide
insight into the dynamic nature of the treatment effect.
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Fig. 1 MRCRE01 study. KaplanMeier plot, control group (green curve) and IFN group (blue curve) (Color
figure online)

3 Time-varying hazard contrasts are not causally interpretable

3.1 Hazard ratios

Consider now a study where the hazard ratio changes with time in the following sense:

λ(t; A = 1)

λ(t; A = 0)
=

{
exp(β1) if t ≤ ν

exp(β2) if t > ν
(2)

with β1 �= β2, where ν > 0 denotes the change point. Suppose in particular that
β1 < 0 and β2 = 0, commonly interpreted as implying that the treatment is beneficial
for t < ν but ineffective for t > ν.

To develop a greater understanding whether indeed hazard ratios permit such
dynamic understanding of the treatment effect, we will first study data-generating
processes (DGP) that could give rise to (2); in “Appendix A.2”, we formulate a more
general DGP. Let Z represent the participants’ unmeasured baseline frailty (higher
means more frail), which affects T , but is independent of A by randomisation. Sup-
pose that the hazard function λ(t; a, z) of T given A = a and Z = z satisfies

λ(t; a, z) = zλ∗(t; a), (3)

for some function λ∗(t; a), and let Z be Gamma distributed with mean 1 and variance
θ .

We will investigate what choices of λ∗(t; a) give rise to model (2). With φZ (u) =
E(e−Zu) the Laplace transform associated with the distribution of Z , the following
relationship between the hazard function of interest λ(t; a), and λ∗(t; a), can be shown
to hold:
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�∗(t; a) = φ−1
Z (e−�(t;a)) = 1 − e−θ�(t;a)

θe−θ�(t;a)
,

where �(t; a) = ∫ t
0 λ(s; a) ds and similarly with �∗(t; a). Simple calculations then

show that model (3) implies model (2) when

λ(t; a, Z) =
{
Zλ0(t)eβ1a exp {θ�0(t)eβ1a} if t ≤ ν

Zλ0(t)eβ2a exp
{
θ�0(ν)eβ1a + θ�0(ν, t)eβ2a

}
if t > ν

(4)

where �0(ν, t) = ∫ t
ν

λ0(s) ds. The specific λ∗(t; a) that results in model (2) can be
read off from (4). For subjects with given Z = z, it follows that the conditional hazard
ratio is

HRZ (t) = λ(t; A = 1, Z)

λ(t; A = 0, Z)

=
{
exp(β1) exp [θ�0(t){exp(β1) − 1}] if t ≤ ν

exp(β2) exp [θ�0(ν){exp(β1) − 1} + θ�0(ν, t){exp(β2) − 1}] if t > ν

For β2 = 0, this simplifies to

λ(t; A = 1, Z)

λ(t; A = 0, Z)
=

{
exp(β1) exp [θ�0(t){exp(β1) − 1}] if t ≤ ν

exp [θ�0(ν){exp(β1) − 1}] if t > ν

which is less than 1 for all t > 0 since β1 < 0. This model suggests that the treatment
would be beneficial at all t > 0 for individuals with the same value of z, regardless of z.
This contradicts the earlier, naïve interpretation that, across all individuals combined,
treatment is ineffective from time ν onwards.

The root cause of these contradictory conclusions is the fact that the hazard ratio
at a given time does not express a causal effect (Hernán 2010). This has nothing to do
with model misspecification, as the models considered either hold by construction or
(in the MRC RE01 example) hold reasonably well by a goodness-of-fit examination.
To appreciate that the treated and untreated risk sets indeed lose their exchangeability
over time, note that

E(Z |T > t, A = 1)

E(Z |T > t, A = 0)
=

{
exp {�0(t)(1 − eβ1)} if t ≤ ν
exp {�0(ν)}+�0(ν,t)

exp {�0(ν)eβ1 }+�0(ν,t)
if t > ν.

when β2 = 0 and θ = 1. This shows that, while Z is independent of A by
randomisation, this independence is not generally maintained within subgroups of
survivors, where we are left with more frail subjects in the active treatment group:
E(Z |T > t, A = 1) > E(Z |T > t, A = 0). That selection takes place, does not
rely on Z being Gamma-distributed as shown in “Appendix A.1”, where we consider
a situation with Z being binary.
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3.2 Gastrointestinal tumour study

Stablein and Koutrouvelis (1985) presented survival data from a randomised clinical
trial on locally unresectable gastric cancer.Half of the total of 90 patientswere assigned
to chemotherapy, and the other half to combined chemotherapy and radiotherapy.

