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Abstract
In the semi-competing risks situation where only a terminal event censors a non-
terminal event, observed event times can be correlated. Recently, frailty models with
an arbitrary baseline hazard have been studied for the analysis of such semi-competing
risks data. However, their maximum likelihood estimator can be substantially biased
in the finite samples. In this paper, we propose effective modifications to reduce such
bias using the hierarchical likelihood. We also investigate the relationship between
marginal and hierarchical likelihood approaches. Simulation results are provided to
validate performance of the proposed method. The proposed method is illustrated
through analysis of semi-competing risks data from a breast cancer study.

Keywords Frailty models · Hierarchical likelihood · Marginal likelihood · Modified
likelihood · Semi-competing risks

1 Introduction

In clinical studies, we often observe semi-competing risks data (Fine et al. 2001),
which involve two-types of events; a non-terminal event (e.g. disease recurrence) and
a terminal event (e.g. death). Here, a subject may experience both events that may be
dependent (Chen 2012). Thus, several authors have recently studied semi-parametric
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frailty models for semi-competing risks data (Xu et al. 2010; Zhang et al. 2014;
Varadhan et al. 2014; Lee et al. 2015). In particular, Xu et al. (2010) proposed a
marginal-likelihood approach under the gamma frailty model. Zhang et al. (2014)
and Lee et al. (2015) have proposed Bayesian approaches. However, the marginal
likelihood orBayesian approachesmayoften involve evaluation of intractable integrals
over the frailty distributions, especially for the non-gamma frailties.

Unlike the classical likelihood for fixed parameters only, the hierarchical likelihood
(h-likelihood; Lee and Nelder 1996; Lee et al. 2017) is constructed for both fixed
parameters and unobserved frailties at the same time. Ha et al. (2001) proposed the
h-likelihood for the frailty models where the maximum likelihood (ML) estimator
can be substantially biased in the finite samples, particularly for the frailty parameter
(Barker and Henderson 2005; Ha et al. 2010). This is because the number of nuisance
parameters associated with the baseline hazard function increases with the number of
events. In addition, the bias can also occur when the cluster size ni for subject i is very
small such as ni = 1 or 2 (Ha et al. 2010). Simulation results from Ha et al. (2010)
showed that the bias of ML estimator reduces slowly when ni = 1 or 2 as the sample
size (i.e. the number of clusters or subjects) grows.

In this paper, we extend the h-likelihood (Ha et al. 2001) for one shared frailtymodel
to semi-competing risks data. Specifically three shared frailtymodels are considered to
incorporate three states in the semi-competing risks setting; state 0 for on study, state 1
for non-terminal event, and state 2 for terminal event.We treat each subject as a cluster,
whichwould generate realizations of two semi-competing event times. This formulates
the semi-competing risks problem into a multivariate survival data setting with cluster
size of ni = 2.With this small cluster size, therefore, the aforementioned bias problem
would still exist when the h-likelihood method is directly applied to this case. To
overcome this, we propose a modified estimation procedure of Ha et al. (2001) where
the h-likelihoods are constructed to consider the dependency and left-truncation aswell
as a Markov specification for the terminal event following non-terminal event (multi-
state modelling). We also investigate the relationship between marginal likelihood
and proposed h-likelihood approaches. In geneal, the h-likelihood method provides
efficient statistical inference for various univariate and multivariate survival models
(Ha et al. 2017), as well as other statistical models such as generalized linear models
with random effects, joint models for different types of responses, and missing or
incomplete-data problems, etc. (Lee et al. 2017).

This paper is organized as follows. In Sect. 2 we derive the h-likelihood procedure.
We also propose the modifications of likelihoods via the h-likelihood and study their
relationships. In Sect. 3, we present simulation studies to assess performance of the
proposed method. Section 4 illustrates the proposed method using a real data set from
a breast cancer study conducted by the National Surgical Adjuvant Breast and Bowel
Project (NSABP) (Fisher et al. 1989, 1996). Section 5 concludes with a discussion.
Technical details for the estimation procedures are provided in “Appendix”.
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2 Semi-competing risks frailty models and estimation

2.1 Themodel

Suppose that a subject may experience a terminal event (e.g. death) with or without a
non-terminal event (e.g. disease recurrence). Let Ti1 and Ti2 be the non-terminal and
terminal event times for the i th subject, respectively (i = 1, . . . , n).

