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Abstract
Medical research frequently involves comparing an event time of interest between
treatment groups. Rather than comparing the entire survival or cumulative incidence
curves, it is sometimes preferable to evaluate these probabilities at a fixed point in time.
Performing a covariate adjusted analysis can improve efficiency, even in randomized
clinical trials, but no currently available group sequential test for fixed point analysis
provides this adjustment. This paper introduces covariate adjusted group sequential
pointwise comparisons of survival and cumulative incidence probabilities. Their test
statistics have an asymptotic distribution with independent increments, permitting use
of common stopping boundary specification methods. These tests are demonstrated
through a redesign of BMT CTN 0402, a clinical trial that evaluated a prophylactic
treatment for adverse outcomes following blood and marrow transplantation. A sim-
ulation study demonstrates that these tests maintain the type I error rate and power at
nominal levels under a variety of settings involving influential covariates.

Keywords Competing risks · Direct binomial regression · Graft versus host disease ·
Group sequential design · Hematopoietic cell transplantation · Survival analysis

1 Introduction

Time to event outcomes are frequently the main interest of clinical trials. In these
studies, investigators may wish to evaluate the treatment effect on the survival or
cumulative incidence probability at a fixed time point. This could be preferable to a
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comparison of entire survival or cumulative incidence curves if the particular time
point of interest has a strong clinical significance. For example, the Blood and Mar-
row Transplant Clinical Trials Network (BMT CTN) 0402 (Cutler et al. 2012) was a
randomized clinical trial that evaluated an experimental treatment for the prevention
of graft versus host disease (GVHD) following blood and marrow transplantation. Its
primary endpoint was acute GVHD-free survival at 114days post-transplant, a time
point at which the majority of acute GVHD events were expected to have occurred
and any benefit of the new treatment would be most readily observable.

A fixed point comparisonmay also be favored in the presence of crossing survival or
cumulative incidence curves of the treatment groups. This situation may arise in a trial
comparing survival rates between surgical and medicinal treatments of malignancy
where, due to the risk of complications during and infection after surgery, patients in
the surgical arm may have increased risk of mortality immediately following surgery
but lower risk thereafter. This complication is illustrated by BMTCTN 1102, an ongo-
ing biologic assignment trial comparing two therapies for MDS: blood and marrow
transplantation; and non-transplant, hypomethylating therapy. In cases such as this,
common entire curve comparison methods like the log rank test, Gray’s test (1988),
the Cox proportional hazards model (1972), and the Fine-Gray model (Fine and Gray
1999), because they are optimal only under proportional hazards, may perform poorly
because proportionality is violated. A fixed time analysis, on the other hand, is robust
to these violations and remains a viable option for treatment comparison, provided an
appropriate time point can be identified. For this reason, the treatment benefit on the
primary endpoint of BMT CTN 1102, overall survival (OS), will be evaluated by a
pointwise comparison of 3-year OS rather than comparing entire OS curves.

Covariate adjustment is a valuable technique that can offer greater efficiency in
treatment evaluation (Robinson and Jewell 1991; Pocock et al. 2002; Zhang et al. 2008)
and reduction of the influence of other covariates on analysis results. The comparison
of 3-year OS in BMT CTN 1102 incorporates covariate adjustment precisely because
allocation to treatment arms is performed via biologic assignment, not randomization,
and so the chance that covariate imbalance may occur was not guaranteed to be small.
The potential for undue covariate influence is also known to exist for randomized
studies, since imbalances on covariates may still arise purely by chance (Peto et al.
1976; Gail et al. 1984; Ciolino et al. 2015). Moreover, Hauck et al. (1998) argues
that the covariate-specific inference on the treatment effect provided by an adjusted
analysis is more relevant in clinical research and more applicable on the patient level
than the population-wide inference given by an unadjusted analysis. Group sequential
analysis can also improve efficiency of treatment assessment by reducing the sample
size and duration for a clinical trial by permitting early stopping for efficacy and
futility. Substantial literature exists detailing how to perform group sequential testing
in a way that controls the overall type I error rate of a study for a variety of analysis
methods, including t-tests, generalized linear models, and the Cox model (Jennison
andTurnbull 1999). However, thismethodology is quite limited for other time-to-event
methods, particularly for fixed time point analysis.

Group sequential tests for fixed point comparison of survival curves can be obtained
from the work of Gu and Lai (1991) and Lin et al. (1996), while Logan and Zhang
(2013) developed group sequential tests for fixed point comparison of cumulative inci-
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dence curves; however, thesemethods do not account directly for the influence of other
covariates. Techniques have been introduced for performing an adjusted comparison
of survival and cumulative incidence curves at a fixed time (Klein and Andersen 2005;
Zhang et al. 2007), but they have not been studied in the group sequential setting.
This manuscript presents group sequential tests of treatment effect on survival and
cumulative incidence at a fixed time that adjust for influential covariates.

Section2 introduces the direct binomial regressionmodel of survival and cumulative
incidence probabilities at a fixed point, discusses estimation of its parameters in a group
sequential analysis, presents the asymptotic distribution of this sequence of parameter
estimates, and proposes a group sequential test for fixed time point analysis based on
this finding. Section 3 presents a Cox model stratified toward an adjusted comparison
of survival probabilities, gives the asymptotic distribution of its test statistics in a group
sequential setting, and offers a group sequential test employing this method. Via an
extensive simulation study, Sect. 4 investigates howwell the type I error rate and power
of these proposed tests adhere to their asymptotic values for realistic sample sizes and
compares performance of the proposed, covariate-adjusted methods to unadjusted
ones. The proposed methods are applied in a reanalysis of the BMT CTN 0402 trial
data in Sect. 5. A discussion of these results in Sect. 6 concludes the paper.