It was suggested that there was superior survival for patients who received
chemotherapy, but only in the first year or so. The same application was considered
by Collett (2015), pp. 386–389. For illustrative purposes we consider here the first 720
days of follow up corresponding to the two first time periods considered by Collett
(2015). The KaplanMeier curves corresponding to the two groups are shown in Figure
1 in the supplementary material. It is seen that the survival curves come close at the
end of the considered time interval. Applying a Cox regression model with time-by-
treatment-interaction, allowing for separate HR’s before and after 1 year of follow-up
gives estimated HR’s (Combined vs chemotherapy) of 2.40 (95% CI; 1.25, 4.63) in
the first year and 0.78 (95% CI; 0.34,1.76) thereafter. The supremum score process
test of Lin et al. (1993) gave no convincing evidence against these two models, with
P = 0.07 in the first interval and P = 0.26 in the second interval. It is tempting
to conclude that the chemotherapy is beneficial in the first year only, and that there
is possibly a reverse effect afterwards; see Collett (2015) for a similar analysis and
conclusion. However, such conclusion is not necessarily supported by the data. We
demonstrate this using the two estimated hazard ratios and assuming the DGP (3) with
the frailty variable being Gamma distributed with mean and variance equal to θ , cor-
responding to a Kendall’s τ of 0.3. Figure 2 in the Supplementary Material displays
the estimated hazard ratio λ(t, A = 1, Z)/λ(t, A = 0, Z). It is seen to depend on
time, being larger than 2.4 and increasing towards 3.7 in the first year and, after the
change-point (1 year), starting at around 1.2 and then decreasing but being larger than
1 at all times. The reason this effect reversal does not occur under this model is that
when chemotherapy is the more effective treatment, then there will also be relatively
more and more frail subjects in that group over time.

3.3 Hazard differences

For an additive hazards model

λ(t; a) = λ0(t) + βa,

following the arguments for the Cox models in Sect. 2, the hazard difference β may
be written as

β = −1

t

(
log P(T > t |A = 1) − log P(T > t |A = 0)

)

which equals

β = −1

t

(
log P(T 1 > t) − log P(T 0 > t)

)
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when the treatment is randomly assigned. This is a causal contrast, but suffers from
the same interpretational difficulties as does the hazard ratio.

It is nonetheless tempting to think that hazard differences have a more appealing
interpretation than hazard ratios, apart from them being collapsible (Martinussen and
Vansteelandt 2013). Indeed, suppose that the additive hazards model

λ(t; A, Z) = ψ(t)A + ω(t, Z), (5)

holds for general functions ψ , ω and (possibly unmeasured) baseline covariates Z .
Then the baseline exchangeability of treated and untreated individuals w.r.t. the covari-
ates Z , as guaranteed by randomisation, extends to all risk sets, in the sense that
A ⊥⊥ Z |T > t (Vansteelandt et al. 2014; Aalen et al. 2015). The previous con-
cerns about selection may therefore appear of less relevance for (time-varying) hazard
differences. However, this is generally not the case. In Sect. 4.3, we show that an
Aalen additive hazards analysis can easily result in the same misleading conclusion
as what we obtained from the Cox regression analysis with treatment-by-time interac-
tion in Sect. 3.1. In Sect. 4.3, we demonstrate that (time-varying) hazard differences
can express causal contrasts, however, but only provided that additional unverifiable
assumptions are made.

4 Towards causal contrasts for survival endpoints

4.1 Causal hazard ratios

In the preceding sections we have discussed difficulties in connection with interpreting
hazard ratios or hazard differences causally and suggested alternative ways of illustrat-
ing time-dependent treatment contrasts. This section is devoted to a discussion of ways
of defining contrasts based on the hazard function, which have a causal interpretation.

To remedy the selection problem, it seems intuitively of interest to evaluate condi-
tional hazard ratios

limh→0 P(t ≤ T < t + h|T ≥ t, A = 1, Z = z)

limh→0 P(t ≤ T < t + h|T ≥ t, A = 0, Z = z)

= limh→0 P(t ≤ T 1 < t + h|T 1 ≥ t, Z = z)

limh→0 P(t ≤ T 0 < t + h|T 0 ≥ t, Z = z)
,

for a large collection of baseline variables Z , such that those who survive time t > 0
with treatment (T 1 ≥ t) are comparable to those who survive time t > 0 without
treatment (T 0 ≥ t), but have the same covariate values z. Such comparability would
be attained if

T 1 ⊥⊥ T 0|Z . (6)

Under this assumption, it follows via Bayes’ rule that the righthand side of the above
identity equals
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Subtleties in the interpretation of hazard contrasts 841

limh→0 P(t ≤ T 1 < t + h|T 0 ≥ t, T 1 ≥ t, Z = z)

limh→0 P(t ≤ T 0 < t + h|T 0 ≥ t, T 1 ≥ t, Z = z)
. (7)

This estimand expresses the instantaneous risk at time t on treatment versus control
for the principal stratum of individuals with covariates z who would have survived up
to time t , no matter what treatment. It represents a causal contrast, which is closely
related to the so-called survivor average causal effect (Rubin 2000). We will refer to
it as the conditional causal hazard ratio.