A schematic diagram for semi-competing risks data as shown in Xu et al. (2010)
has three states (state 0, on study; state 1, recurrence; state 2, death). To model these
three states under semi-competing risks, we consider the following specification of
the hazard functions:

λ1(t1) = lim
�t→0

Pr{t1 ≤ T1 ≤ t1 + �t |T1 ≥ t1, T2 ≥ t1}/�t, t1 > 0, (1)

λ2(t2) = lim
�t→0

Pr{t2 ≤ T2 ≤ t2 + �t |T1 ≥ t2, T2 ≥ t2}/�t, t2 > 0, (2)

λ12(t2|t1) = lim
�t→0

Pr{t2 ≤ T2 ≤ t2 + �t |T1 = t1, T2 ≥ t2}/�t, 0 < t1 < t2. (3)

For λ12(t2|t1)we assume aMarkov process where the transition probability from state
1 to state 2 does not depend on the duration in state 1 (Aalen et al. 2008). That is, we
assume

λ12(t2|t1) = λ12(t2), 0 < t1 < t2. (4)

Note that for transition from state 1 to state 2, the left-truncation time is t1, the time
at which the recurrence occurred.

Let xi be a p-dimensional vector of covariates of the i th subject. The classical
semi-competing risks model (i.e. illness-death model; Lawless 2003) can be extended
to the frailty models which induce the dependency between non-terminal and terminal
event times. For simplicity, we consider the semi-competing risks frailty models (Xu
et al. 2010) with the common frailty (random effect), denote by ui for the i th subject.
That is, given ui , the conditional hazards functions extended from Eqs. (1)–(3) can be
expressed as three shared frailty models

λ1i (t1|ui ; xi ) = λ01(t1) exp(x
T
i β1)ui , t1 > 0, (5)

λ2i (t2|ui ; xi ) = λ02(t2) exp(x
T
i β2)ui , t2 > 0, (6)

λ12i (t2|t1, ui ; xi ) = λ03(t2) exp(x
T
i β3)ui , 0 < t1 < t2, (7)

where λ01(·), λ02(·) and λ03(·) are the unspecified baseline hazard functions and the
frailties ui are assumed to be independent and identically distributed with a density
function having a frailty parameter α. Recall that from (4) and (7) λ12i (t2|t1, ui ; xi ) =
λ12i (t2|ui ; xi ) depends only on t2 and ui , not t1. The commondistributions assumed for
ui are gamma and log-normal (Therneau and Grambsch 2000; Ha et al. 2001), where
E(ui ) = 1 and var(ui ) = α for the gamma frailty model, and vi = log ui ∼ N (0, α)

for the lognormal one.
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2.2 Estimation procedures

Let Ci denote the right censoring time for the i th subject (i = 1, . . . , n). If the subject
experiences a terminal event before the non-terminal event occurs, we define Ti1 = ∞.
Then, for the i th subject we have the following observable data:

yi1 = Ti1 ∧ yi2, yi2 = Ti2 ∧ Ci , δi1 = I (Ti1 ≤ yi2) and δi2 = I (Ti2 ≤ Ci ),

where 0 ≤ yi1 ≤ yi2.
For the likelihood-based inference, the h-loglikelihood for the semi-competing risks

frailty models (5)–(7) is defined by (Ha et al. 2001)

h = h(β, v, λ0, α) =
∑

i

�1i +
∑

i

�2i , (8)

where �1i = �1i (β, λ0; yoi |ui ) is the logarithm of the conditional density function for
the observed data yoi = (yi1, yi2, δi1, δi2) given ui . Following Xu et al. (2010), we
have

�1i = log

[
λ1i (yi1|ui )δi1λ2i (yi2|ui )δi2(1−δi1)λ12i (yi2|ui )δi1δi2

× exp

[
−

∫ yi1

0
{λ1i (t |ui ) + λ2i (t |ui )} dt

]
× exp

{
−

∫ yi2

yi1
λ12i (t |ui ) dt

}]