2 Direct binomial regression at a fixed time point

2.1 Basic quantities

The setting considered is a clinical trial in which the primary interest is comparing sur-
vival or cumulative incidence probabilities at a prespecified time point s0 between two
study arms.Without loss of generality, we consider modeling the cumulative incidence
of cause 1 events; inference on a survival probability is simply a special case where
only a single failure type exists. Both the set of patients accrued and the data available
on these patients can differ between analyses in the group sequential setting, requiring
consideration of two time scales: the calendar time from study opening, denoted by
t , and the patients’ time on study, denoted by s. Competing risks data is generated
for a random sample of patients whose event times may be right-censored due to loss
to follow-up. For the i th patient, let Ti denote the event time since enrollment, εi the
event type, Ci the loss to follow-up censoring time since enrollment, τi the calendar
time of accrual, and Zi a vector of covariates of length p.

We assume an upper bound t∗ exists on the duration of the study. Let c+ = c ∨ 0
denote the positive part of a scalar c. The observed data for patient i at calendar time
t is

(
Xi (t),Δi (t),Δi (t)εi , τi ,Z′

i

)
, where Xi (t) = Ti ∧Ci ∧ (t − τi )

+ is the observed
time on study and Δi (t) = I

[
Ti ≤ Ci ∧ (t − τi )

+]
is the event indicator at calendar

time t . The event type is only observed if censoring has not occurred, so the observed
data includes the product Δi (t)εi but not εi itself. The variable Bi (t) = Ci ∧ (t − τi )

+
represents the effective censoring time at calendar time t for patient i as the minimum
of the loss to follow-up censoring time Ci and the administrative censoring time
(t − τi )

+. We make these assumptions about the data:
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1. Ti and Ci are continuous random variables.
2. The

(
Ti ,Ci , εi , τi ,Z′

i

)
are independently and identically distributed.

3. Independent censoring, i.e. Ci is independent of
(
Ti , εi , τi ,Z′

i

)
.

4. Independent accrual, i.e. τi is independent of
(
Ti ,Ci , εi ,Z′

i

)
.

Assumption (2) implies that the patients’ observations form a random sample from
the target population. Assumption (3) implies that occurrence of loss to follow-up is
unrelated to event occurrence or time of accrual and is a standard assumption made in
the derivation of group sequential tests for survival analysis, particularly those utilizing
the Kaplan–Meier estimator (Lin et al. 1996), Coxmodel (Bilias et al. 1997), and Fine-
Gray model (Martens and Logan 2018). Assumption (4) implies that the covariates
and occurrences of events and loss to follow-up are unrelated to accrual time, assuring
that the patients’ data distribution is not changing over calendar time.

2.2 Themodel

Two quantities are usually the main focus of clinical trials involving time to event out-
comes: the survival function S(s) = P(T ≥ s) and the cumulative incidence function
Fj (s) = P(T ≤ s, ε = j). To perform a comparison of survival or cumulative inci-
dence at a time point s0 while adjusting for covariates, we employ the direct binomial
regression model of He (2014) of the form

h
[
F1(s0|Z)

] = Λ0(s0) + β(s0)
′Z,

where Λ0(s0) and β(s0) are regression parameters, h is a link function, and Z1 is
the treatment indicator, coded as 1 for the active and 0 for the control treatment. This
model is an adaptation of the original direct binomial regressionmodel of Scheike et al.
(2008), which evaluates the impact of covariates on the entire survival or cumulative
incidence curve. Note that the parametersΛ0(s0) and β(s0) depend on the chosen time
point of interest. For the methodology that follows, we assume that this time point
s0 is prespecified and will suppress the argument for these parameters. Our model of
interest is

h
[
F1(s0|Z)

] = Λ0 + β ′Z. (M1)

Let N 1
i (s) = I (Ti ≤ s, εi = 1) denote the counting process of cause 1 events

for patient i . N 1
i (s0) is unbiased for F1(s0|Zi ) conditional on covariates, but is not

observed if the patient is censored before s0. The variable I [Xi (t) ≤ s0,Δi (t)εi =
1] = N 1

i (s0)Δi (t) indicates whether a cause 1 event has been observed for patient
i at a calendar time t ; but, it is biased for F1(s0|Zi ) in the presence of censoring.
However, because Δi (t) = 1 implies τi ≤ t and we have independent censoring
and accrual, the quantity Õi (t) = N 1

i (s0)Δi (t)/H(t, Ti ) is conditionally unbiased
for F1(s0|Zi ), where H(t, s) = P[Bi (t) ≥ s|τi ≤ t] is the “survival function” of the
censoring distribution among patients accrued at calendar time t . Note that H(t, Ti ) =
E[Δi (t)|τi ≤ t]. Based on this result, Scheike et al. (2008) proposed using inverse
probability of censoring weighting (IPCW) to fit the model with observations Oi (t) =
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I [Xi (t) ≤ s0,Δi (t)εi = 1]/Ĥ(t, Ti ) to estimate F1(s0|Z) in the fixed sample setting,
where Ĥ(t, s) is a consistent estimator for H(t, s). We assume Ĥ(t, s) = Πu≤s[1 −∑

i∈A(t) I [Bi (t) = u, Bi (t) < Ti ]/∑
i∈A(t) I (Xi (t) ≥ u)], where A(t) = {i : τi ≤ t}

identifies the set of patients accrued at calendar time t . Ĥ(t, s) is the Kaplan–Meier
estimator of H(t, s) and the independent censoring and accrual assumptions imply
that Ĥ(t, s) is consistent (Lemma 2 in the Online Resource, Section A).

It is important to note that the method of Scheike et al. (2008) infers covariates’
effects on the entire cumulative incidence curve F1, but does not involve sequential
analysis. On the other hand, our method evaluates a main covariate’s effect on this
function at a specific time point s0 across calendar times t .