Unfortunately, assumption (6) is untestable and biologically implausible, as it is
essentially impossible to believe that one can get hold of all predictors of the event
time such that knowledge of the event time without treatment does not further predict
the event time with treatment. Furthermore, even if one could get hold of all such
predictors, then because Z would probably carry so much information about the event
time, onewould logically expect the numerator and denominator of (7) to be so close to
0 or 1 that it would render the conditional causal hazard ratio essentially meaningless.
In the next section we will therefore focus on the marginal causal hazard ratio HR(t)
obtained from (7) with Z empty:

HR(t) = limh→0 P(t ≤ T 1 < t + h|T 0 ≥ t, T 1 ≥ t)/h

limh→0 P(t ≤ T 0 < t + h|T 0 ≥ t, T 1 ≥ t)/h
. (8)

4.2 Contrasting causal versus observed hazard ratios

Even if it seems impossible to estimate HR(t) from the observed data without making
strong assumptions, it is of interest to gain some understanding of the causal hazard
ratio HR(t) and its relationship to the standard Cox HR (which we also refer to as the
observed HR). It is particularly of interest to know whether or not HR(t) is always
smaller than HR if, as we expect, T 0 and T 1 are positively correlated. To develop
insight, let us assume that the Cox model is correctly specified, in the sense that

P(T 0 > t) = exp {−�0(t)} and P(T 1 > t) = exp {−φ�0(t)},

where φ = eβ is the Cox HR. Also, we still assume that treatment is randomised. A
model for the joint distribution of T 0 and T 1, which obeys these marginal distributions
can now be based on a copula C (Nelsen 2006). Specifically, we let ut = e−�0(t) and
vt = e−φ�0(t) and specify the joint distribution of (T 0, T 1) via

P(T 0 ≥ t0, T
1 ≥ t1) = P(U ≤ u, V ≤ v) = C(u, v)

where U = uT 0 , u = ut0 , V = vT 1 and v = vt1 . Sklar’s Theorem (Nelsen 2006)
ensures that for any joint distribution of T 0 and T 1 there exists a copula C so that the
latter display is fulfilled. It easy to show that

HR(t) = φ�(t), �(t) = vt Ċv(ut , vt )

ut Ċu(ut , vt )
, (9)
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where Ċu(u, v) = ∂C(u,v)
∂u and similarly with Ċv(u, v). Display (9) gives the desired

relation between HR(t) and the Cox HR, φ. To obtain further insight, let us for a
moment restrict the copulaC to belong to the class of Archimedean copulas. Bivariate
distributions generated by frailty models are a subclass of Archimedean distributions
(Oakes 1989).

For Archimedean copulas, there exists a function ψ(v) so that

ψ(v) = ψ∗(t0, t1) (10)

with v = S(t0, t1) = P(T 0 > t0, T 1 > t1) ∈]0, 1] (Oakes 1989) and

ψ∗(t0, t1) = λT 0(t0|T 1 = t1)

λT 0(t0|T 1 > t1)
= λT 1(t1|T 0 = t0)

λT 1(t1|T 0 > t0)

is the so-called cross-ratio function (Oakes 1989). In the latter display,λT 0(t0|T 1 = t1)
denotes the conditional hazard function of T 0 given T 1 = t1, and likewise with the
other hazard functions in the latter display. This gives rise to the explicit expression

�(t) = exp

(
−

∫ e−φ�0(t)

e−�0(t)

ψ(y)

y
dy

)
exp {−�0(t)(φ − 1)}.

Using the mean value theorem gives

�(t) < 1 ⇐⇒ ψ(e−Ht ) > 1,

for some Ht on the line segment between φ�0(t) and�0(t). The right hand side of the
latter display is fulfilled ifψ(v) > 1 for all v. If the copula is induced by a frailtymodel
where the frailty distribution is not degenerate (at unity) then T 0 and T 1 are positively
correlated and also ψ(v) > 1. This confirms the intuition layed out in Hernán (2010)
who argues that the causal hazard ratio is smaller than the Cox hazard ratio at all times
t > 0 based on a frailty setting.

Example Clayton-copula (Gamma-frailty). In this case,ψ(v) = θ +1 where 0 < θ <

∞. A direct calculation shows that

HR(t) = φ exp {−θ�0(t)(1 − φ)} < φ,

for t > 0 so that �0(t) > 0. Clearly,

0 < HR(t) < φ,

with the value of HR(t) depending on θ and �0(t). �

Example Inverse Gaussian copula. In this case, ψ(v) = 1 + 1

η−log v
, with η > 0.

Independence of T0 and T1 is obtained when η tends to infinity, while η small results
in high correlation. Again, a direct calculation shows that
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HR(t) = φ

{
η + φ�0(t)

η + �0(t)

}
< φ

when �0(t) > 0. It is seen that limη→0 HR(t) = φ2, again when �0(t) > 0. So,

φ2 < HR(t) < φ,

for t > 0 with �0(t) > 0. �

These two examples show that HR(t) < φ as the copulas used are indeed both
Archimedean. However, they also show that it is not possible to bound HR(t) from
below as we can see from the Clayton-copula case that it can go all the way down to
zero, and obviously there is no way of checking the joint distribution of (T 0, T 1).