= δi1{log λ01(yi1) + ηi1} + δi2(1 − δi1){log λ02(yi2) + ηi2}
+ δi1δi2{log λ03(yi2) + ηi3}
− {	01(yi1) exp(ηi1) + 	02(yi1) exp(ηi2) + 	03(yi1, yi2) exp(ηi3)},

and

�2i = �2i (α; vi )

is the logarithm of the density function of vi = log ui with a parameter α. Here

ηi1 = xTi β1 + vi , ηi2 = xTi β2 + vi and ηi3 = xTi β3 + vi ,

β = (βT
1 , βT

2 , βT
3 )T with β j = (β j1, . . . , β j p)

T , v = (v1, . . . , vn)
T , and λ0 =

(λ01, λ02, λ03)
T , and 	03(s, t) = 	03(t) − 	03(s) reflecting the left truncation.

We have �2i = α−1(vi − ui ) − log
(α−1) − α−1 logα for the gamma frailty, and
�2i = − log(2πα)/2 − v2i /(2α) for the log-normal frailty. By adding the frailty in
the likelihood, the likelihood in (8) can account for the dependency between the non-
terminal and terminal events. Unlike a single frailty model studied in Ha et al. (2001),
the proposedmethod focuses on three shared frailtymodels (5)–(7) for semi-competing
risks data.

Note that the functional forms of λ0 j ( j = 1, 2, 3) from
∑

i �1i in (8) are unknown.
Let y1(1), y1(2), . . . , y1(D1) be ordered distinct recurrence timeswith (δi1, δi2)=(1, 0) or

123



Frailty modelling approaches for semi-competing risks data 113

(1, 1), and y2(1), y2(2), . . . , y2(D2) be ordered distinct death times without recurrence
with (δi1, δi2) = (0, 1), and y3(1), y3(2), . . . , y3(D3) be ordered distinct death times
following recurrence with (δi1, δi2) = (1, 1). Thus, following Fan and Li (2002) and
Ha et al. (2011), we approximate the baseline cumulative hazard function	0 j (t) ( j =
1, 2, 3) by a step function with jumps λ0 jk j at the observed distinct event times;

	0 j (t) =
∑

k j :y j(k j )≤t

λ0 jk j ( j = 1, 2, 3), (9)

where y j(k j ) is the k j th (k j = 1, . . . , Dj ) smallest distinct event time for each j , and
λ0 jk j = λ0 j (y j(k j )). Then

∑
i �1i in (8) can be rewritten as

∑

i

�1i =
∑

k1

d1(k1) log λ01k1 +
∑

i

δi1ηi1 −
∑

k1

λ01k1

{ ∑

i∈R(k1)

exp(ηi1)

}

+
∑

k2

d2(k2) log λ02k2 +
∑

i

δi2(1 − δi1)ηi2 −
∑

k2

λ02k2

{ ∑

i∈R(k2)

exp(ηi2)

}

+
∑

k3

d3(k3) log λ03k3 +
∑

i

δi1δi2ηi3 −
∑

k3

λ03k3

{ ∑

i∈R(k3)

exp(ηi3)

}
, (10)

where d j(k j ) ( j = 1, 2, 3) is the number of the events at y j(k j ), and

R(k1) = R(y1(k1)) = {i : yi1 ≥ y1(k1)},
R(k2) = R(y2(k2)) = {i : yi1 ≥ y2(k2)}, and
R(k3) = R(y3(k3)) = {i : yi1 < y3(k3) ≤ yi2},

are the risk sets at y1(k1), y2(k2) and y3(k3), respectively. Define λ01 = (λ011, . . . ,

λ01D1)
T , λ02 = (λ021, . . . , λ02D2)