2.3 Parameter estimation

The estimating equation used to fit this model isU(θ, t) = ∑n
i=1 Di I (τi ≤ t)[Oi (t)−

F1(s0|Zi )], where Di = ∂F1(s0|Zi )/∂θ and θ = (Λ0,β
′)′ is the full vector of model

parameters. Let θ0 denote the true value of this vector. At each calendar time point t ,
the value can be found that solves U(̂θ , t) = 0, giving an estimating process θ̂(t) for
θ0. In turn, its second component β̂1(t) := θ̂2(t) gives an estimating process for β10.
Define v⊗0 = 1, v⊗1 = v, and v⊗2 = vv′ for v ∈ R

k . To draw inference on θ0, we
assume that the following regularity conditions hold:

1. P
[
(t − τi )

+ ≥ s0
]

> 0, P(Ti ≥ s0) > 0, and P(Ci ≥ s0) > 0 for all t ∈ [s0, t∗]
2. The covariates are nondegenerate and bounded; i.e. there exists cz ∈ R such that

‖Zi‖∞ ≤ cz for all i
3. h−1 exists and is twice continuously differentiable

4. E

{
D⊗2
i

[
N1
i (s0)

H(t1∨t2,Ti ) − F1(s0|Zi )
2
]}

− ∫ t∗
0

E
{
Di [N1

i (s0)−N1
i (u)]

}⊗2
dΛC (u)

P(Ci∧Ti≥u)
exists for

all t1, t2 ∈ [0, t∗]
5. There exists t∗ ∈ [s0, t∗] such that the eigenvalues of P(τ ≤ t)E

(
D⊗2
i

)
are

bounded below by a constant r > 0 for all t ∈ [t∗, t∗].
Scheike et al. (2008) assumes similar regularity conditions in the derivations for

their direct binomial regression model of entire cumulative incidence curves. Condi-
tion 1 implies that a positive probability exists of experiencing an event, censoring,
or accrual following any calendar time considered. Covariates are usually bounded
by physical, temporal, financial, or other constraints, and so condition 2 will hold.
Interestingly, the simulation results in Sect. 5 agree with our asymptotic result even
though they involved some unbounded, standard normal covariates that violate con-
dition 2, suggesting that it may not be necessary. Condition 3 is satisfied for common
choices of link functions, including the identity, log, logit, and complementary log–log
transformations. Conditions 4 and 5 guarantee existence of variance functions for the
processes U(θ0, t) and θ̂(t). For inference on θ0, we use the asymptotic distribution
of θ̂(t), given in Theorem 2.

Theorem 1 Under model (M1), assumptions 1–4, and regularity conditions 1–4,

{n−1/2U(θ0, t)}t∈[0,t∗]
d−→ {ξ(t)}t∈[0,t∗], where {ξ(t)}t∈[0,t∗] is a zero mean Gaussian

process with continuous sample paths and covariance function
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E
[
ξ(t1)ξ(t2)

′] = P(τi ≤ t1 ∧ t2)

(
E

{
D⊗2
i

[
N 1
i (s0)

H(t1 ∨ t2, Ti )
− F1(s0|Zi )

2
]}

−
∫ t∗

0

E
{
Di [N 1

i (s0) − N 1
i (u)]}⊗2

dΛC (u)

P(Ci ∧ Ti ≥ u)

)
,

where ΛC (u) is the cumulative hazard function of the Ci .

Theorem 2 Under model (M1), assumptions 1–4, and regularity conditions 1–5,

{√n[̂θ(t)−θ0]}t∈[t∗,t∗]
d−→ {ζ (t)}t∈[t∗,t∗], where {ζ (t)}t∈[t∗,t∗] is a zeromeanGaussian

process with continuous sample paths and covariance function

E
[
ζ (t1)ζ (t2)

′] = P(τi ≤ t1 ∨ t2)
−1E

(
D⊗2
i

)−1
(
E

{
D⊗2
i

[
N1
i (s0)

H(t1 ∨ t2, Ti )
− F1(s0|Zi )

2
]}

−
∫ t∗

0

E
{
Di [N1

i (s0) − N1
i (u)]}⊗2dΛC (u)

P(Ci ∧ Ti ≥ u)

)
E

(
D⊗2
i

)−1

Derivations of these results are found in the Online Resource, Section A. The proofs
extensively apply the empirical process theory in Pollard (1990) and Kosorok (2008).

2.4 Group sequential test for treatment effect

Group sequential testing allows early stopping of a study for efficacy and/or futility
by permitting analysis of the available trial data at two or more interim calendar
times during the course of the study, under the reasoning that overwhelming evidence
of a treatment benefit, or the complete absence of such evidence, warrants an early
declaration of efficacy or futility. The procedure for a two sided group sequential
test is formally defined as follows. Consider a group sequential study with K interim
analyses, or stages, planned. At the j th interim analysis, performed at calendar time t j ,
a standardized test statisticWj is computed using all available data. At an intermediate
analysis j < K , the decision rule is to reject H0 if |Wj | > a j , accept H0 if |Wj | ≤ b j ,
and continue to stage j +1 if neither rejection nor acceptance occurs. Here, the a j and
b j represent efficacy and futility boundaries at stage j ; early stopping for efficacy and
futility at this stage can be omitted by setting a j = ∞ and b j = −1, respectively. If the
final analysis K is reached, the decision rule is to reject H0 if |WK | > aK and accept
H0 otherwise. Specifying the stopping boundaries a j , b j to meet type I error rate and
power specifications requires knowing the joint distribution of the test statistics Wj .

A wide array of common methods are known to give test statistics that follow the
canonical distribution (Jennison and Turnbull 1999), exactly or asymptotically. The
sequenceof statistics (W1, . . . ,WK ) is said to follow the canonical distributionwith the
information sequence (I1, . . . , IK ) for θ if its asymptotic distribution is multivariate
normal with Wj ∼ N (θ , 1) and Cov(Wi ,Wj ) = √

Ii/I j for i ≤ j . This distribution
is also termed an independent increments structure.

By Theorem 2, the asymptotic covariance of θ̂(ti ) and θ̂(t j ) depends only on the
maximum time of ti and t j for any pair ti , t j ∈ [0, t∗]. This is also true of the covariance
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of the second components, β̂1(ti ) and β̂1(t j ). Letting I j = E
[
ζ (t j )⊗2

]
22

−1
be the

reciprocal of the (2,2) component of E
[
ζ (t j )⊗2

]
and Wj = β̂1(t j )

√
I j , it can be

seen that (W1, . . . ,WK ) has independent increments for β1. Generalized estimating
equations (GEE) can be used to obtain estimates and robust standard errors for β̂1(t)
at interim analysis times by supplying the weighted observations Oi (t) as data and
specifying the desired link function. This provides a group sequential Wald test of
treatment effect at s0 (i.e.,whetherβ1 = 0) by comparing the standardized test statistics
Wj to appropriate stopping boundaries.