We now return to the general case, where the copula C may not be Archimedean.
We see from (9) that

HR(t) < φ ⇐⇒ ut Ċu(ut , vt ) > vt Ċv(ut , vt )

since the first order partial derivatives of C are never negative (Nelsen 2006). Since
vt > ut as φ < 1, it follows if the copula satisfies

uĊu(u, v) − vĊv(u, v) > 0, for 0 ≤ u < v ≤ 1, (11)

that HR(t) < φ. Copulas obeying (11) then induce the positive correlation needed in
order to have HR(t) < φ. We are not aware of previous work that has studied copulas
where (11) holds. The condition (11) is local in the sense that it needs to hold for all
0 ≤ u < v ≤ 1 whereas well known correlation measures such as Kendall’s τ and
Spearman’s ρ are global, e.g. Spearman’s ρ can be expressed in terms of the copula
as

ρ = 12
∫ 1

0

∫ 1

0
{C(u, v) − uv}dudv.

Alternatively, there are various types of local correlation measures (Nelsen 2006), one
being the so-called positively quadrant correlation (PQD): two random variables X
and Y are said to have PQD if

P(X ≤ x,Y ≤ y) ≥ P(X ≤ x)P(Y ≤ y), for all x and y,

which is equivalent to

C(u, v) ≥ �(u, v) = uv, (u, v) ∈ [0, 1]2,

where C is the corresponding copula and � is the independence copula. We now
construct a copula that gives rise to PQD, but for which (11) does not hold. For any
ξ ∈ (1/4, 1/2) (Nelsen 2006), define
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C∗(u, v) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ξM( u
ξ
, v

ξ
) if (u, v) ∈ [0, ξ ]2 = J1

ξ + (1 − 2ξ)W (
u−ξ
1−2ξ ,

v−ξ
1−2ξ ) if (u, v) ∈ [ξ, 1 − ξ ]2 = J2

1 − ξ + ξM(
u+ξ−1

ξ
,

v+ξ−1
ξ

) if (u, v) ∈ [1 − ξ, 1]2 = J3
M(u, v) otherwise

with W (u, v) = max(u + v − 1, 0), M(u, v) = min(u, v) being the lower and upper
Frechet-Hoeffding bounds, respectively. This copula C∗, which is the ordinal sum of
{M,W , M}with respect to the partition {[0, ξ ], [ξ, 1−ξ ], [1−ξ, 1]}, is PQD (Nelsen,
Exercise 5.30). The suggested partition of [0, 1]2 is illustrated in Fig. 2, where ξ is set
to 0.35. The expression for the copula can be simplified to

C∗(u, v) =
{
M(u, v) if (u, v) /∈ J2
ξ + (u + v − 1)I (u + v > 1) if (u, v) ∈ J2

Hence, for (u, v) ∈ J2, we have

uĊ∗
u(u, v) − vĊ∗

v(u, v) = (u − v)I (u + v > 1),

which may be smaller than zero for u < v, and therefore (11) does not hold. Hence,
PQD does not suffice to ensure (11), which may not be surprising as PQD, although a
local dependence measure, is cumulative in that it depends on survival functions and
not hazard functions as does the cross-ratio function.

By a direct calculation, Spearman’s ρ for this copula is given by

ρ(ξ) = ξ(16ξ2 − 24ξ + 12) − 1

that is an increasing function of ξ with ρ(1/4) = 0.75 and ρ(1/2) = 1. Surprisingly,
this copula therefore gives rise to a situation where HR(t) > φ for some t’s even when
φ < 1 and Spearman’s ρ ≥ 0.75.

In particular, we have that

HR(t) = φ�(t), with �(t) = exp {−φ�0(t)}
exp {−�0(t)} ,

when

exp {−φ�0(t)} + exp {−�0(t)} > 1 and (12)

ξ < exp {−�0(t)} < exp {−φ�0(t)} < 1 − ξ. (13)

Condition (12) corresponds to the part of J2 above the diagonal (the v = 1 − u line,
see Fig. 2) and condition (13) corresponds to the part of J2 above the (anti)-diagonal
(v = u). If we follow the path (exp {−�0(t)}, exp {−φ�0(t)}) (starting at the point
(1,1) when t = 0) in [0, 1]2 in such a way that we pass through the upper triangle of J2
(with J2 consisting of 4 triangles like the back of an envelope, see Fig. 2) then HR(t)
will be equal to 0 as long as we have not yet reached J2 but then it jumps to k(u, v)φ,
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Fig. 2 Illustration of the regions used in the definition of the copula C∗, Sect. 4.1, showing the rectangular
regions J1, J2 and J3. The value of ξ is set to 0.35. The two broken lines are the lines v = u and v = 1−u,
respectively

where k(u, v) > 1. When we cross the line v = 1 − u in J2, HR(t) is undefined as
both partial derivatives of the copula are equal to zero, and when we escape J2 then
HR(t) = 0. In “Appendix A.4”, we gain further insight by generating samples from
this latter copula. The empirical result in Fig. 3 confirms the above reasoning that more
than just positive correlation between T 0 and T 1 is needed to have that HR(t) < φ.