T , and λ03 = (λ031, . . . , λ03D3)
T . Note that the

number of nuisance parameters λ0 j ’s can increase with the number of events, which
can be viewed as the Neyman-Scott problem (Neyman and Scott 1948; Lee and Nelder
2009). Accordingly, for estimation of (β, v), Ha et al. (2001) proposed the use of the
profile h-likelihood h∗ = h∗(β, v, α), where λ0 j ( j = 1, 2, 3) are replaced by their
non-parametric estimates as follows:

h∗ = h|λ0 j =̂λ0 j
=

∑

i

�∗
1i +

∑

i

�2i ,

where �∗
1i = �∗

1i (β, v) = �1i |λ0 j =̂λ0 j
and

λ̂0 jk j (β, v) = d j(k j )∑
i∈R(k j )

exp(ηi j )
, ( j = 1, 2, 3)
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are the solutions of the estimating equations, ∂h/∂λ0 jk j = 0, for k j = 1, . . . , Dj .
Now, from (10) we have

∑

i

�∗
1i =

∑

k1

d1(k1) log λ̂01k1 +
∑

i

δi1ηi1 −
∑

k1

d1(k1)

+
∑

k2

d2(k2) log λ̂02k2 +
∑

i

δi2(1 − δi1)ηi2 −
∑

k2

d2(k2)

+
∑

k3

d3(k3) log λ̂03k3 +
∑

i

δi1δi2ηi3 −
∑

k3

d3(k3),

which is proportional to the conditional log-partial likelihood �p = �p(β, v), given
by

�p =
∑

i

δi1ηi1 −
∑

k1

d1(k1) log

{ ∑

i∈R(k1)

exp(ηi1)

}

+
∑

i

δi2(1 − δi1)ηi2 −
∑

k2

d2(k2) log

{ ∑

i∈R(k2)

exp(ηi2)

}

+
∑

i

δi1δi2ηi3 −
∑

k3

d3(k3) log

{ ∑

i∈R(k3)

exp(ηi3)

}

with the constant terms omitted. This leads to the partial h-likelihood (Ha et al. 2010)

h p = h p(β, v, α) = �p +
∑

i

�2i , (11)

which is proportional to the profile h-likelihood h∗. Thus, once we have h p, the h-
likelihood method (Ha and Lee 2003; Ha et al. 2010) can be directly extended to the
semi-competing risks frailty model. Note that Therneau and Grambsch (2000) and
Ripatti and Palmgren (2000) defined a penalized partial likelihood (PPL) by substi-
tuting the log-partial likelihood �p for

∑
i �1i in the h-likelihood (8), where

∑
i �2i

was regarded as a penalty term. Our h-likelihood method and their PPL procedure are
essentially the same in estimation of (β, v) given α, but are different in estimation of
α (Ha et al. 2010, 2011).

Specifically, the h-likelihood procedure based on h p is as follows. Following Ha
et al. (2001), given α we estimate τ = (βT , vT )T by maximizing h p with respect to
τ . The estimating equations for τ = (βT , vT )T are then in form of

∂h p/∂τ = (∂h/∂τ)|λ0=̂λ0
= 0, (12)

where λ0 = (λT
01, λ

T
02, λ

T
03)

T . Note that the asymptotic covariance matrix for τ̂ − τ

is given by the inverse of H(h p, τ ) = −∂2h p/∂τ 2. This asymptotic covariance is
constructed along the same lines of work by Lee andNelder (1996, Section 3.3), which
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proved that with the h-likelihood h, the inverse of H(h, τ ) is an asymptotic covariance
matrix of τ̂−τ under the generalized linearmodelswith randomeffects.By substituting
h with h p given in (11), their asymptotic result can be applied straightforwardly to
a class of semiparametric frailty models because the partial h-likelihood h p does not
depend on the nuisance quantities λ0 (Ha and Lee 2003; Ha et al. 2001, 2017).

