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Abstract
We address the testing problem of proportional hazards in the two-sample survival
setting allowing right censoring, i.e., we check whether the famous Cox model is
underlying. Although there are many test proposals for this problem, only a few papers
suggest how to improve the performance for small sample sizes. In this paper, we do
exactly this by carrying out our test as a permutation aswell as awild bootstrap test. The
asymptotic properties of our test, namely asymptotic exactness under the null and con-
sistency, can be transferred to both resampling versions. Various simulations for small
sample sizes reveal an actual improvement of the empirical size and a reasonable power
performance when using the resampling versions. Moreover, the resampling tests per-
formbetter than the existing tests ofGill andSchumacher andGrambsch andTherneau.
The tests’ practical applicability is illustrated by discussing real data examples.

Keywords Wild bootstrap · Permutation · Logrank test · Right censoring ·
Proportional hazards · Cox model

1 Introduction

The famous model of Cox (1972) for proportional hazards is very popular in practice.
That is why we need tests to check its model assumptions, i.e., α2(t) = ϑα1(t) for
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all t ∈ [0,∞) in the two-sample case, where α j denotes the group-specific hazard
rate. Since the Cox model is more than 40 years old it is not surprising that several
statisticians already suggested how to check the proportional hazard assumption. It is
not possible to comment the whole recent literature but we want to give at least a (not
complete) list of contributions to this topic:Cox (1972), Schoenfeld (1982), Lin (1991),
Lin et al. (1993), Grambsch and Therneau (1994), Hess (1995), Sengupta et al. (1998),
Scheike and Martinussen (2004), Kraus (2009) and Chen et al. (2015). Under the
assumption of proportional hazards in the two-sample case weighted rank estimators
of Andersen (1983) can be used to estimate the unknown proportionality factor ϑ . The
idea ofGill andSchumacher (1987)was to compare twodifferent of these estimators.A
similar approach is coming fromBluhmki et al. (2019). Theymeasured the discrepancy
of the ratio process of the group-specificNelson–Aalen estimators frombeing constant.
In contrast to the main contributions basing on Gaussian approximations the method
of Bluhmki et al. (2019) based on a resampling technique, namely the wild bootstrap
of Wu (1986). Resampling techniques are well known to improve the tests’ finite
sample performance. In this paper, we suggest a (further) new test for checking the
Cox model in the two-sample case. The novelty is not the test statistic itself, which is
similar to the one of Wei (1984), but that the test can be conducted as a permutation
as well as a wild bootstrap test. For small sample sizes resampling tests are known
to perform (often) better than their asymptotic version. That is why they should be
preferred. Moreover, the favorable benefit of the permutation test is its finite exactness
under exchangeability. At the first sight it is, maybe, surprising that the permutation
works for the whole null of proportional hazards since the data is not exchangeable
in general because of two reasons: (1) we allow different censoring distribution for
the two groups (2) the proportionality factor ϑ may differ from 1. Neuhaus (1993)
already showed that his permutation approach works despite the first point for testing
of distributional equality in the two-sample setting, confer Janssen and Pauls (2003)
and Pauly (2011) for a general setting, and in this paper we prove the extension of this
idea to the null of proportional hazards.

The paper is organized as follows. In Sect. 2, we introduce the survival set-up,
the counting process notation, the logrank process and Andersen’s estimator for the
proportionality factor ϑ . The asymptotic exactness of the test under the null and the
test’s consistency are derived in Sect. 3. The resampling techniques, permutation and
wild bootstrapping, are introduced in Sect. 4. Moreover, we transfer the theoretical
asymptotic properties of the test to both resampling versions. Simulations for various
scenarios comparing our method with the ones of Gill and Schumacher (1987) and
of Grambsch and Therneau (1994), respectively, are presented in Sect. 5. In Sect. 6,
we apply our tests to two real data sets to demonstrate the practical applicability. All
proofs are deferred to the “Appendix”.

2 Two-sample survival set-up

Let the usual two-sample survival set-up be given by survival times Tj,i ∼ Fj and
censoring times C j,i ∼ G j for all individuals i = 1, . . . , n j within the two groups
j ∈ {1, 2}, where Fj and G j are continuous distribution functions on the positive line.
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All random variables T1,1,C1,1, . . . , T2,n2 ,C2,n2 are assumed to be independent. We
denote by n = n1 + n2 the pooled sample size which is supposed to tend to infinity
in our asymptotic considerations below. To shorten the notation, all subsequent limits
are meant as n → ∞ if not explicitly stated otherwise. The functions of interests are
the (group specific) cumulative hazard functions A1, A2 of the survival times defined
by A j (t) = − log(1−Fj (t)) = ∫ t

0 (1−Fj (s))−1 dFj (s) (t > 0). To be more specific,
we want to test the proportional hazard assumption, i.e.,

H0 : A2 = ϑ A1, ϑ > 0,

while only the possibly censored times X j,i = min(Tj,i ,C j,i ) and their censoring
status δ j,i = 1{X j,i = Tj,i } ( j = 1, 2; i = 1, . . . , n j ) can be observed.

In the following, we introduce important statistics and estimators by adopting the
counting process notation of Andersen et al. (1993). Define N j,i (t) = 1{X j,i ≤
t, δ j,i = 1} and Y j,i (t) = 1{X j,i ≥ t} (t ≥ 0). Then N j (t) = ∑n j

i=1 N j,i (t)
equals the amount of uncensored survival times, so-called events, in group j up to the
time point t and Y j (t) = ∑n j

i=1 Y j,i (t) counts the individuals belonging to group j
under risk at the time point t . In a similar way, we can interpret the pooled versions
N = N1 + N2 and Y = Y1 + Y2. The Nelson–Aalen estimator Â j for A j is given by

Â j (t) =
∫ t

0

1{Y j (s) > 0}
Y j (s)

dN j (s) (t ≥ 0; j = 1, 2).

It is well known that this nonparametric estimator obeys a central limit theorem, see
Andersen et al. (1993). Heuristically, we have Â2 ≈ ϑ Â1 under H0. Based on this
idea Andersen (1983) as well as Begun and Reid (1983) suggested to estimate the
underlying ϑ by weighted rank estimators given by

ϑ̂K =
∫
K (s) d Â2(s)∫
K (s) d Â1(s)

(1)

for an appropriate (predictable) weight function K . Famous weight functions K cor-
responding to weighted logrank tests have the shape K = (w ◦ F̂)n−1Y1Y2/(Y1 +Y2)
for w ∈ W = {w : [0, 1] → (0,∞) continuous and of bounded quadratic variation},
where F̂ denotes the Kaplan–Meier estimator of the pooled sample, i.e.,

1 − F̂(t) =
∏

( j,i):X j,i≤t

(
1 − δ j,i

Y (X j,i )

)
(t ≥ 0).

This class includes, among others, the classical logrank weight KL = n−1Y1Y2/(Y1+
Y2) and the weight KHF = KL F̂ρ suggested by Harrington and Fleming (1982). By
Gill (1980) the estimator ϑ̂K obeys a central limit theorem. The test for H0 of Gill
and Schumacher (1987) is based on the observation that the quotient of two different
rank estimators ϑ̂1 and ϑ̂2 is approximately equal to 1, independently of the true
proportionality factor ϑ . Closely related to these rank estimators are (extended) rank
tests for the null of equal distributions H=

0 : F1 = F2, or equivalently H=
0 : A1 = A2.