Pocock and O’Brien-Fleming designs can be employed for boundary specification,
but they rely on an assumption of equal increments in information between stages.
With time to event outcomes, the observed information levels can deviate greatly from
expected levels, especially when sample sizes are not large. Therefore, it is generally
preferred to use error spending functions to compute stopping boundaries for each
stage using the observed information levels.

3 Treatment comparison by stratification of the Coxmodel

3.1 Themodel

The previous section covered the general setting of competing risks data, of which
survival data can be considered a special case. This section focuses specifically on
the single failure cause/survival data setting and introduces an alternative method for
pointwise comparison of survival probabilities via a treatment stratified Cox model
(Andersen et al. 1993, Chapter 7). This permits a nonproportional effect of treatment
over the time period considered while assuming proportionality of other covariates’
effects. If this assumption is correct, this test may be more efficient in detecting a
treatment effect than direct binomial regression.

LetX = (Z2, . . . , Z p)
′ denote the vector of non-treatment covariates. ACoxmodel

stratified on treatment specifies the treatment-specific hazard rates through the form

λ(s|Z1 = k,X) = λk0(s) exp(β
′X) for k = 0, 1 and s ≤ t∗, (M2)

where λk0(s) is the baseline hazard function for treatment group Z1 = k. The
null hypothesis that no treatment effect on survival at s0 exists can be stated as
H0 : S(s0|Z1 = 1,X) = S(s0|Z1 = 0,X) for all X. Let Λk0(s0) = ∫ s0

0 λk0(u)du
be the cumulative baseline hazard for strata k. Because a one-to-one relationship
exists between the cumulative hazard function and the survival function, an equivalent
hypothesis under this model is H0 : Λ10(s0) = Λ00(s0).

3.2 Estimation

To compare the baseline cumulative hazards at survival time s0 for the two strata,
we employ Breslow’s estimators of the strata-specific cumulative hazards. In a
sequential analysis, the available trial data is accumulating over calendar time t ,
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so these estimators will depend on t . Let Λ̂k0(t, s0) denote Breslow’s estimator of
the baseline cumulative hazard at survival time s0 for strata k using all available
data at calendar time t . The test statistic used to test H0 at calendar time t , then, is
A(t) = Λ̂10(t, s0) − Λ̂00(t, s0); this estimates the difference in cumulative baseline
hazards between treatments, Λ10(s0) − Λ00(s0), which is 0 under H0.

To derive the asymptotic distribution of the test statistic process A(t), we assume
the following regularity conditions hold. They are similar to regularity conditions (1)–
(5) for the group sequential direct binomial regression test and are stronger than those
assumed by Bilias et al. (1997) for a group sequential, unstratified Coxmodel analysis:

6. P
[
(t − τi )

+ ≥ s
]

> 0, P(Ti ≥ s) > 0, and P(Ci ≥ s) > 0 for all (t, s) ∈ D ={
(u, v) : 0 ≤ v ≤ u ≤ t∗

}

7. The covariates are bounded; i.e. ‖Zi‖∞ ≤ cz for all i
8. There exists ψ ∈ (0, 1) such that limn→∞ n1/n = ψ , where n1 is the number of

subjects with Z1 = 1;
9. Γ k j (s) = E

[
Y 1
ki (s)X

⊗ j
ki e

β ′
0Xki ] exists for all s ∈ [0, t∗], all j = 0, 1, 2, and all

k = 0, 1
10. There exists t∗ ∈ (0, t∗) such that Σ̃(t, s) = E[−∂U(β, t, s)/∂β ′]|β=β0

is positive
definite for (t, s) ∈ D∗ = {

(u, v) : t∗ ≤ v ≤ u ≤ t∗
}
with eigenvalues uniformly

bounded away from 0.

Conditions (6) and (7) are similar to conditions (1) and (2) assumed for the direct
binomial regression model, with similar implications. Condition (8) assumes that the
allocation ratio between treatment arms converges to some value in (0,1). Conditions
(9) and (10) are similar to regularity conditions 2 and 4 of Bilias et al. (1997) and
ensure that β̂(t) and Λ̂k0(t, s0) converge to Gaussian processes.

The setting considered has a fixed survival time point of interest, s0, whose cumu-
lative hazard is estimated across calendar times t. Because the Breslow’s estimators
Λ̂k0(t, s0), k = 0, 1, assess the cumulative hazard at a single survival time, it can
be shown that these estimators each have independent increments as the calendar
times t vary over [s0, t∗]. Their difference, A(t), also has independent increments; its
asymptotic distribution is given by the following theorem.

Theorem 3 Under model (M2), assumptions (1)–(4), regularity conditions (6)–(10),

and H0 : Λ10(s0) = Λ00(s0), {n−1/2A(t)}t∈[t∗,t∗]
d−→ {ν(t)}t∈[t∗,t∗], where ν is a zero

mean Gaussian process with continuous sample paths and covariance function

E[ν(t1)ν(t2)] = 1

ψ

∫ s0

0

dΛ10(u)

G(t1 ∨ t2, u)Γ10(u)
+ 1

1 − ψ

∫ s0

0

dΛ00(u)

G(t1 ∨ t2, u)Γ00(u)

+ (h1 − h0)′Σ̃(t1 ∨ t2, t1 ∨ t2)
−1(h1 − h0),

hk = ∫ s0
0

[
Γ k1(u)/Γk0(u)

]
dΛk0(u), and G(t, s) = P[Ci ∧ (t − τi )

+ ≥ s] is the
’survival function’ of censoring.

The proof of this theorem is found in the Online Resource, Section B.
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3.3 Group sequential test for treatment effect

Since it depends only on the maximum of the calendar times t1 and t2, the process ν

also has independent increments. A consistent estimator for the asymptotic variance
in Theorem 3 can be obtained by substituting empirical estimators for the quantities
in its expression. Thus, a group sequential test of treatment effect at s0 based on the
stratified Cox model is obtained similarly to that for direct binomial regression by
comparing the standardized test statistics to the stopping boundaries of the prescribed
design.