If one allows for negative correlation between T 0 and T 1 then it is easy to construct
a situation where �(t) > 1. We just need a copula C that satisfies

uĊu(u, v) − vĊv(u, v) < 0, for 0 ≤ u < v ≤ 1,

Take for example the Farlie–Gumbel–Morgenstern Copulas, where

Cθ (u, v) = uv − θuv(1 − u)(1 − v),

with θ ∈ [−1, 1]. Specifically, let θ = −1, corresponding to Spearman’s ρ = −1/3,
then �(t) > 1 and we can even have that HR(t) = φ�(t) > 1 although φ < 1.
Negative correlation between T 0 and T 1 does not seem very likely, however.
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Fig. 3 Estimated (points) and theoretical (full line) values of HR(t). Broken line corresponds to φ = 2/3

4.3 Hazard differences

Define

HD(t) = lim
h→0

P(t ≤ T 1 < t + h|T 0 ≥ t, T 1 ≥ t)/h

− lim
h→0

P(t ≤ T 0 < t + h|T 0 ≥ t, T 1 ≥ t)/h,

which is a causal hazard function contrast. In the additive hazards model (5), ψ(t)
reduces to the causal contrast, ψ(t) = HD(t), provided that (6) holds (see “Appendix
A.3”). The latter assumption, however, as discussed in Sect. 4.1 is both untestable and
biologically implausible.

Since A is binary we can always write the hazard function λ(t; A) as

λ(t; A) = λ0(t) + ψ(t)A (14)

Further, one may show the following relationship between HD(t) and ψ(t),

HD(t) = �(t)�(t){λ0(t) + ψ(t)} − �(t)λ0(t) (15)
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where

�(t) = vt Ċv(ut , vt )

ut Ċu(ut , vt )
, �(t) = ut Ċu(ut , vt )

C(ut , vt )
,

and where we specify the joint distribution of (T 0, T 1) via

P(T 0 ≥ t0, T
1 ≥ t1) = P(U ≤ u, V ≤ v) = C(u, v)

with U = uT 0 , u = ut0 , V = vT 1 and v = vt1 . We now show that an Aalen additive
hazards analysis can easily lead to the same misleading conclusion as was the case for
the Cox regression analysis with a treatment-by-time interaction that we considered
in Sect. 3.1. If the DGP is given by λ(t; A, Z) in (4) then the ψ(t) is (14) has the form

ψ(t) = λ0(t)(e
β1 − 1)I (t ≤ ν) + λ0(t)(e

β2 − 1)I (t > ν).

If β2 = 0 we see that ψ(t) = 0 for t > ν and an Aalen additive hazards analysis
would therefore also indicate that the treatment effect vanishes after time point ν.
We have illustrated this in the Supplementary Materials, where the marginal Aalen
additive hazards model fits the data perfectly but also suggests a beneficial effect of
the treatment in an initial period (first 4 years), which then disappears, see Figure 5 in
the Supplementary Material. In this specific setting, we have, for t > ν, that

HD(t) = {�(t) − 1}�(t)λ0(t) < 0

since both �(t) and �(t) are within the interval (0, 1). Note also, for this specific
example, that λ(t; A, Z) is not of the form (5).

One may also construct scenarios where the DGP is of the form (5) and where
ψ(t) �= HD(t) if (6) does not hold. Hence, whether or not ψ(t) in (14) has a causal
interpretation in terms of a contrast between hazard functions depends on unverifiable
assumptions.

4.4 Alternative causal contrasts

Given the subtle interpretation of hazard ratios, we believe that the effects of treatments
on survival endpoints are best communicated via unconditional effect measures. For
a correctly specified Cox proportional hazards model the relative risk function

RR(t) = P(T ≤ t |A = 1)

P(T ≤ t |A = 0)
= P(T 1 ≤ t)

P(T 0 ≤ t)
,

can be estimated consistently by

R̂R(t) = 1 − exp {−�̂0(t)eβ̂}
1 − exp {−�̂0(t)}

,
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where β̂ is the Cox partial likelihood estimator and �̂0(t) is the corresponding Breslow
estimator. Or we may use the restricted mean survival time (RMST) at time t (Uno
et al. 2014; Zhao et al. 2016), defined as RMST(t) = E{min(T , t)}. This is the area
under the survival curve of T up to time t , which can easily be estimated using the
corresponding Kaplan-Meier curve up to time t (see Zhao et al. (2016) for details
on inference). Contrasts of the RMST(t) corresponding to different (randomised)
treatment groups therefore carry a causal interpretation. One may also report the
(restricted)mean time lost before time t , which is defined asRMTL(t) = t−RMST(t).