Probably, the most famous member is the classical logrank test corresponding to the
weight KL . This specific test, which was first proposed byMantel (1966) and Peto and
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Peto (1972), is asymptotically efficient for proportional hazard alternatives. Enlarging
the restricted null H=

0 to our null H0 of proportional hazardswe need to correct, among
others, KL . The corrections lead to the following rescaled logrank statistic:

Sn(t, ϑ) =
( n

n1n2

)1/2 ∫

[0,X([nt])]
Y1Y2

Y1 + ϑY2
( d Â2 − ϑ d Â1), (2)

where [x] denotes the integer part of x , we set X(0) = 0 and X(1) ≤ · · · ≤ X(n)

are the order statistic of the pooled sample. Sn(1, 1) is the classical logrank statistic.
The additional argument ϑ is a correction for the case A2 = ϑ A1, details are carried
out in the subsequent section. By Gill (1980) Sn(1, 1) is asymptotically normal. An
extension of his estimator for the limiting variance to our situation is

σ̂ 2(t, ϑ) = n

n1n2

∫
1[0,X([nt])]

ϑY1Y2
(Y1 + ϑY2)2

d(N1 + N2). (3)

Both, Sn(t, ϑ) and σ̂ 2(t, ϑ), can be rewritten as linear rank statistics noting that all
involved processes only jump at the order statistics X(i). Let δ(i) be the censoring status
corresponding to X(i). Moreover, we introduce the group status c(i) of the individual
corresponding to X(i). To be more specific, let c(i) = 1 if X(i) belongs to the second
group and c(i) = 0 if it is a member of the first group. Then

Sn(t, ϑ) =
( n

n1n2

)1/2 [nt]∑

i=1

δ(i)

(
c(i) − ϑ

∑n
m=i c(m)∑n

m=i (1 − c(m)) + ϑ
∑n

m=i c(m)

)
, (4)

σ̂ 2(t, ϑ) = n

n1n2

[nt]∑

i=1

δ(i)
ϑ

∑n
m=i c(m)

∑n
m=i (1 − c(m))

(
∑n

m=i (1 − c(m)) + ϑ
∑n

m=i c(m))2
. (5)

3 Our test statistic and its asymptotic properties

For our asymptotic consideration we need two (common) assumptions. Let τ j =
sup{x > 0 : (1 − Fj (x))(1 − G j (x)) > 0} ( j = 1, 2) be the upper limit of the
observation times X j,i of group j , where τ j = sup[0,∞) = ∞ is allowed. Due to the
weighting integrands in (2) and (3) only observations X j,i ≤ τ = min(τ1, τ2) have an
impact in our statistic analysis. To observe not pure censored times we suppose that
F1(τ ) > 0 or F2(τ ) > 0 holds. Moreover, we suppose that no group vanishes, i.e.,

0 < lim inf
n→∞

n1
n

≤ lim sup
n→∞

n1
n

< 1.

The continuous martingale techniques are a favorable tool to obtain distributional
convergence of the weighted rank estimators as well as the weighted rank statistics,
or, more generally, the weighted rank processes. Since the most of these statistic can
easily bewritten as linear rank statistics, compare to (4), discretemartingale techniques
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seems to be more natural. In our situation, it can be shown that i 
→ Sn(i/n, ϑ) is a
discrete martingale with respect to the filtration

Fn,i = σ(d(1), . . . , d(i), δ(1), . . . , δ(i+1)), (6)

where d(1), . . . , d(n) ∈ {( j, i) : 1 ≤ i ≤ n j ; j = 1, 2} are the so-called anti ranks,
i.e., if d(k) = ( j, i) then X(k) is the value of individual i in group j . Compared to
the usual filtration for the continuous approach we know a little bit about the future
under Fn,i , namely the next censoring status δ(i+1). By using this discrete filtration
Janssen and Neuhaus (1997) pointed out that the summands of Sn(1, 1) in (4) can be
interpreted as “observed minus expected” under the restricted null H=

0 : A1 = A2,
see also Lemma 5.3 of Janssen andWerft (2004). We show that this can be extended to
general ϑ and our general null H0. Consequently, we can apply an appropriate discrete
martingale central limit theorem, see Hall and Heyde (1980) and Jacod and Shiryaev
(2003) as well as the references therein.We obtain under A2 = ϑ A1 that t 
→ Sn(t, ϑ)

converges in distribution to a rescaled Brownian motion B ◦σ 2 on the Skorohod space
D[0, 1] containing all right-continuous functions x : [0, 1] → R with existing left-
hand limits. The rescaling function t 
→ σ 2(t) can be estimated by σ̂ 2(t, ϑ). Since the
proportionality factor ϑ is unknown the canonical solution is to plug-in an appropriate
estimator for it. For the readers’ convenience we restrict here to the (logrank) estimator
ϑ̂ = ϑ̂K from (1) with K = KL. In the “Appendix” the regularity conditions for
more general estimators can be found, for instance, for weight functions of the shape
K = (w ◦ F̂)KL with w ∈ W . The plug-in-estimator leads to a non-vanishing rest
term Rn(t) = Sn(t, ϑ)− Sn(t, ϑ̂) converging in distribution to ZKσ 2(t) for all t > 0,
where ZK is a normal distributed random variable. To eliminate this rest term and
the dependence on the unknown σ 2 we suggest the following transformation of the
statistic

Tn = σ̂ 2(1, ϑ̂)−1/2 sup
t∈[0,1]

{∣
∣
∣Sn(t, ϑ̂) − σ̂ 2(t, ϑ̂)

σ̂ 2(1, ϑ̂)
Sn(1, ϑ̂)

∣
∣
∣
}
.

Theorem 1 Under H0 our Tn converges in distribution to T = sup{|B0(t)| : t ∈
[0, 1]}, where B0 is a Brownian bridge.

Note that the classical Kolmogorov–Smirnov test converges in distribution to the same
T . Hence, the distribution of T is well-known. Tables consisting its quantiles can be
found in Hall and Wellner (1980) and Schumacher (1984). Let α ∈ (0, 1) be a fixed
level and qα be the α-quantile of T . Then we obtain by ϕn,α = 1{Tn > q1−α} an
asymptotically exact test of size α, i.e., E(ϕn,α) → α under H0. In contrast to the
test of Gill and Schumacher (1987), which was designed for monotonic hazard ratio
alternatives, our test is an omnibus test, as the one of Wei (1984), i.e., the test is
consistent for any relevant alternative.

Theorem 2 Consider a general alternative H1:{ for every ϑ > 0 there is some x ∈
(0, τ ) such that A2(x) �= ϑ A1(x)}. Then our test ϕn,α is consistent for H1, i.e.,
E(ϕn,α) → 1 under H1 for all α ∈ (0, 1).
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4 Resampling tests

4.1 Permutation test

Let c(n) = (c(1), . . . , c(n)) and δ(n) = (δ(1), . . . , δ(n)). It is easy to check that our test
statistic Tn only depends on (c(n), δ(n)) and, thus, we write Tn(c(n), δ(n)) instead of
just Tn throughout this section. Instead of permuting the pairs (c(i), δ(i))we follow the
approach of Neuhaus (1993) and Janssen and Mayer (2001), both studied weighted
logrank test for testing H=

0 : F1 = F2. Simulations of Neuhaus (1993) and Heller
and Venkatraman (1996) promise a good finite sample performance of these weighted
logrank tests. Their approach is to keep δ(n) fixed and only permute randomly the group
membership c(i). In this spirit let cπ

n = (cπ
n,1, . . . , c

π
n,n) be a uniformly distributed

permutation of c(n) independent of the data {(X j,i , δ j,i ) : 1 ≤ i ≤ n j ; j = 1, 2}.
Theorem 3 Let T be defined as in Theorem 1. Then we have under H0 as well as under
any fixed alternative H1 from Theorem 2 that in probability

sup
t≥0

∣
∣
∣P(Tn(c

π
n , δ(n)) ≤ t |δ(n)) − P(T ≤ t)

∣
∣
∣ → 0.

Let qπ
n,α (̃δn) (α ∈ (0, 1); δ̃n ∈ {0, 1}n) be the (left continuous) α-quantile of the

distribution of Tn(cπ
n , δ̃n). Then ϕπ

n,α = 1{Tn(c(n), δ(n)) > qπ
n,1−α(δ(n))} (α ∈ (0, 1))

is an asymptotically exact test for H0, i.e., E(ϕπ
n,α) → α under H0. Since the statement

of Theorem 3 is also valid under fixed alternatives H1 we can deduce fromLemma 1 of
Janssen and Pauls (2003) that ϕπ

n,α is consistent for general alternatives H1 introduced
in Theorem 2. To sum up, the permutation test and the asymptotic test have the same
asymptotic behavior under the null as well as under fixed alternatives. However, our
simulations show that for finite sample size the permutation test outperformed the
asymptotic test. Partially, this can be explained by the following observation:

Since the distribution of Tn(cπ
n , δ̃n) is discrete for all δ̃n ∈ {0, 1}n we may consider

a randomized version

ϕ̃π
n,α = ϕπ

n,α + γ π
n,α(δ(n))1{Tn(c(n), δ(n)) = qπ

n,1−α(δ(n))}

with γ π
n,α (̃δn) ∈ [0, 1] (α ∈ (0, 1), δ̃n ∈ {0, 1}n). The advantage of the permutation

approach compared, for instance, to the bootstrap approach and, of course, to the
asymptotic test is that the (randomized) permutation test is usually finitely exact for at
least a restricted null. In our situation, c(n) and δ(n) are independent under the restricted
null H=

0 : {F1 = F2,G1 = G2}, see Neuhaus (1993). Hence, the randomized permu-
tation test is even finitely exact, i.e., E(ϕ̃π

n,α) = α under H=
0 .