4 Simulation study

4.1 Design

A simulation study was conducted with two objectives: first, to evaluate how well
the proposed tests adhere to the nominal type I error and power specifications for a
group sequential trial with realistic sample sizes; and second, to compare the power
attained between these methods and common tests that do not perform covariate
adjustment. The survival probability at a fixed point was compared between treatment
groups using direct binomial regression, the stratified Cox model, and two-sample
comparisons of Kaplan–Meier estimators and Nelson–Aalen estimators. Cumulative
incidence at a fixed time was compared using direct binomial regression and a two-
sample comparison of Aalen–Johansen estimators of cumulative incidence. The two
sample comparisons of Kaplan–Meier and Nelson–Aalen estimators were shown to
have independent increments by Lin et al. (1996), while Logan and Zhang (2013)
showed this result for the comparison of Aalen–Johansen estimators. Parameters of
the direct binomial regression tests were estimated using GEE.

We simulated randomized clinical trials comparing efficacy of two treatments
through two-sided testing of the existence of a treatment effect. This involved tests of
H0 : β1 = 0 for the direct binomial models, H0 : Λ10(s0) = Λ00(s0) for the stratified
Cox model based test, H0 : S1(s0) = S0(s0) for the Kaplan–Meier and Nelson–Aalen
based tests, and H0 : F11(s0) = F10(s0) for the Aalen–Johansen based test. Treatment
assignments were randomized at a 1:1 ratio. Each trial consisted of an accrual period
[0, A] during which patients are enrolled in the study at a uniform rate. Group sequen-
tial testing was performed at the 0.05 level with a three stage design employing the
alpha spending function 0.05min{1, I F3}, where I F is the information fraction, the
fraction of total information for the trial. Interim analyses were prespecified for each
testing method at calendar times where we expect information fractions of 1/3 and 2/3
under themethod’s assumptions. The total information level and interim analysis times
were computed for each combination of simulation settings via Monte Carlo estima-
tion. The complementary log–log link function x �→ log[− log(1 − x)] was used for
the direct binomial regression, producingmodels of the form S(s0|Z) = exp(eΛ0+β ′Z)

and F1(s0|Z) = 1 − exp(eΛ0+β ′Z) for survival and cumulative incidence at time s0.
The data were generated according to the following distributions. For the sur-

vival model, we assume that event times T |Z are exponentially distributed with
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rate exp(β ′Z). In the competing risks model, we generate data from the subdistri-
butions

F1(s|Z) = 1−[1 − q{1− exp(−s)}]exp(β ′Z) and F2(s|Z)=(1−q)exp(β
′Z)(1−e−s).

This places a proportional subdistribution hazards model on cause 1 events, where q
is a parameter controlling the proportion of cause 1 events observed.

Choices of simulation parameters consisted of the following: sample sizes per
treatment group, n = 100, 200, or 400; accrual period A = 2 or 4years; independent
censoring, exponentially distributed at rate of 5%or 10%per year; a treatment effectβ1
of 0 or δ, the value at which the testing method has 80% power under its test statistics’
asymptotic distribution; and φ = log 1.5 or log 2, where φ is a parameter describing
the strength of the covariates’ effects. For the survival models, s0 was chosen so that
S(s0) = 0.25, 0.50, or 0.75, while for competing risks models, we set s0 = log 5 and
chose q so that F1(s0) = 0.2, 0.4, or 0.6.

We considered two scenarios, each corresponding to a covariate specification.
Scenario 1 had one N (0, 1) covariate considered with β2 = φ. Scenario 2 had
two covariates, one N (0, 1) and one Bernoulli(0.5), with β2 = (2/

√
5)φ and

β3 = (1/
√
5)φ. The size of covariate effect(s) were selected so that the linear pre-

dictor β ′Z will have the same mean and variance and, thus, a similar effect on the
survival and cumulative incidence probabilities in both scenarios. This gives 144 pos-
sible specifications for each model under each value of β1 considered. We assessed
the performance of the proposed tests with regards to type I error rate, power, and
conditional power using Monte Carlo estimates obtained from 10,000 simulated trials
for each specification.

4.2 Type I error and power

From the simulations, we obtained estimates of the cumulative type I error rates and
power over the three stages of the group sequential design for all testing methods
considered. Figure 1a, b compares empirical estimates of stagewise type I error rates
to their nominal levels for the proposed survival and cumulative incidence tests. To
summarize the large number of simulation results, we collect these estimates across
choices of s0, A, censoring rate, and φ into box plots that describe the type I error rate
for each choice of n; other simulation parameters were found to have no appreciable
effect on the type I error rate. These figures show that the direct binomial regression
models are conservative at stages 1 and 2, but attain the nominal overall type I error
rate. On the other hand, the stratified Cox test is conservative at all stages, though less
so for larger samples.

Empirical stagewise estimates of cumulative power for the survival and cumulative
incidence tests are shown in Fig. 1c, d. To evaluate how closely the actual power of each
testing method comes to the nominal power obtained from its asymptotic distribution,
corresponding simulations for each test were performed using a value of δ at which
that test has 80%nominal overall power. The stratifiedCox test falls below the nominal
levels at stages 1 and 2, while the direct binomial test fails to meet nominal levels only
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Fig. 1 Stagewise cumulative type I error rate and power: Empirical estimates of the cumulative type I error
rate and power for proposed group sequential tests of treatment effect on survival probability are shown
in panels (a) and (c), and for the proposed test on cumulative incidence in panels (b) and (d). Box plots
summarize the estimates for each choice of n. Black lines indicate the nominal cumulative type I error and
power levels for the tests

at stage 1 with sample sizes of 100 per group. Both methods attain the targeted overall
power level for larger sample sizes. The proposed tests are meeting the specified type
I error rate and power requirements for the larger sample sizes considered.