However, the restricted mean residual survival time E{min(T , t) − s|T > s} for
s < t leads to the same subtleties as seen for the hazard function, which is due to the
conditioning on T > s.

4.5 Analysis of theMRC RE01 study

For the MRC RE01 trial, we fitted Aalen’s additive hazard model

λ(t; A, V ) = β0(t) + ψ(t)A + β1(t)
T V , (16)

where V includes days from metastasis to randomization (log-transformed), WHO
performance status (0, 1 and 2; with group 0 and 1 collapsed into one group), and
Haemoglobin (g/dl). As the treatment variable A is independent of the other covari-
ates, the above Aalen model is collapsible meaning that the interpretation of ψ(t) is
the same in the conditional and marginal model. The Cox model does not have this
property. Model (16) appeared to fit the data well, using the tools described in Chapter
5 inMartinussen and Scheike (2006); specifically no interaction between the treatment
indicator and the baseline risk factors was found. We estimated �̂(t) = ∫ t

0 ψ(s)ds
both from the conditional model and the marginal model, and the two estimators were
almost identical, which, as pointed out, should be the case if model (16) is correctly
specified. Usingmodel (16), we next tested the null hypothesisψ(t) = ψ of a constant
effect (P = 0.58), which was subsequently estimated to be ψ̂ = −0.02 (SE, 0.009).
If T 0 ⊥⊥ T 1|V (or if the addition of all variables Z conditional on which T 0 and
T 1 become independent, does not change the additive structure of the model), then
this is also the causal hazard difference. This would mean that over the course of the
follow-up, an average of approximately 2 additional deaths will occur for each month
of follow-up in each 100 persons under the control treatment alive at the start of the
month and who would also be alive under the IFN treatment, compared with each 100
IFN treated persons alive at the start of the month and who would also be alive under
the control treatment.

As suggested before, the assumption that T 0 ⊥⊥ T 1|V is implausible (just like the
assumption that all variables Z forwhich T 0 ⊥⊥ T 1|Z do not interactwith treatment on
the additive hazard scale). In viewof this,we additionally report the effects of treatment
on the survival chances and restricted mean survival time. The relative risk function
estimate, along with 95% pointwise and uniform confidence bands, is displayed in
Fig. 4. We see that the estimated relative risk function is below 1 at all times, in favour
of IFN treatment. For instance, it is seen that the relative risk at one year is estimated
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Fig. 4 MRCRE01 study. IFN treatment versus control treatment. Estimate of relative risk RR(t) along with
95% pointwise confidence bands (dashed curves) and 95% uniform confidence bands (shaded area)

to be approximately 0.85. Judging from the 95% confidence bands (dashed curves),
this is close to being significant. A uniform test over the considered time span is also
close to being significant judging from the 95% uniform confidence bands.

Further, the ‘months of life lost up to 30 months’ RMTL(30) is estimated to be
17.3 for IFN treatment and 19.8 for control treatment. The ratio of these two (IFN vs
control) is 0.87 (95% CI, 0.70 to 1.04). Thus, on IFN treatment there is a 13% reduced
loss of lifetime compared to the control treatment during the first 30 months of follow
up.

5 Concluding remarks

We have argued that the treatment effect in a proportional hazards model carries a
causal interpretation, but that its interpretation is subtle. The proportional hazards
assumption does not express, for instance, that treatment works equally effectively
at all times, as the hazard ratio at a given time mixes differences between treatment
arms due to treatment effect as well as selection. The danger of over interpreting
hazard ratios become most pronounced when the hazard ratio is not constant over
time (e.g. when the hazard ratio is below 1 for some time and then becomes 1). We
have argued that this cannot be interpreted as implying that treatment effectiveness
disappears after some time. In our opinion, this is the source of much confusion,
and a real concern. Non-constant hazard ratios are indeed fairly common in real life
because the proportional hazards assumption is a rather unstable assumption in the
following sense. Even when valid in some population, this assumption is likely to fail
in subgroups of that population (e.g. if one studies men and women separately), and
vice versa. This makes the assumption, at best, an approximation in practice.
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We have described hazard contrasts that are causally interpretable because they
compare intensities at a given time t with and without treatment for the same patient
population: those who would survive that time, no matter what treatment. Such haz-
ard contrasts are not estimable without untestable assumptions concerning the joint
distribution of (T 0, T 1) and a sensitivity analysis is therefore the only option. One
may alternatively attempt to proceed under the monotonicity assumption that no one
is harmed by treatment, i.e.

T 1 ≥ T 0 with probability 1.