4.2 Wild bootstrap

In this section, we apply the wild bootstrap technique of Wu (1986). Introduce n
independent and identical distributed real-valued G1,1, . . . ,G1,n1 ,G2,1, . . . ,G2,n2
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with E(G j,i ) = 0 and Var(G j,i ) = 1. Then the wild bootstrap version ÂG
j ( j = 1, 2)

of the Nelson–Aalen estimator Â j is given by

ÂGj (t) =
∫ t

0

1{Y j (s) > 0}
Y j (s)

d
( n j∑

i=1

G j,i N j,i (s)
)

=
n j∑

i=1

G j,i

∫ t

0

1{Y j (s) > 0}
Y j (s)

dN j,i (s).

Now, we replace in the definition of Sn the usual Nelson–Aalen estimators Â1 and Â2
by their wild bootstrap versions ÂG

1 and ÂG
2 , respectively, and we denote the resulting

statistic by SGn . Since the limit of SGn is Gaussian a choice of normal distributed
multipliersG j,i seems to be plausible, as used, for example, in a competing risk setting
by Lin (1997). But taking the (discrete) structure of counting processes into account
we should also consider discrete distributions for the multipliers G j,i . For example,
the Rademacher distribution, i.e., the uniform distribution on {−1, 1}, see Liu (1988),
or a centred Poisson distribution, see Beyersmann et al. (2013) and Mammen (1992).
The latter is highly connected to the classical bootstrap, drawing with replacement,
see the previously mentioned references. Janssen and Pauls (2003) offered a unified
general approach for bootstrap and permutation statistics. Now, replacing Sn by SGn
in our test statistic Tn we get our wild bootstrap test statistic denoted by TG

n . All other
statistics, for instance σ̂ 2 and ϑ̂ , remain unchanged. In contrast to the permutation
approach, where we kept only the censoring status fixed, we keep here the whole data
fixed.

Theorem 4 Let T be defined as in Theorem 1. Then under H0 we have in probability

sup
x≥0

∣
∣
∣P(T G

n ≤ x |(X j,i , δ j,i ) : 1 ≤ i ≤ n j ; j = 1, 2) − P(T ≤ x)
∣
∣
∣ → 0. (7)

Let qGn,α = qGn,α((X j,i , δ j,i )1≤i≤n j , j=1,2) (α ∈ (0, 1)) be an α-quantile of T G
n given

the data (X j,i , δ j,i )1≤i≤n j , j=1,2. Then ϕG
n,α = 1{T G

n > qGn,α} (α ∈ (0, 1)) is an
asymptotically exact test for H0, i.e., E(ϕπ

n,α) → α under H0. In contrast to the
permutation statistic, see Theorem 3, the convergence in (7) is only valid under the
null. But we can show that the conditional distribution of TG

n is tight under alternatives
H1 introduced in Theorem 2. As a result we get the bootstrap test’s consistency.

Theorem 5 For all alternatives H1 discussed in Theorem 2 we have E(ϕG
n,α) → 1

under H1 for all α ∈ (0, 1).

5 Simulations

5.1 Type I error

Tocompare the behavior of our asymptotic and resampling testswith the test ofGill and
Schumacher (1987) and the one of Grambsch and Therneau (1994), we performed a
simulation study for small sample sizes under different scenarios. The simulationswere
conducted with R (version 3.5.0), see RCore Team (2019). In this section, we consider
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Table 1 Simulation scenarios

Sce. κ1 Censoring dist. r1 = P(C1,i < T1,i ) (%) r2 = P(C2,1 < T2,1) (%)

1 0.5 Unif(0, μ j ,ϑ ) 27 50

2 15/35 Exp(μ j ,ϑ ) 60 20

3 17/28 Unif(0, μ j ,ϑ ) 30 15

the behavior of the tests mentioned before under the null H0 : A2 = ϑ A1, ϑ > 0.
Since we are dealing with rank tests, monotone transformations of the data do not
affect the outcome of the test statistic. That is why we can assume without loss of
generality that F1 belongs to a standard exponential distribution Exp(1) and, thus,
under the null H0 the second group follows also a exponential distribution Exp(ϑ)

with general parameter ϑ > 0. We considered 9 different proportionality factors
ϑ ∈ {0.2, 0.4, 0.6, 0.8, 1, 2, 3, 4, 5} and two different sample sizes n ∈ {56, 224}.
To discuss balanced and unbalanced sample size cases as well as different censoring
settings, we took 3 different Scenarios into account, which are summarized in Table 1.
The group sizes are n1 = κ1n and n2 = n − n1. For the censoring distribution, we
used exponential distributions C j,i ∼ Exp(μ j,ϑ ) and uniform distributions C j,i ∼
Unif(0, μ j,ϑ ) on the interval (0, μ j,ϑ ). The parametersμ j,ϑ are chosen such that they
lead to an average censoring rate of r j specified in Table 1. In the supplement, we
explain how these parameters can be determined. The empirical sizes were estimated
based on 5000 iterations and the resampling tests’ quantiles were estimated by 1000
iterations.

For our tests we used the estimator ϑ̂ = ϑ̂K with the logrank weight K = KL as
recommended before. For the test of Gill and Schumacher (1987) we followed their
suggestion and used the two weights corresponding to the logrank test and the Peto–
Prentice version, see Peto and Peto (1972) and Prentice (1978), of the generalized
Wilcoxon test, respectively. The test of Grambsch and Therneau (1994) is already
implemented in R, see the function cox.zph in the package survival.

For thewild bootstrapwe considered three different distributions for themultipliers,
namely the Rademacher, the standard normal distribution and the centred Poisson
distribution, see Sect. 4.2 for details to these distributions. To not overload the plots
we compare in Fig. 1 only the three bootstrap tests. The curves of the empirical
sizes are very close to each other and nearly indistinguishable in most of the cases.
In the comparison with the other tests, see Fig. 2, we just include the Rademacher
multipliers. In the small sample size setting n = 56, it is apparent that the test of Gill
and Schumacher (1987) leads to quite liberal decisions with empirical sizes between
5.5 and 8.4% and in average around 7%. For the larger sample size case (n = 224), the
empirical sizes are closer to the 5% benchmark with an overall average of 5.5%. The
test of Grambsch and Therneau (1994) is quite conservative, in particular, for ϑ far
away from 1. Our asymptotic test is also very conservative with empirical sizes around
2–3% for n = 56 and around 3–5% for n = 224. The permutation and Rademacher
bootstrap tests’ empirical sizes are always close to the nominal level 5% even in the
small sample size setting n = 56. But the Rademacher wild bootstrap and so the other
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Fig. 1 Empirical sizes of the three bootstrap tests based on the Rademacher (Rade), the normal (Norm) and
the centred Poisson (Pois) distribution

Fig. 2 Empirical sizes of our permutation (Per), bootstrap (Bo) and asymptotic (Asy) test as well as the
tests’ empirical sizes of Gill and Schumacher (1987) (GS) and Grambsch and Therneau (1994) (GT)

two wild bootstrap multipliers are slightly liberal in some settings, see in particular
the close-up in Fig. 1, whereas the permutation test’s empirical sizes are mainly below
the 5% level.

5.2 Power simulations

In this section, we present simulations about the tests’ power behavior under different
alternatives. Since the test of Gill and Schumacher (1987) was quite liberal in our
simulations for small sample sizes we exclude it here. Again, we restricted to the case

123



502 M. Ditzhaus, A. Janssen

that the survival times of the first group are Exp(1)-distributed. For the second group,
we disturbed the null assumption A2 = 0.6A1 in different hazard directions:

A2(t) =
∫ t

0
0.6 + w(F1(s)) dA1(s) (t ≥ 0), (8)

where the hazard direction w : [0, 1] → R is continuous and of bounded variation.
To be more specific, we considered two different hazard directions:

1. (central hazards) w(x) = 50x(1 − x).
2. (late hazards) w(x) = 70x3(1 − x).

Moreover, we included an alternative, which was already discussed by Kraus (2009):

A2(t) =
∫ t

0
α2(t) dt with α2(t) = 3

2
(t − 1)2. (9)

For the group sizes as well as the censoring, we considered again Scenarios 1–3
introduced in the previous section. Of course, the censoring parameters μ j,ϑ needed
to be updated for the second group. Due to the complex nature of the alternatives, it
is not as easy as before to determine μ j,ϑ and, thus, we decided to find appropriate
parameters by trial and error. The concrete values, which we used, can be found in the
supplement. The tests’ empirical power valueswere estimated based on 5000 iterations
and the resampling tests’ quantiles were estimated by 1000 iterations. In Tables 2, 3
and 4 we summarized the results for various sample sizes, where the highest values
are marked in boldface.