We also performed simulations to compare the power between all methods con-
sidered. Figure 2a shows the stagewise cumulative power of tests of treatment effect
on fixed time survival from direct binomial regression, a stratified Cox model, and
two-sample comparisons of Kaplan–Meier and Nelson–Aalen estimators. The direct
binomial regression model is used as the reference test, with δ specified for these sim-
ulations as the value at which this test has overall power of 80% under its asymptotic
distribution. Estimates are aggregated into box plots for each value of φ, the strength
of covariate influence. First, the power of the Cox model based test is superior to the
direct binomial test by roughly 4–5%. Since the data is generated from a Cox model
for scenarios 1 and 2, this is not surprising. Second, neither of the proposed tests are
adversely affected by the strength of covariate influence, while the unadjustedmethods
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Fig. 2 Comparison of stagewise cumulative power under proportional hazards: Empirical estimates of the
cumulative power of group sequential tests of treatment effect, with the effect size δ chosen to provide 80%
power under direct binomial regression’s asymptotic distribution. Panel (a) summarizes estimates for tests
on survival probability based on a stratified Cox model (C), direct binomial regression (D), and two-sample
comparisons of Kaplan–Meier (K) and Nelson–Aalen (A) estimators, while panel (b) presents those for
tests on cumulative incidence based on direct binomial regression (D) and a two-sample comparison of
Aalen–Johansen (A) estimators. Box plots summarize the estimates for each choice of influential covariate
strength, φ. Black lines indicate the nominal cumulative power levels

are. Third, these unadjusted tests have an overall power close to 80% for the smaller
value of φ, while they fall short at the larger value.

Similar plots are shown in Fig. 2b for tests of treatment effect on cumulative
incidence from direct binomial regression and a two-sample comparison of Aalen–
Johansen estimators. Again, the direct binomial regression based test is the reference,
with the treatment effect selected so that this test has 80% nominal power. We see sim-
ilar trends as with Fig. 2a: the Aalen–Johansen test is sensitive to covariate influence,
attaining overall power close to 80%under the smaller choice ofφ but being underpow-
ered for the larger one. To conduct a suitable comparison of stagewise power levels,
the interim analysis times were chosen separately for each method to give expected
information fractions of 1/3 and 2/3, provided the assumptions of the method hold.
With the two sample comparison of Aalen–Johansen estimators, the assumption is
that within each sample, the members are homogeneous; since covariates are at play
in the data generating distribution, however, this assumption is violated, causing the
observed stagewise information increments to deviate greatly from 1/3 and 2/3 in
some scenarios. This is the reason for the increased variability of the Aalen–Johansen
estimates at stage 2, shown by the wide interquartile ranges.

4.3 Conditional power

During the course of a trial, conditional power to detect a targeted treatment effect can
be described as the probability of rejecting the null hypothesis given the data currently
available and that the true treatment effect matches the target. Formally, we define
the conditional power to detect β1 = γ at interim analysis k as CPk(γ ) = P(reject
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H0| data at analysis k, β1 = γ ). A conditional power evaluation is sometimes used
to curtail a trial as an alternative to prespecified futility stopping boundaries in a
group sequential design, using the justification that low conditional power at interim
should indicate a small chance of eventually declaring efficacy and, subsequently, that
stopping when conditional power is low avoids “sampling to a foregone conclusion”.

Ciolino et al. (2014) demonstrated that, when comparing two groups on a normally
distributed outcome that has an influential covariate, the conditional power of a two-
sample t-test is sensitive to imbalance on the covariate’s distributions in the groups
and, moreover, that the conditional power can be strongly impacted even at modest
levels of imbalance that arise surprisingly often in randomized studies. Thus, our
simulation study assessed whether the conditional power of each fixed point method
accurately predicts the rejection probability in the presence of influential covariates.
We used the t statistic of imbalance (Ciolino et al. 2015) to measure the disparity
in covariate distributions between treatment groups for scenario 1. It has the form
timb = (Z̄2,1 − Z̄2,0)/(sz

√
1/n1 + 1/n0), where sz is the pooled standard deviation of

Z2, and nk and Z̄2,k are the number of subjects and the average value of Z2 in treatment
group k. The unconditional power for the test, Pβ1(reject H0) = E[CPk(β1)], is
obtained by integrating over the data’s distribution.

To determine whether covariate imbalance impacts the rejection probability, we fit
the logistic regression models

logit Pβ1(reject H0 | timb,k) = logit CPk(β1) + ν1timb,k + ν2|timb,k |

for stages k = 1, 2 and for β1 = 0, δ, where timb,k denotes the t statistic of imbalance
in the set of patients accrued by interim analysis k. Box plots of the parameter estimates
ν̂1 and ν̂2 summarize the results of thesemodels under the various choices of simulation
parameters for each test considered. The imbalance impacts the conditional likelihood
of rejecting the null hypothesis if and only if ν̂1 and/or ν̂2 differ from 0 substantially.

Coefficient estimates of |timb| for the survival tests under the null hypothesis are
shown in Fig. 3a, b for stages 1 and 2, respectively. The box plots for the direct binomial
and stratified Cox based tests are centered near 0, whereas those for the unadjusted
tests show a positive bias that increases as |timb| does. This implies that imbalance on
an influential covariate between treatment groups will cause the conditional power of
the unadjusted tests at β1 = 0 to underestimate the true type I error rate with increasing
severity as the size of the imbalance grows. Moreover, increasing the sample size is
not a remedy, as the magnitude of this underestimation is similar for the three sample
sizes considered.