Under this strong assumption, we can write

P(t ≤ T < t + h|T ≥ t, A = 0) = P(t ≤ T 0 < t + h|T 0 ≥ t)

= P(t ≤ T 0 < t + h|T 0 ≥ t, T 1 ≥ t)

and

P(t ≤ T < t + h|T ≥ t, A = 1) = P(t ≤ T 1 < t + h|T 1 ≥ t)

= P(t ≤ T 1 < t + h|T 0 ≥ t, T 1 ≥ t)π(t)

+P(t ≤ T 1 < t + h|T 0 < t, T 1 ≥ t) {1 − π(t)} ,

with

π(t) ≡ P(T 0 ≥ t |T 1 ≥ t) = P(T 0 ≥ t)

P(T 1 ≥ t)
= P(T ≥ t |A = 0)

P(T ≥ t |A = 1)
.

However, if the distribution of (T 0, T 1) is assumed to be absolutely continuous then
one may show that limh→0 h−1P(t ≤ T 1 < t + h|T 0 ≥ t, T 1 ≥ t) = 0 and
thus HR(t) = 0 under the monotonicity assumption, see “Appendix A.5”. A further
disadvantage of the discussed hazard contrasts, which are causally interpretable, is
also that they describe the effect for an unknown subgroup of the population.

The reason that the causal hazard ratio (8) is not identifiablewithout invoking strong
assumptions is because it attempts to answer an overly ambitious question. Imagine
a trial that randomises participants over an implanted medical device (e.g. a stent
or a pacemaker) versus no treatment (or placebo). Suppose that the medical device
gradually deteriorates and stops being operational after some time ν. Then we would
say that treatment no longer works from time ν onwards. This would correspond with
HR(t) = 1 for t ≥ ν. However, how could data from a randomised trial be informative
about the effect of treatment after time ν when no information is collected on the times
at which the medical device is operational or not? To learn about the treatment effect
at each time t , we should ideally need data At on whether (At = 1) or not (At = 0)
the device is operational at that time. When the operation time is ignorable, then one
may learn about the treatment effect at each time t through contrasts of the form

limh→0 P(s ≤ T < s + h|T ≥ s, At− = 1, At = 1)

limh→0 P(s ≤ T < s + h|T ≥ s, At− = 1, At = 0)
,
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for all s ≥ t , where At− is the information generated by all Au , u < t , so At− = 1
refers to “being on treatment” up to just before time t . It is unsurprising that without
detailed data on the operation times of each device, strong assumptions are needed
to develop insight into the dynamic nature of the treatment effect. A better strategy
in practice, when interest lies in the dynamic aspects of a treatment, is therefore
to design the study such that the collected data provide immediate insight into the
dynamic aspects of treatment (e.g. by modifying treatment assignments over time).

While we have argued that time-varying hazard ratios are not causally interpretable,
note that they continue to be valuable for descriptive purposes when addressing non-
causal questions. Imagine for example a setting where the outcome is time-to death
after onset of a certain disease, and say that there are two subclasses (A = 1 and
A = 0) of the disease. Suppose we know from a previous study where model (2)
was used, and was correctly specified, that exp (β1) = 2, β2 = 0, for ν = 2 years.
Assume also that all other risk factors were equally balanced in the two subclasses at
time 0 (onset of disease) or that proper adjustment for these factors was performed
in the hazard model. Then, based on this analysis, we can say that patients in disease
subclass 1 who survive the first two years from onset of the disease will have the same
subsequent risk of dying as those in disease subclass 0—a statement that may be useful
for consulting patients at time ν = 2 years, or later.

The difficulties we have described concerning the causal interpretation of hazard
ratios pertain for hazard differences. This problem is thus not only an issue for propor-
tional hazardmodels but also for additive hazardmodels. The root cause of the problem
is the interpretation of hazard function itself, more than its particular structure.

Appendix A

A.1 Binary frailty variable

Let Z be binary, for instance P(Z = 0.2) = 0.2 and P(Z = 1.2) = 0.8, low and
high risk groups, then E(Z) = 1, and similar results as in the Gamma-distribution
case (Sect. 3.2) are obtained. In this binary case, the Laplace transform is

φZ (u) = 0.2e−0.2u + 0.8e−1.2u .

Therefore

HRZ (t)
gZ (e−�(t,a=1))

gZ (e−�(t,a=0))
= λ(t; a = 1)

λ(t; a = 0)
,

where
gZ (u) = {D log (φZ )}{φ−1

Z (u)}, (17)
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which is an increasing function. Hence, if we take β1 < 0 and β2 = 0, then again

HRZ (t) < 1

for all t .

A.2 Frailty model arising bymarginalization

The DGP (4) given by λ(t; A, Z)with ν = ∞ induces the marginal Cox model for the
observed data where we do not get access to Z . It is tempting to interpret HRZ (t) as a
causal hazard ratio, but this only holds under further untestable assumptions as shown
in Sect. 4.1. Below, we formulate a more general DGP involving an additional frailty
variable so that both the marginal Cox model and the model λ(t; A, Z) are correctly
specified.