To summarize the results, we can observe that the GT test leads to the highest
empirical power values in scenario 2 for the late and central hazard alternative as
well as in scenario 3 for the late hazard alternative when n = 112. Nevertheless, our
permutation and our Rademacher wild bootstrap test can compete with it in these
settings. For all the other situations, our resampling tests lead to higher power values
than the GT test. In particular, our tests outperform the GT test for the alternative
given by (9). It can be seen that among the wild bootstrap approaches the Rademacher
multipliers are favorable. Moreover, we can observe that either all resampling test lead
to quite similar sizes or the permutation test’s size is the highest.

6 Real data examples

In this section, we illustrate the applicability of our tests by discussing two examples.
The first data set is taken from Fleming et al. (1980) and consists of times from
treatment to disease progression for 35 patients suffering on ovarian cancer, where 15
patients (9 censored) are categorized to stage II ovarian cancer and the remaining 20
individuals (4 censored) are stage IIa patients. The group balancing parameter κ1 and
the censoring rates of Scenario 2 from the previous section correspond exactly to the
situation here. The data set is available in the R package coin, see Hothorn et al. (2006),
and is denoted by ocarcinoma there. Gill and Schumacher (1987) already used this
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Table 2 Empirical power values (highest ones boldfaced) of the test of Grambsch and Therneau (1994)
(GT), our permutation (Per), our asymptotic (Asy) as well as our three different bootstrap test based on
Rademacher (Rade), normal (Norm) and centered Poisson (Pois) multipliers, respectively, for the central
hazard alternative

Sce. n Asy Per Norm Rade Pois GT

28 5.03 9.90 4.62 8.58 4.04 0.40

56 11.12 15.44 9.36 11.84 8.64 1.92

112 22.40 27.12 19.76 21.92 19.60 3.36

224 46.32 50.56 43.60 44.08 43.44 8.16

448 78.08 80.48 76.48 76.96 76.16 30.88

2 28 3.90 10.03 2.99 8.54 3.32 12.00

56 12.33 17.21 9.85 14.57 9.45 20.08

112 27.52 32.56 26.96 28.72 26.96 38.88

224 54.80 59.12 54.64 55.12 54.48 67.52

448 85.28 86.88 85.28 84.40 85.20 91.60

3 28 7.09 12.97 7.41 9.27 6.37 3.36

56 19.12 25.28 17.92 19.84 16.96 8.56

112 38.72 44.24 35.36 36.32 34.72 19.60

224 68.24 73.12 65.76 65.28 65.84 48.96

448 94.56 95.52 93.68 93.04 93.36 86.96

Table 3 Empirical power values (highest ones boldfaced) of the test of Grambsch and Therneau (1994)
(GT), our permutation (Per), our asymptotic (Asy) as well as our three different bootstrap test based on
Rademacher (Rade), normal (Norm) and centered Poisson (Pois)multipliers, respectively, for the late hazard
alternative

Sce. n Asy Per Norm Rade Pois GT

28 15.68 26.96 18.56 21.84 16.64 12.88

56 41.52 51.76 41.36 43.04 40.56 34.96

112 76.80 81.12 74.88 75.44 74.96 71.84

224 97.92 98.40 97.76 97.52 97.92 97.12

2 28 10.37 19.29 14.31 21.38 14.39 21.44

56 32.56 42.64 38.40 41.12 37.28 48.16

112 70.96 75.68 74.88 74.80 74.24 82.64

224 95.76 96.64 96.32 96.56 96.24 98.56

3 28 21.20 32.08 27.28 30.08 26.00 21.12

56 54.32 62.72 56.32 57.52 55.20 54.08

112 87.60 90.00 86.88 87.04 87.12 90.24

224 99.76 99.76 99.76 99.68 99.76 99.68

data set. In Fig. 3 the group-specific Nelson–Aalen estimators are plotted. In Table 5
we present the p values of the tests already used in the previous section. Hereby, we
restrict ourselves to the wild bootstrap test with Rademacher multipliers, due to our
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Table 4 Empirical power values
(highest ones boldfaced) of the
test of Grambsch and Therneau
(1994) (GT), our permutation
(Per), our asymptotic (Asy) as
well as our three different
bootstrap test based on
Rademacher (Rade), normal
(Norm) and centered Poisson
(Pois) multipliers, respectively,
for alternative given by (9)

Sce. n Asy Perm Norm Rade Pois GT

28 12.88 22.00 19.92 21.92 19.04 15.76

56 28.16 36.64 36.08 36.64 34.72 20.88

112 58.80 64.72 63.52 64.08 63.20 31.20

224 86.72 88.72 88.32 88.32 88.72 44.16

2 28 9.30 16.60 9.62 14.60 8.82 0.64

56 25.76 32.48 23.28 25.84 22.56 2.88

112 51.04 54.96 49.12 49.92 48.32 7.52

224 81.36 83.44 80.48 80.24 80.24 28.08

3 28 14.25 22.26 18.49 22.18 18.17 12.72

56 27.04 34.64 33.52 34.40 32.24 15.76

112 51.20 57.36 60.00 58.96 59.92 15.12

224 88.16 90.16 91.60 91.28 91.60 16.72

findings in Sect. 5.1. It can be seen that all tests reject the null of proportional hazards
for the nominal level of 5%,which is in line with the impression of non-proportionality
getting by the plot in Fig. 3.

The second data set is taken from Collett (2015), the data set can be found in
AppendixB.1 therein. The data set consists of the survival times of 44 patients suffering
from chronic active hepatitis. 22 of these patients were selected by random and got
the drug Prednisolone. The other 22 patients served as a control group and did not
get any treatment. The censoring rates are 50% in the treatment group and 27% in the
control group. Observe that Scenario 1 from the previous section reflects exactly the
group balancing and the censoring rates of this data set. The details of this clinical
trial were described by Kirk et al. (1980). In Fig. 3 the group-specific Nealson–Aalen
estimators are plotted and in Table 5 the tests’ p values can be found. Again, the
plot suggests non-proportionality of the hazards. However, in contrast to the previous
example only one test, namely the Rademacher wild bootstrap test, can reject the null
hypothesis of proportionality for the nominal level of 5%. It was already recognized
byKraus (2009) that the test of Gill and Schumacher (1987) cannot detect the presence
of non-proportional hazards for this data set. The reason is that the test was designed
for alternatives with a monotone ratio of the hazard rates, which is not the case in
this example. But also our asymptotic and our permutation test are not able to reject
the null, where the permutation test’s p value is quite close to the 5% benchmark
compared to the other tests.

7 Summary and discussion

Our simulations reveal that for small sample sizes both resampling techniques are a
real improvement of our asymptotic test and they lead to better results than the existing
(asymptotic) methods of Gill and Schumacher (1987) and Grambsch and Therneau
(1994). Regarding this observation, one may try to improve the finite sample perfor-
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Fig. 3 Group-specific Nelson–Aalen estimators for the ovarian data set (left) and the hepatitis data set
(right). The solid line corresponds to the patients with stage II (in the left plot) and to the control group (in
the right plot), respectively

Table 5 p values for the ovarian data set and the hepatitis data set of our asymptotic (Asy), permutation (Per)
and Rademacher wild bootstrap (Bo) tests as well as the test of Gill and Schumacher (GS) and Grambsch
and Therneau

Data set Asy Per Bo GS GT

Ovarian 0.0399 0.0157 0.0322 0.0024 0.0148

Hepatitis 0.1140 0.0691 0.0464 0.1437 0.1636

mance of other (existing) tests by using wild bootstrapping or permutation techniques
as a future project. The simulation results show that the (slightly conservative) per-
mutation test leads to higher power values than the (slightly liberal) wild bootstrap
approach in most of the cases. Moreover, we favor, in general, the permutation test due
to its finite exactness under the restricted null H=

0 : F1 = F2, G1 = G2. Altogether,
we recommend using the permutation approach. But, as explained in the following
two paragraphs, the wild bootstrap approach is more flexible regarding extensions.