Figure 3c, d identify a similar trend for timb under the alternative β1 = δ at stages 1
and 2. The coefficient for timb is close to 0 for the proposed tests but has a negative bias
for the others. When a negative imbalance exists between groups with respect to their
covariate distributions, the conditional power of the Kaplan–Meier and Nelson–Aalen
based tests at β1 = δ will tend to underestimate the true power of this test; moreover,
this inaccuracy will increase as timb does. These results imply that if low conditional
power is used as a basis for early stopping, the trial will be more likely to stop wrongly
for futility when a treatment effect actually exists.
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Fig. 3 Influence of the t statistic of imbalance on conditional power: Estimates of the coefficients of timb
and |timb| in the conditional power models. Row 1 shows plots of point estimates of the effect of |timb|
frommodels of conditional power under the null hypothesis for stages 1 and 2, while row 2 shows estimates
of the effect of timb for conditional power under the alternative. Box plots summarize these estimates for
each choice of sample size, under each group sequential test considered [Stratified Cox (C), direct binomial
regression (D), Kaplan–Meier (K), and Nelson–Aalen (N)]

Similar trends are apparent for the competing risks methods considered, illustrated
by Fig. 4. Conditional power of the Aalen–Johansen based test fails to represent accu-
rately the rejection probability under either hypothesis,while that of the direct binomial
test is valid. Though our simulations did not include futility stopping boundaries in the
group sequential design, the implications of covariate imbalance are similar whether
prespecified stopping boundaries or conditional power is used for curtailment. Namely,
for the unadjusted tests considered, the stagewise type I error rates increase as the size
of the covariate imbalance does, while the stagewise power levels decrease as the t
statistic of imbalance increases, increasingly favoring the control group.
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Fig. 4 Influence of the t statistic of imbalance on conditional power: Estimates of the coefficients of timb
and |timb| in the conditional power models. Row 1 shows plots of point estimates of the effect of |timb|
frommodels of conditional power under the null hypothesis for stages 1 and 2, while row 2 shows estimates
of the effect of timb for conditional power under the alternative. Box plots summarize these estimates for
each choice of sample size, under each group sequential test considered [Direct binomial regression (D)
and Aalen–Johansen (A)]

4.4 Nonproportional hazards

Finally, we investigate how robust the survival methods are to deviations from the
proportional hazards assumption. This involves a third set of simulations under which
survival times are generated as T |Z , X ∼ Weibull (shape α, rate γ ), where Z is a
binary treatment indicator, X is a binary influential covariate, α = α0 + aZ + bX
and γ = γ0 exp(cZ + dX) such that the corresponding survival function has the form
S(t |Z , X) = exp(−γ tα). The survival function at s0 can be written in the form of the
direct binomial regression model with a complementary log–log link as S(s0|Z , X) =
exp[− exp{Λ0 + β ′(Z , X)}], where Λ0 = α0 log s0 + log γ0, β1 = a log s0 + c, and
β2 = b log s0 + d. Thus, a test of H0 : β1 = 0 is a valid test of whether a treatment
effect on survival at s0 exists.
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Furthermore, if X has an effect on the shape parameter, i.e. b is nonzero, hazards
will fail to be proportional within treatment groups and the stratified Cox model is
violated. To control the degree of this violation, we examine the log hazard ratio of X ,
β2 = b log s0 + d. The first summand depends on the survival time considered, while
the second does not. Then the ratio r = b log s0/β2 represents the proportion of the
effect of X that is time varying. We suspect that the performance of the stratified Cox
model based test will degrade as this ratio increases from 0 to 1.

For this third scenario, we consider testing for a treatment effect in the presence
of crossing survival curves by comparing survival at a late time point, s0 = 1.5
years. Simulations were conducted under these choices of parameters: sample sizes
per treatment group, n = 100, 200, or 400; accrual period of 2 or 4years; independent
censoring, exponentially distributed at a rate of 5% or 10% per year; a = 0 or δ,
a treatment effect at which the proposed test should have 80% power under its test
statistics’ asymptotic distribution; β2 = log 1.5 or log 2, and r = 0, 0.25, 0.5, and
0.75. Other parameters of the data generating distribution are set at α0 = 3, λ0 = 0.2,
and c = 0. This implies that a = β1/ log s0, so an appropriate value of a can be chosen
so that the direct binomial regression model will have 80% nominal power.

Figure 5 shows box plots of cumulative power of the four survival tests for each
level of covariate strength and ratio of time-varying effect of the covariate considered.
As before, direct binomial regression is used as the reference, with the treatment
effect size a chosen under the alternative to give this test a nominal power of 80%.
Several trends are apparent. For r = 0, where the data are generated from a stratified
Cox model, the Cox model based test has superior overall power compared to direct
binomial regression; when r = 0.25, the Cox based test has slightly higher power; and
with r = 0.5 and 0.75, direct binomial regression has better power. As the covariate
effect β2 increases, we see a large drop in the power of the Cox model based tests and
the unadjusted tests, but no effect on the power for direct binomial regression. The
unadjusted tests have overall power near 80% for the smaller value of β2 but fall short
for the larger value. Somewhat surprisingly, the Cox based test has inferior power
to the unadjusted tests when the covariate has a strong time varying effect (r = 0.5
and 0.75). In summary, the direct binomial regression test is much more robust to the
presence of nonproportional hazards and covariate influence than the Cox based and
unadjusted tests.

5 Example

We illustrate the application of the proposed tests using data from the Blood and
Marrow Transplant Clinical Trials Network 0402 (Cutler et al. 2012), a randomized
clinical trial comparing an experimental prophylactic therapy for graft versus host
disease (GVHD), Tacrolimus and Sirolimus (Tac/Sir), to the current standard regi-
men of Tacrolimus and Methotrexate (Tac/Mtx). 304 patients were randomized at a
1:1 ratio to the two arms. The treatment groups did not differ significantly on the
primary endpoint, acute GVHD-free survival at day 114 post transplant, a composite
endpoint indicating that a patient neither suffered acute GVHD nor died. However,
this was evaluated by a pointwise comparison of Kaplan–Meier estimators, which did
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Fig. 5 Comparison of stagewise cumulative power for survival tests under nonproportional hazards: Empir-
ical estimates of the cumulative power at each stage of group sequential tests of treatment effect based on
a stratified Cox model (C), direct binomial regression (D), and two-sample comparisons of Kaplan–Meier
(K) and Nelson–Aalen (A) estimators. Box plots summarize the estimates for each choice of influential
covariate strength, β2. Plots (a)–(d) show results of simulations with ratio r = 0, 0.25, 0.50, and 0.75,
respectively. Black lines indicate the nominal cumulative power rates for the direct binomial regression
based test

not account for covariates. Moreover, at 304 patients, this trial is considered a fairly
large trial in the field of blood and marrow transplantation; although a fixed sample
design was employed for its design and analysis, a group sequential design could have
offered the possibility of early stopping and/or early reporting of study results had
overwhelming evidence of efficacy or futility been seen at interim.