Rename Z to Z1. We then show that similarly we can also pick a DGP
λ(t; A, Z1, Z2) so that it marginalizes to λ(t; A, Z1) that further marginalizes to
λ(t; A), the latter being the Cox model. For ease of calculations, let

λ(t; A, Z1, Z2) = Z2λ
∗(t; A, Z1)

with Z2 being Gamma distributed with mean and variance equal to 1, and independent
of Z1 and A. Similar calculations as those in Sect. 3.1 gives the following expression

λ(t; A, Z1, Z2) = Z1Z2λ0(t)e
βA exp

[
�0(t)e

βA + Z1{exp {�0(t)e
βA − 1}] (18)

Hence, if the DGP is governed by (18) then model (4), with ν = ∞, and the marginal
Cox model, only conditioning on A, are also correctly specified.

A.3 Hazard differences

Assume (5) and (6). Then

lim
h→0

P(t ≤ T 1 < t + h|T 0 ≥ t, T 1 ≥ t) = ψ(t) + E{ω(t, Z)e−2
∫ t
0 ω(s,Z) ds}

E{e−2
∫ t
0 ω(s,Z) ds}

and

lim
h→0

P(t ≤ T 0 < t + h|T 0 ≥ t, T 1 ≥ t) = E{ω(t, Z)e−2
∫ t
0 ω(s,Z) ds}

E{e−2
∫ t
0 ω(s,Z) ds}

and therefore

ψ(t) = lim
h→0

P(t ≤ T 1 < t + h|T 0 ≥ t, T 1 ≥ t)

− lim
h→0

P(t ≤ T 0 < t + h|T 0 ≥ t, T 1 ≥ t).
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A.4 HR(t) under copulas not obeying (11)

We outline now how to generate samples from the copula C∗ to gain further
insight, Nelsen (2006), pp. 40–41,

1. Generate a standard uniformly distributed random variable u;
2. Set

v =
{
u if u ≤ ξ or u ≥ 1 − ξ

1 − u if ξ < u < 1 − ξ

3. Set T 0 = �−1
0 {− log (u)} and T 1 = �−1

0 {− log (v)/φ} (assuming �0 is strictly
increasing).

As an illustration, we took �0(t) = t , φ = 2/3 and ξ = 0.251 and generated
n = 2, 000, 000 samples. For these simulated data we obtained an estimated Cox HR
of 0.666 and Spearman’s ρ was estimated to equal 0.753, which fits nicelywith the the-
oretical values. As mentioned, if we follow the path (exp {−�0(t)}, exp {−φ�0(t)})
(starting at (1,1) when t = 0) in [0, 1]2 in such a way that we pass through the upper
triangle of J2 then HR(t) will be equal to 0 before we reach J2 but then it jumps to
k(u, v)φ, where k(u, v) > 1. To illustrate this, we estimatedHR(t) non-parametrically
in time-points t until we cross the line v = 1 − u in J2. This was done by taking the
observed frequency of T 1-failures in the time interval [t, t + δ], δ = 0.01, among
those where both T 0 ≥ t and T 1 ≥ t ; and similarly for T 0; and then taking the ratio
of the two. This is seen in Fig. 3, where the theoretical values φ exp {−t(φ − 1)} are
superimposed. The dashed line corresponds to φ = 2/3. We see that the theoretical
values fit nicely to the estimated ones. For this copula it can be shown that HR(t) is
always below 1, but as we have just seen it can also be larger than φ! Hence, to have
that HR(t) < φ we need more than just positive correlation between T 0 and T 1 as
this example illustrates.

A.5 Monotonicity and HR(t)

Assume that T 1 ≥ T 0 a.s. and that the distribution of (T 0, T 1) is absolutely continuous
with density f (t0, t1) with respect to the Lebesgue measure. Monotonicity is attained
if f (t0, t1) = 0 for t0 > t1. We now look at

z(h) = P(T 0 ≥ t, t ≤ T 1 ≤ t + h)

= P(T 0 ≥ t, t ≤ T 1 ≤ t + h, T 0 ≤ T 1)

=
∫ t+h

t

∫ t1

t
f (t0, t1)dt0dt1.

Hence

lim
h→0

z(h)

h
= lim

h→0

G(t + h) − G(t)

h
= G ′(t) =

∫ t

t
f (t0, t)dt0 = 0,
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where

G(u) =
∫ u

0

{∫ t1

t
f (t0, t1)dt0

}
dt1.

But this means λT 1(t |T 0 ≥ t, T 1 ≥ t) = 0, and therefore HR(t) = 0. To avoid
having λT 1(t |T 0 ≥ t, T 1 ≥ t) equal to zero we need for instance T 0 given T 1 to have
a discrete distribution, but this seems unappealing.
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