As pointed out be one of the referees, other types of our statistic may be interesting
as well, e.g., an integral-type statistic in the spirit of Cramér and von Mises. Since
the wild bootstrap version directly recovers the covariance structure of the process Sn ,
we can transfer our results concerning wild bootstrapping to other statistic types by a
simplemodification of the proofs. However, the situation for the permutation approach
is more delicate because the asymptotic covariance structure differs from the one of
Sn . The solution for this problem is to use a studentized test statistic, as already done
several times in the literature (Neuhaus 1993; Janssen 1997, 2005; Janssen and Pauls
2003; Pauly 2011; Konietschke and Pauly 2012; Omelka and Pauly 2012; Chung and
Romano 2013; Pauly et al. 2015). A studentized version of, e.g., the integral-type
statistic is rather complicated in comparison to our sup-statistic. One reason for this
is the time invariance of the latter. That is why we prefer the sup-statistic in this
paper.
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We want to suggest two different ways to extend our approach to the k-sample
case. On the one hand, pairwise testing Hi j

0 : Ai = ϑi j A j for all 1 ≤ i < j ≤ k
can be done in a first step followed by the classical Bonferroni adjustment of the
resulting m = k(k − 1)/2 tests. If m is large, this leads to very conservative decisions
and we suggest to apply the FDR-controlling procedure of Benjamini and Yekutieli
(2001) instead. On the other hand, by more technical effort the process convergence
of Sn proven in the “Appendix” can be extended to the multivariate case. Then we
may use T̃n = maxi, j T

i j
n as our test statistic, where T i j

n denotes the sup-statistic
for the pairwise comparison of groups i and j . But the limiting distribution of T̃n
is not distribution-free in the case k > 2 and depends on the unknown distribution
functions F1,G1, . . . This problem may be solved by wild bootstrapping again or,
alternatively, by group-wise bootstrapping, where the bootstrap sample for group j is
drawn from the observations of group j only and not from the pooled observations,
as in the classical bootstrap of Efron (1979). In contrast to these bootstrap methods,
we do not expect the permutation approach to work because the statistic T̃n cannot be
studentized appropriately as in the two-sample case.

Acknowledgements The authors thank two referees and an associate editor for increasing the paper’s
quality by their helpful comments. Funding was provided by Deutsche Forschungsgemeinschaft (Grant No.
PA-2409 5-1).

Appendix: Proofs

In the following we give all the proofs. Considering appropriate subsequences we can
assume without loss of generality that n1/n → κ1 ∈ (0, 1) and n2/n → κ2 = 1− κ1.
Note that the final statements of all our theorems do not depend on κ1 and κ2 as well as
the considered subsequence. For the readers’ convenience we present some technical,
known results before giving the actual proofs.

7.1 Preliminaries

One basic tool for our proofs are discrete martingale theorems, see Hall and Heyde
(1980) and references therein. For our purposes, a simplified version of Theorem
8.3.33 from Jacod and Shiryaev (2003) is sufficient, see also their Theorem 2.4.36.

Proposition 1 [c.f. Jacod and Shiryaev (2003)] For each n ∈ N let (ξn,i )1≤i≤n be
a martingale difference scheme with respect to some filtration (Fn,i )0≤i≤n, i.e.,
E(ξn,i |Fn,i−1) = 0 for every 1 ≤ i ≤ n. Assume that the conditional Lindeberg con-
dition,

∑n
i=1 E(ξ2n,i1{|ξn,i | ≥ ε}|Fn,i−1) → 0 in probability for all ε > 0, is fulfilled.

Define Mn by Mn(t) = ∑[nt]
i=1 ξn,i (t ∈ [0, 1]). Suppose that the predictable quadratic

variation process 〈Mn〉 given by 〈Mn〉(t) = ∑[nt]
i=1 E(ξ2n,i |Fn,i−1) (t ∈ [0, 1]) con-

verges in probability pointwisely to a continuous function σ 2 : [0, 1] → [0,∞). Then
Mn converges in distribution on the Skorohod space D[0, 1] to the rescaled Brownian
motion B ◦ σ 2, where B denotes a classical Brownian motion.
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Proposition 2 [c.f. Janssen and Mayer (2001)] Assume that all assumptions of
our paper are underlying. Let δ̃n = (̃δn,1, . . . , δ̃n,n) ∈ {0, 1}n and wn =
(wn,1, . . . , wn,n) ∈ R

n such that limn→∞ n−1 ∑n
i=1 δ̃n,iw

2
n,i ∈ (0,∞) and

max{|wn,i | : i = 1, . . . , n} ≤ M ∈ (0,∞) for all n ∈ N. Define for all t ∈ [0, 1]

Wn(t)=
( n

n1n2

)1/2 [nt]∑

i=1

wn,i δ̃n,i

(
cπ
n,i −

∑n
j=i c

π
n, j

n − i + 1

)
,

Vn(t) =
( n

n1n2

)1/2 [nt]∑

i=1

w2
n,i δ̃n,i

[∑n
j=i (c

π
n, j )

2

n − i + 1
−

(∑n
j=i c

π
n, j

n − i + 1

)2]

,

β2
n (t) = 1

n − 1

[nt]∑

i=1

w2
n,i δ̃n,i

n − i

n − i + 1
,

αn(t) = inf{s ∈ [0, 1] : β2
n (s) > tβ2

n (1)},
where for the latter we set inf ∅ = 1. Then Vn(αn(t))/Vn(1) converges in probability to
t for all t ∈ [0, 1] and Vn(1)−1/2Wn ◦αn tends in distribution to a Brownian motion B
on the Skorohod space D[0, 1]. Moreover, the sequences (Vn(1))n∈N and (Wn(1))n∈N
are tight, i.e., we have limt→∞ lim supn→∞ P(|Wn(1)| ≥ t) + P(|Vn(1)| ≥ t) = 0.

Proof It is easy to check that due to the assumptions on wn and δ̃n we have
0 < lim infn→∞ β2

n (1) ≤ lim supn→∞ β2
n (1) < ∞ and, thus, condition (15) of

Janssen and Mayer (2001) is fulfilled. Moreover, the conditions for the regression
coefficients in the paper of Janssen and Mayer (2001) hold for our (rescaled) coef-
ficients c̃(i) = (n1n2/n)−1/2c(i). Consequently, we can apply their Theorem 1 and
Lemma 3. Note that β2

n (1) = 1 is assumed in their Lemma 3 as well as in the
proof of their Theorem 1, but this can always be ensured by rescaling the weight
coefficients w̃n,i = wn,i/βn(1). Now, the desired distributional convergence of
Vn(1)−1/2Wn ◦ αn follows from their Theorem 1. In the proof of Lemma 3 Janssen
and Mayer (2001) showed β2

n (αn(t))/β2
n (1) → t for all t ∈ [0, 1] and by their (33)

we have [1/β2
n (1)] supt∈[0,1] |β2

n (t) − Vn(t)| → 0 in probability. Combining both we
obtain the convergence in probability of Vn(αn(t))/Vn(1). Moreover, their Theorem 1
implies thatWn(1)Vn(1)−1/2 converges in distribution to a standard normal distributed
random variable. Finally, the tightness of (Vn(1))n∈N and (Wn(1))n∈N, respectively,
follows from lim supn→∞ β2

n (1) < ∞. ��
The subsequent result concerning linear rank tests is well-known and can be found,
for example, in the book of Hájek et al. (1999). Combining their Theorem 3 in Section
3.3.1 and Chebyshev’s inequality we obtain:

Proposition 3 [c.f. Hájek et al. (1999)] Let wn,1, . . . , wn,n be real-valued con-
stants. Introduce the linear rank statistic ξπ

n = ∑n
i=1 wn,i (cπ

n,i − c̄), where c̄ =
n−1 ∑n

i=1 c
π
n,i = n2/n. Then E(ξπ

n ) = 0 and

Var(ξπ
n ) = n1n2

n(n − 1)

n∑

i=1

(wn,i − w̄)2, w̄ = n−1
n∑

i=1

wn,i .
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In particular, if max1≤i≤n |wn,i | ≤ M/n for all n ∈ N and some fixed M > 0 then
Var(ξπ

n ) → 0 and ξπ
n converges in probability to 0.

7.2 Proof of Theorem 1

The following lemma and the corresponding proof are extensions of Lemma 5.3 and
its proof of Janssen and Werft (2004).

Lemma 1 Suppose that A2 = ϑ A1 for some ϑ > 0. Then (ξn,i )1≤i≤n given by

ξn,i =
( n

n1n2

)1/2
δ(i)

(
c(i) − ϑ

∑n
m=i c(m)∑n

m=i (1 − c(m)) + ϑ
∑n

m=i c(m)

)

is a martingale difference scheme with respect to the filtration (Fn,i )0≤i≤n defined in
(6). Moreover, the predictable quadratic variation process 〈Mn〉 of the martingale Mn

given by Mn(t) = Sn(t) = ∑[nt]
i=1 ξn,i (t ∈ [0, 1]) equals σ̂ 2 from (5).