Our reanalysis of the trial data assesses the treatment effect on two endpoints: acute
GVHD-free survival at day 114, a survival outcome, and extensive chronic GHVD
(ECGVHD) at 2years, a competing risk outcome that has death as the competing
event.Karnofsky performance score (≥ 90 vs.< 90), donor-recipient gendermatching
(female donor/male recipient vs. others), and recipient age (0–40 vs. 40–50 vs. > 50
years) are suspected to influence the risk of both GVHD and death. The proposed
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Fig. 6 Group sequential analysis for the examples: Stopping boundaries and test statistics for each stage
are shown for the alpha spending functions and analysis methods considered for (a) survival tests on acute
GVHD-free survival at Day 114 and (b) cumulative incidence tests on extensive chronic GVHD at 2years
post-transplant. The respective stopping boundaries for the ρ = 1 and ρ = 3 alpha spending functions
are shown by the dotted and solid lines. Stagewise test statistics for the direct binomial model based tests
are shown by a plus symbol, for the Cox model based test by an x symbol, and for the Kaplan–Meier and
Aalen–Johansen tests by a circle

tests will be applied to account for the potential influence of these covariates on acute
GVHD-free survival and ECGVHD.

A three stage group sequential design is used for treatment evaluation with interim
analyses performed at calendar times corresponding to maximum information frac-
tions of 1/3 and 2/3. A type I error spending function is used to permit early stopping
for efficacy, selected from the power family in Jennison and Turnbull (1999) with
ρ = 1 or 3. Direct binomial regression, the stratified Cox model test, and a compari-
son of Kaplan–Meier estimators were used to test for treatment effect on aGVHD-free
survival at day 114. Standardized test statistics for the three stages are Zd1 = 0.550,
Zd2 = −0.334, and Zd3 = −0.857 for direct binomial regression; Zc1 = 0.352,
Zc2 = 0.143, and Zc3 = −0.457 for the Cox model based test; and Zk1 = 0.344,
Zk2 = −0.558, and Zk3 = −0.945 for the Kaplan–Meier based test.

The ρ = 1 error spending function gives stagewise critical values of c1 =
2.394, c2 = 2.294, and c3 = 2.200; and the ρ = 3 function gives values of
d1 = 3.113, d2 = 2.462, and d3 = 2.009.With either spending function, all three tests
fail to find compelling evidence of a treatment effect on acute GVHD-free survival at
day 114 (see Fig. 6a).

On the other hand, for a comparison of treatment effect on the cumulative incidence
of ECGVHD at 2years, the adjusted and unadjusted methods draw different conclu-
sions. Standardized test statistics at the three stages are Zb1 = 2.325, Zb2 = 1.343,
and Zb3 = 1.900 for direct binomial regression and are Za1 = 2.612, Za2 = 1.461,
and Za3 = 2.003 for a two sample comparison of Aalen–Johansen estimators. If the
ρ = 1 function is used, the Aalen–Johansen based test will reject the null hypothesis
at stage 1, while the binomial regression test will accept the null. Under the ρ = 3
function, both tests will accept the null. With ρ = 1, the Aalen–Johansen test asserts
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that Tac/Sir is inferior to Tac/Mtx in the prevention of ECGVHD, while the direct
binomial regression test finds no evidence that the effects differ appreciably. Under
the ρ = 3 function, neither method finds a treatment effect on ECGVHD occurrence
at 2years (see Fig. 6b).

6 Discussion

This paper introduced group sequential tests for treatment effect on survival and
cumulative incidence probabilities at a fixed time that adjust properly for influen-
tial covariates, which was verified through a simulation study of clinical trials under
realistic conditions. Moreover, these methods offer test statistics whose asymptotic
distributions have an independent increments structure, making standard boundary
specification methods applicable. Among the two proposed survival tests, the direct
binomial regression method offers more robust treatment evaluation than the stratified
Cox model based test when the proportionality assumption is violated for covariates.
On the other hand, the latter method can provide a modest boost in power when this
assumption holds.

The derivations for the direct binomial regressionmodel rely on the assumption of a
censoring distribution that is independent of covariates. For some studies, though, this
assumption may be untenable. The inverse weighting used in parameter estimation of
this model involves an estimator of the censoring distribution function. We may be
able to maintain validity of this group sequential method under covariate-dependent
censoring through an appropriate adjustment of the censoring distribution’s estimator
in a manner similar to that employed by He (2014). This requires showing that the
estimating process of the censoring distribution converges uniformly in probability to
the true distribution. The Kaplan–Meier estimator has this property (Andersen et al.
1993); it may be possible to show that a distributional estimate obtained from the Cox
model is also uniformly consistent.

Our methods involve comparing efficacy on survival or cumulative incidence at
a single time point using independent subjects. These methods could be extended to
accommodate two situations of increased complexity: treatment evaluation at multiple
time points, and clustering of subjects. The former case may arise if investigators wish
to consider the treatment effect on a collection of time points of clinical significance,
while the latter can occur in a multicenter clinical trial. Direct binomial regression at
multiple time points with independent subjects was investigated by He (2014), with
each time point corresponding to one parameter in the regression model and GEE used
to account for within subject correlation across time points. This could be extended
to provide a group sequential Wald test of treatment effect at several time points.
Similarly, we may be able to derive the asymptotic joint distribution of the Breslow
estimator at multiple event times for the stratified Cox model, which would provide
a means for an overall test of treatment effect over several time points as well. For
analyzing clustered time to event observations, Logan et al. (2011) presented amethod
based on pseudovalues that fits a marginal regression model using a GEE approach to
adjust forwithin cluster correlation. A similar approachmight be applied for parameter
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estimation of a marginal direct binomial regression model in both the fixed sample
and group sequential settings.

Although inverse probability weighting methods are known for their robustness,
their estimates can suffer from high variance. For simplicity, we used identity weights
in the estimating equations of the direct binomial regression models. However, this
practice is known to be inefficient. A procedure to specify weights accurately for more
efficient parameter estimation may enhance the treatment evaluation of this method.
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