Proof Fix 1 ≤ i ≤ n. First, observe that
∑n

m=i c(m) and δ(i) are predictable, i.e.,
Fn,i−1-measurable. Since c(i) equals either 0 or 1 it is easy to see that all postulated
statements follow from

E(δ(i)c(i)|Fn,i−1) = δ(i)
ϑ

∑n
m=i c(m)∑n

m=i (1 − c(m)) + ϑ
∑n

m=i c(m)

. (10)

Clearly, (10) is true in the case δ(i) = 0. Hence, it is sufficient for the proof of (10) to
consider events A ∈ Fn,i−1 of the form A = {δ(i) = 1, δ(m) = δm, d(m) = dm; m ≤
i − 1} with constants δ1, . . . , δi−1 ∈ {0, 1} and pairwise different d1, . . . , di−1 ∈
{( j, k) : 1 ≤ k ≤ n j ; j = 1, 2}. Introduce Z j,k = 1{d(i) = ( j, k)} (1 ≤ k ≤
n j ; j = 1, 2). Clearly, 1 − c(i) = ∑n1

k=1 Z1,k and c(i) = ∑n2
k=1 Z2,k . That is why

we analyse Z j,k in the next step. For this purpose we define the set Bx = {
Xd1 <

· · · < Xdi−1 < x , δd(m)
= δm for m ≤ i − 1

}
(x > 0). From Fubini’s theorem

and dFj/dA j = 1 − Fj we obtain for all ( j, k) ∈ J = {( j, k) : 1 ≤ k ≤ n j ; j =
1, 2}\{d1, . . . , di−1} that

P
({
Z j,k = 1

} ∩ A
) =

∫ ∞

0
P(Bx )[1 − G j (x)]

∏

(r ,s)∈J\{( j,k)}
[1 − Fr (x)][1 − Gr (x)] dFj

=
∫ ∞

0
P(Bx )

∏

(r ,s)∈J

[1 − Fr (x)][1 − Gr (x)] dA j (x)

= C∗ ( ϑ + (1 − ϑ) 1{ j = 1} ) (11)

for some C∗ ≥ 0. Obviously, P({Z j,k = 1} ∩ A) = 0 for ( j, k) /∈ J . Remind in
the following that n1 − ∑i−1

m=1(1 − cdm ) and n2 − ∑i−1
m=1 cdm elements of J belong

to the first and second group, respectively. Thus, we can deduce from summing up all
probabilities P({Z j,k = 1} ∩ A) that
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C∗ = P(A)/
[
ϑ

(
n2 −

i−1∑

m=1

cdm
)

+ n1 −
i−1∑

m=1

(1 − cdm )
]
.

Finally, inserting C∗ into (11) and recalling c(i) = ∑n2
k=1 Z2,k proves (10) since

n2 − ∑i−1
m=1 cdm equals

∑n
m=i c(m) under A. ��

It is easy to see that there is a sequence (bn)n∈N converging to 0 such that
max1≤i≤n |ξn,i | ≤ bn . This implies immediately the conditional Lindeberg condition.
Thus, to apply Proposition 1 it remains to show convergence of the corresponding
predictable quadratic variation σ̂ 2. For this purpose we prefer the following slight
modification of its representation in (3)

σ̂ 2(t, ϑ) =
∫

1
{Y

n
≥ n − [nt] + 1

n

}
wn d

N

n
, wn = n2

n1n2

ϑY1Y2
(Y1 + ϑY2)2

. (12)

Clearly, the integrand is bounded. As well known, we can deduce from the extended
Glivenko–Cantelli theorem that sup{|Y j (t)/n − y j (t)| : t ∈ [0,∞)} → 0 as well
as sup{|wn(t) − w(t)| : t ∈ [0, s]} → 0 for every s < τ , both in probability,
where y j = κ j (1 − Fj )(1 − G j ) and w = (κ1κ2)

−1y1y2/(y1 + ϑ y2)2. Set y =
y1 + y2. Moreover, by the law of large numbers N j (t)/n converges in probability
to L j (t) = κ j P(X j,1 ≤ t,� j,1 = 1) = κ j

∫
[0,t](1 − G j ) dFj (t ≥ 0; j = 1, 2)

and, thus, N (t)/n → L(t) = L1(t) + L2(t). Since |wn| is uniformly bounded and
dFj/dA j = 1 − Fj we obtain that σ 2

n (t, ϑ) converges in probability to

σ 2(t, ϑ) = ϑ

κ1κ2

∫
1{y ≥ 1 − t} y1y2

(y1 + ϑ y2)2
dL.

Applying Proposition 1 yields that Sn(·, ϑ) converges in distribution to B ◦ σ 2(·, ϑ)

on the Skorohod space D[0, 1], where B is a Brownian motion.
In the next step, we plug-in the estimator ϑ̂ of the proportionality factor ϑ . The

statement of Theorem 1 holds for general estimators ϑ̂ of the proportionality factor
ϑ fulfilling the subsequent Assumption I. As already mentioned in Sect. 2, by Gill
(1980) ϑ̂K with K = (w ◦ F̂)KL obeys a central limit theorem and, in particular,
fulfills the subsequent Assumption I.

Assumption I Let ϑ̂ be a positive random variable which is bounded with probability
one, i.e., P(ϑ̂ ≤ ηϑ) → 1 for some ηϑ . Suppose that n1/2(ϑ̂ − ϑ) converges in
distribution to a real-valued random variable Zϑ .

Obviously, ϑ̂ is a consistent estimator for ϑ under Assumption I, i.e., ϑ̂ tends in
probability to ϑ . Analogously to the convergence of σ̂ 2(t, ϑ), we can deduce from the
consistency that σ̂ 2(t, ϑ̂) converges in probability to σ 2(t, ϑ) for every t ∈ [0, 1]. It
is easy to check that Sn(t, ϑ) − Sn(t, ϑ̂) equals Zn,ϑ σ̃ 2

n (t, ϑ), where

Zn,ϑ =
(n1n2

n

)1/2
ϑ−1(ϑ̂ − ϑ),
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σ̃ 2(t, ϑ) = n2

n1n2

∫
1
{Y

n
≥ n − [nt] + 1

n

} ϑY1Y2
(Y1 + ϑY2)(Y1 + ϑ̂Y2)

d
N

n
.

Clearly, Zn,ϑ converges in distribution to Z̃ϑ = (κ1κ2)
1/2Zϑ/ϑ . Analogously to the

argumentation above, σ̃ 2(t, ϑ) converges in probability to σ 2
n (t, ϑ) for all t ∈ [0, 1].

Hence, for every t ∈ [0, 1]

Rn(t, ϑ) = Sn(t, ϑ) − Sn(t, ϑ̂) − σ̂ 2
n (t, ϑ̂)

σ̂ 2(1, ϑ̂)
[Sn(1, ϑ) − Sn(1, ϑ̂)] → 0

in probability. Consequently, (Sn(·, ϑ), σ̂ 2(·, ϑ̂), Rn(·, ϑ)) converges in distribution to
(B ◦σ 2(·, ϑ), σ 2(·, ϑ), 0) on D[0, 1]×D[0, 1]×D[0, 1]. By the continuous mapping
theorem, respecting that t 
→ σ 2(t, ϑ) is continuous and nondecreasing,

Tn = σ̂ 2
n (1, ϑ̂)−1/2 sup

t∈[0,1]

{∣
∣
∣Sn(t, ϑ) − σ̂ 2

n (t, ϑ̂)

σ̂ 2
n (1, ϑ̂)

Sn(1, ϑ) + Rn(t, ϑ)

∣
∣
∣
}

→ σ 2(1, ϑ)−1/2 sup
t∈[0,1]

{∣
∣
∣B

(
σ 2(1, ϑ)t

)
− t B

(
σ 2(1, ϑ)

)∣
∣
∣
}

= T̃ .

Note that the assumptions ensure σ 2(1, ϑ) > 0. Let B0 be a Brownian bridge on [0, 1].
Since B(c2·) and cB for every c > 0 as well as t 
→ B(t) − t B(1) (t ∈ [0, 1]) and
B0 have the same distribution, respectively, we obtain that the distribution of T̃ equals
the one of T .

7.3 Proof of Theorem 2

Let ϑ̂ = ϑ̂K with K = (w ◦ F̂)KL for some w ∈ W . Following the argumentation
of the convergence of σ̂ 2(t, ϑ̂) in the proof of Theorem 1 we obtain under H1 that in
probability

− log(1 − F̂(x)) =
∫ x

0
log(1 − Y−1)n d

N

n

→
∫ x

0
(1 − y−1) dL ≡ − log[1 − F(x)] (x < τ), (13)

ϑ̂K →
∫
K̃ dA2∫
K̃ dA1

≡ ϑ0 > 0, K̃ = (w ◦ S)
y1y2
y

, (14)

where y1, y2, y, L are defined as in the proof of Theorem 1. Similarly, we can deduce
that n−1/2Tn converges in probability under H1 to

σ 2(t, ϑ0)
−1/2 sup

t∈[0,1]

{∣
∣
∣S(t, ϑ0) − [σ 2(t, ϑ0)/σ

2(1, ϑ0)]S(1, ϑ0)

∣
∣
∣
}

≡ T̃ ,
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where

S(t, ϑ0) = (κ1κ2)
−1/2

∫
1{y ≥ 1 − t} y1y2

y1 + ϑ0y2
( dA2 − ϑ0 dA1),

σ 2(t, ϑ0) = ϑ0(κ1κ2)
−1

∫
1{y ≥ 1 − t} y1y2

(y1 + ϑ0y2)2
(y2 dA2 + y1 dA1).

Clearly, the consistency of our test follows if T̃ > 0. Contrary to this, suppose that
T̃ = 0. Then there is some η0 �= 0 such that S(t, ϑ0) = η0σ

2(t, ϑ0) for all t ∈ [0, 1].
It can easily be seen that

∫
1{y ∈ [s, t)} y1y2

y1 + ϑ0y2
( dA2 − ϑ0 dA1)

= η1

∫
1{y ∈ [s, t)} y1y2

(y1 + ϑ0y2)2
(y2 dA2 + y1 dA1) (15)

follows for every 0 ≤ s < t ≤ 1 and some η1 �= 0. Assume that η1 > 0. The case
η1 < 0 can be treated analogously and, thus, we omit it to the reader. Since the right
hand side of Eq. (15) is nonnegative and (y1 + ϑ0y2)K̃/(y1y2) ≥ 0 we can deduce

∫
1{y ∈ [s, t)}K̃ ( dA2 − ϑ0 dA1) ≥ 0 (16)

for all 0 ≤ s < t ≤ 1. Note that due to the definition of ϑ0, see (14), we have equality
in (16) for s = 0 and t = 1. Hence, we get equality in (16) for all 0 ≤ s < t ≤ 1.
But this implies A2(x) = ϑ0A1(x) for all x>0 with K̃ (x) > 0 or, equivalently, for all
x ∈ (0, τ ).

7.4 Proof of Theorem 3

To distinguish between the processes depending on the original data and the permuted
data, respectively, we add a superscriptπ to these processes if the permutation versions
are meant, namely Âπ

j , Y
π
j , N

π
j , K

π
L , K

π , Sπ
n , σ̂ 2,π (1 ≤ j ≤ 2). Note that the

processes N and Y as well as the pooled Kaplan–Meier estimator F̂ do not depend on
the group membership vector.

Assumption II Let ϑ̂ = ϑ̂(c(n), δ(n)) be an estimator fulfilling Assumption I, which
depends only on the group memberships c(n) and the censoring status δ(n) of the
ordered values. Let ϑ̂π = ϑ̂(cπ

n , δ(n)) be the corresponding permutation version of
the estimator. Moreover, suppose that a certain conditioned tightness assumption is
fulfilled for (n1/2(ϑ̂π − 1))n∈N, namely that for every subsequence there is a further
sub-subsequence such that along this sub-subsequence we have with probability one

lim
t→∞ lim sup

n→∞
P

(
n1/2

∣
∣ϑ̂π − 1

∣
∣ ≥ t

∣
∣δ(n)

)
= 0.
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At the proof’s end, we verify that Assumption II holds for the estimators considered
in the paper.

Lemma 2 Let w ∈ W . Then the estimator ϑ̂ = ϑ̂K with K = (w ◦ F̂)KL fulfills
Assumption II.

As in the proof of Theorem 1, we obtain that n−1 ∑n
i=1 δ(i) → ∫

dL ≥ L(τ ) > 0
in probability, where L and y were defined there. Now, we start with an arbitrary
subsequence of N. Since we are interested in the conditional distributional con-
vergence we treat the censoring status δ(1), . . . , δ(n) as constants. Considering an
appropriate sub-subsequence of the pre-chosen subsequence we can assume that
limn→∞ n−1 ∑n

i=1 δ(i) > 0 and that by Assumption II the sequence (
√
n(ϑ̂π −1))n∈N

is tight. The latter implies, in particular, ϑ̂π → 1 in probability. The proof’s rest goes
along the argumentation of the proof of Theorem 1. Nevertheless, we carry out the
important steps.

Observe that Sπ
n (t, 1) = Wn(t, δ(n), wn) and σ̂ 2,π (t, 1) = Vn(t, δ(n), wn) for

wn = (1, . . . , 1). By Proposition 2 σ̂ 2,π (1, 1)−1/2Sπ
n ◦ αn converge in distribution

to a Brownian motion B and σ̂ 2,π (αn(t), 1)/σ̂ 2,π (1, 1) tends in probability to t for
all t ∈ [0, 1], where αn is defined as in Proposition 2. Moreover, (̂σ 2,π (1, 1))n∈N is
tight. Let us now discuss what happens when we plug-in the estimator ϑ̂π . First, for
all t ∈ [0, 1]

∣
∣
∣̂σ 2,π (t, 1) − σ̂ 2,π (t, ϑ̂π )

∣
∣
∣

= n2

n1n2

∣
∣
∣

∫ X([nt])

0

Y π
1 Y π

2

Y 2 (ϑ̂π − 1)
(Y π

1 )2 − ϑ̂π (Y π
2 )2

(Y π
1 + ϑ̂πY π

2 )2
d
N

n

∣
∣
∣

≤ |1 − ϑ̂π | n2

n1n2

∫
Y π
1 Y π

2

Y 2

(
1 + 1

ϑ̂π

)
d
N

n
= |1 − ϑ̂π |(1 + ϑ̂π )

ϑ̂π
σ̂ 2,π (1, 1).

(17)

Thus, σ̂ 2,π (αn(t), ϑ̂π )/σ̂ 2,π (1, 1) as well as σ̂ 2,π (αn(t), ϑ̂π )/σ̂ 2,π (1, ϑ̂π ) tend to t
for all t ∈ [0, 1]. It remains to study Sπ

n (t, 1) − Sπ
n (t, ϑ̂π ). This difference equals,

compare to the proof of Theorem 1, Zπ
n σ̂ 2,π (t) (t ∈ [0, 1]), where

Zπ
n =

(n1n2
n

)1/2
(ϑ̂π − 1), σ̃ 2,π (t)

= n

n1n2

∫
1
{Y

n
≥ n − [nt] + 1

n

} Y π
1 Y π

2

Y (Y π
1 + ϑ̂πY π

2 )
dN .

Analogously to (17), we get σ̃ 2,π (αn(t))/σ̂ 2,π (1, 1) → t for all t ∈ [0, 1]. Since
(Zπ

n )n∈N and (̂σ 2,π (1, 1))n∈N are tight we obtain

Rπ
n (t) = Sπ

n (αn(t), 1) − Sπ
n (αn(t), ϑ̂

π ) − σ̂ 2,π (αn(t), ϑ̂π )

σ̂ 2,π (1, ϑ̂π )
[Sπ

n (1, 1) − Sπ
n (1, ϑ̂π )]

= Zπ
n σ̂ 2,π (1, 1)

( σ̃ 2,π (αn(t))

σ̂ 2,π (1, 1)
− σ̃ 2,π (1)

σ̂ 2,π (1, 1)

σ̂ 2,π (αn(t), ϑ̂π )

σ̂ 2,π (1, ϑ̂π )

)
→ 0
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in probability. Finally, the statement follows from the continuous mapping theorem,
compare to the proof of Theorem 1.

Proof (Lemma 2) As already mentioned in the proof of Theorem 1, ϑ̂ fulfills Assump-
tion I. Now, define wn,i = w(F̂(X(i))) and set wn = (wn,1, . . . , wn,n). Analogously
to the proof of Theorem 1, we obtain that in probability

1

n

n∑

i=1

wn,iδ(i) =
∫

w(F̂(t))2 d
N

n
(t) →

∫
w(F(t))2 dL(t) > 0, (18)

1

n

[n2/2]∑

i=1

wn,iδ(i) →
∫

1{y ≥ 1 − κ2/2}w(F(t))2 dL > 0, (19)

where y and L are defined in the proof of Theorem 1 as well as F is given by
(13). It is well known that for every subsequence of N there exists a further sub-
subsequence such that the convergences in (18) and (19) hold with probability
one along this sub-subsequence. Since we are interested in the probability condi-
tioned under δ(n) we can treat the censoring status δ(1), . . . , δ(n) as constants and,
hence, wn,1, . . . , wn,n as constants with limn→∞

∑n
i=1 wn,iδ(i) ∈ (0,∞) as well as

limn→∞ n−1 ∑[n2/2]
i=1 wn,iδ(i) ∈ (0,∞) along an appropriate subsequence. Thus, we

can apply Proposition 2 to the numerator of

n1/2(ϑ̂π − 1) = n−1/2
∫
(w ◦ F̂)(Y π

1 Y π
2 /Y π ) (d Âπ

2 − d Âπ
1 )

∫
K π d Âπ

1

=
(n1n2

n2

)1/2Wn(1, δ(n), wn)∫
K π d Âπ

1

.

Note that we always have Y π
2 (X(i))/Y (X(i)) ≥ (n2 − 1)/(2n) for i = 1, . . . , [n2/2].

Hence, we can bound the denominator Dn from below as follows:

∫
K π d Âπ

1 ≥ n2 − 1

2n

1

n

[n2/2]∑

i=1

wn,iδ(i)(1 − cπ
n,i )

= n2 − 1

2n

n1
n

1

n

[n2/2]∑

i=1

(wn,iδ(i)) − n2 − 1

2n

[n2/2]∑

i=1

wn,iδ(i)

n
(cπ

n,i − c̄),

where c̄ = n−1 ∑n
i=1 c(i) = n2/n. Applying Proposition 3 for w̃n,i = (wn,iδn,i/n)1

{i ≤ [n2/2]} yields that the second summand converges in probability to 0. The first
summand converges to M > 0, say. To sum up, P(Dn ≥ M/2) → 1. Combining
this and the tightness result for the numerator according to Proposition 2 gives us the
desired tightness of (n1/2(ϑ̂π − 1))n∈N. ��

123



514 M. Ditzhaus, A. Janssen

7.5 Proof of Theorems 4 and 5

For simplicity we restrict here to estimators ϑ̂ = ϑ̂ of the form ϑ̂K with K = (w ◦
F̂)KL for w ∈ W . We give the proof of Theorems 4 and 5 simultaneously. First,
we verify that (7) holds for some real-valued random variable T0, say, under H0 as
well as under H1, respectively, where the distribution of T0 depends on the underlying
distributions F1, F2,G1,G2. From this convergence we can immediately deduce the
bootstrap test’s consistency (i.e., Theorem 5) since we already know that Tn converges
in probability to ∞ under H1, compare to Theorem 7 of Janssen and Pauls (2003). In
the second step, we show that T0 has the same distribution as T under H0 and, thus,
Theorem 4 follows.

Recall from the proof of Theorem 1 that σ̂ 2(t, ϑ̂) → σ 2(t, ϑ) (t ∈ [0, 1]),
sup{|Y j (x)/n − y j (x)| : x ∈ [0,∞)} → 0 ( j = 1, 2) and N j (s)/n → L j (s)
(s ≥ 0; j = 1, 2), all in probability under H0. It is easy to check that the same is
valid under H1. Restricting to t and s coming from dense subsets of [0, 1] and [0,∞),
respectively, for every subsequence we can construct a further sub-subsequence such
that all the convergences mentioned above hold simultaneously with probability one
under H0 as well as under H1, respectively. Due to the monotonicity and the continu-
ity of the limits the convergences carry over to the whole intervals [0, 1] and [0,∞),
respectively. Regarding (14) ϑ̂ converges in probability to some ϑ > 0 under H0
as well as under H1, where ϑ equals the proportionality factor under H0. Since we
are interested in the conditional distribution of TG

n given the whole data we can treat
σ̂ 2(·, ϑ̂), Y j , N j as nonrandom functions and ϑ̂ as a constant. Starting with an arbi-
trary subsequence we can always construct a further sub-subsequence, compare to the
explanation above, that along this sub-subsequence σ̂ 2(t, ϑ̂) → σ 2(t, ϑ) (t ∈ [0, 1]),
sup{|Y j (x)/n − y j (x)| : x ∈ [0,∞)} → 0 (r = 1, 2) and N j (s)/n → L j (s) (s ≥ 0)
as well as ϑ̂ → ϑ . All following considerations are along this sub-subsequence.

Let G(i) be the multiplier corresponding to X(i). Clearly, G(1), . . . ,G(n) are (given
the data) still independent and identical distributed with the same distribution as G1,1.
We can now rewrite the statistic SGn as a linear rank statistic:

SGn (t, ϑ̂) =
[nt]∑

i=1

( n

n1n2

)1/2
G(i)δ(i)

(
c(i) − ϑ̂

∑n
m=i c(m)

∑n
m=i (1 − c(m)) + ϑ̂

∑n
m=i c(m)

)
. (20)

To obtain the asymptotic behavior of the process t 
→ SGn (t, ϑ̂) (t ∈ [0, 1]) we apply
Proposition 1. In contrast to the two previous proofs, we have already replaced ϑ by
ϑ̂ here. That is why we do not need to discuss the difference SGn (t, ϑ) − SGn (t, ϑ̂) at
the proof’s end. Let us now introduce the natural filtration Gn,i = σ(G(1), . . . ,G(i))

(0 ≤ i ≤ n). Denoting the summands in (20) by ξn,i (1 ≤ i ≤ n) we, clearly, have
E(ξn,i |Gn,i−1) = E(ξn,i ) = 0.Toverify the conditional Lindeberg condition, first note
that there is a constant η > 0 independent of i and n such that |ξn,i | ≤ ηn−1/2|Gi |.
Hence, it is sufficient to show for all ε > 0 that

n∑

i=1

E(n−1G2
(i)1{|G(i)| ≥ n1/2εη−1}) = E(G2

(1)1{|G(1)| ≥ n1/2εη−1})
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tends to 0. This follows immediately from Lebesgue’s dominated limit theorem and
E(G2

(1)) = 1. In the final step we discuss the asymptotic behavior of the predictable

quadratic variation process t 
→ σ
2,G
n (t, ϑ̂) (t ∈ [0, 1]) given by

σ 2,G
n (t, ϑ̂) =

[nt]∑

i=1

E(ξ2n,i |Gn,i−1)

= n

n1n2

[nt]∑

i=1

δ(i)

(
c(i) − ϑ̂

∑n
m=i c(m)

∑n
m=i (1 − c(m)) + ϑ̂

∑n
m=i c(m)

)2
.

Rewriting σ
2,G
n (t, ϑ̂) in terms of the (nonrandom) functions Y j , N j we obtain for

t ∈ [0, 1]

σ
2,G
n (t, ϑ̂)

= n

n1n2

(∫ X([nt])

0
1 − 2ϑ̂

Y2
Y1 + ϑ̂Y2

dN2 +
∫ X([nt])

0

ϑ̂2Y 2
2

(Y1 + ϑ̂Y2)2
dN

)

= n2

n1n2

(∫

{ Yn ≥ n−[nt]+1
n }

Y 2
1

(Y1 + ϑ̂Y2)2
d
N2

n
+

∫

{ Yn ≥ n−[nt]+1
n }

ϑ̂2Y 2
2

(Y1 + ϑ̂Y2)2
d
N1

n

)

→ 1

κ1κ2

(∫

{y≥1−t}
y21

(y1 + ϑ y2)2
dL1 +

∫

{y≥1−t}
ϑ2y22

(y1 + ϑ y2)2
dL1

)
≡ σ 2,G(t, ϑ).

Applying Proposition 1 yields distributional convergence of SGn (·, ϑ̂) to the rescaled
Brownianmotion B(σ 2,G(·, ϑ))on theSkorohod space D[0, 1]. Similarly to the proofs
of Theorems 1 and 3, we can conclude from the continuous mapping theorem that

TG
n → σ 2(t, ϑ)−1/2 sup

t∈[0,1]
{|B(σ 2,G(t, ϑ)) − σ 2(t, ϑ)

σ 2(1, ϑ)
B(σ 2,G(t, ϑ))|} ≡ T0.

Finally, it remains to show σ 2,G(t, ϑ̂) = σ 2(t, ϑ) under H0. By inserting L j (t) =∫
y j (1+(ϑ −1)1{ j = 2}) dA1 in the formulas of σ 2,G(t, ϑ̂) and σ 2(t, ϑ) the equality

follows immediately.
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