Let � = �(θ, ψ) be a likelihood function, either an h-likelihood h or a marginal
likelihood m (defined in (15) in Section 2.3), with nuisance parameters θ and the
parameters of interestψ . Here, ifψ is α, the nuisance parameters θ can be either fixed
effects (β, λ0) or random effects v or both. Consider a function p�

θ (ψ), defined by

p�
θ (ψ) =

[
� − 1

2
log det{H(�, θ)/(2π)}

] ∣∣∣∣
θ=θ̂

, (13)

where H(�, θ) = −∂2�/∂θ2 is an adjustment term to eliminate θ , and θ̂ solves
∂�/∂θ = 0. The function p�

θ (ψ) produces an adjusted profile likelihood for ψ evalu-
ated at θ = θ̂ . Following Lee and Nelder (2001) and Ha et al. (2010), we abbreviate
p�
θ (ψ) in (13) by pθ (�). Next, to estimate the frailty parameter α, we use the adjusted

profile h-likelihood pτ (h p) (Ha and Lee 2003; Ha et al. 2017), given by

pτ (h p) =
[
h p − 1

2
log det

{
H(h p, τ )/(2π)

}]∣∣∣∣
τ=τ̂

,

where τ̂ = τ̂ (α) = (β̂T (α), v̂T (α))T and τ̂ solves ∂h p/∂τ = 0. Thus the estimating
equation for α is given by

∂ pτ (h p)/∂α = 0.

This procedure maywork well for the log-normal frailty (Ha et al. 2011), but not for
the gamma frailty, so we use the second-order approximation (Lee and Nelder 2001;
Lee et al. 2017), defined by

sβ,v(h p) = pτ (h p) − {F(h p)/24},

where F(h p) = tr[−{3(∂4h p/∂v4) + 5(∂3h p/∂v3)H(h p, v)−1(∂3h p/∂v3)}
H(h p; v)−2]|v=v̂ . To reduce the computational burden, Ha et al. (2010) used F(h)

instead of F(h p), and Noh and Lee (2007) showed the resulting dispersion-parameter
estimators from two restricted likelihoods, pτ (h) and pv(h), are asymptotically equiv-
alent (Ha et al. 2007). Therefore, we can use

sv(h p) = pv(h p) − {F(h)/24}, (14)

to replace sβ,v(h p) and define

pv(h p) =
[
h p − 1

2
log det{H(h p, v)/(2π)}

] ∣∣∣∣
v=v̂

,
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116 I. D. Ha et al.

where H(h p, v) = −∂2h p/∂v2 is an adjustment term to eliminate v and v̂ = v̂(α)

solves ∂h p/∂v = 0. In particular, under the gamma frailty F(h) has a simple form,

F(h) =
∑

i

{−2(α−1 + δi+)−1},

where δi+ = δi1 + δi2.
The classical clustered survival data have a cluster size of ni ≥ 2, and the bias

becomes smaller as ni increases. In the semi-competing risks setting, however, we
consider each cluster contains only two observations for the non-terminal and terminal
event times, that is ni = 2 for all i . Thus, further modifications on the h-likelihood
given in the following subsection are necessary for a bias correction.

2.3 Modification of the likelihood

In the standard semi-parametric frailty models, Ha et al. (2010) showed that the ML
estimators can be substantially biased in the finite samples. In this section we propose
likelihood-based modifications to reduce such biases in the semi-parametric frailty
models (5)–(7) under semi-competing risks. We consider a case where parameters of
interest are (β, α) and nuisance quantities are λ0 (fixed parameters) and v (random
effects). For inference on (β, α), we need to eliminate the nuisance quantities (λ0, v),
the dimension of which increase with sample size and number of events. There are
typically two ways of eliminating the nuisance parameters using the h-likelihood: one
is to integrate v out of the h-likelihood and the other is to profile out λ0. In this paper,
we propose the following twomethods to eliminate such nuisance quantities efficiently
from the h-likelihood:

Method 1 Eliminate v first and then λ0,

Method 2 Eliminate λ0 first and then v.

We now show how to construct the likelihoods depending on the order of the quan-
tities being eliminated. Firstly, in Method 1 we consider the marginal log-likelihood,
denoted by m, which can be obtained by integrating out the frailties v from the h-
likelihood, i.e.

m = m(β, λ0, α) =
∑

i

log

{∫
exp(hi ) dvi

}
, (15)

where hi = �1i + �2i is the contribution of the i th individual to h in (8). Then we
construct a profile marginal log-likelihood m∗ by plugging in the estimates of λ0,
defined by

m∗ = m∗(β, α) = m|λ0 j =̃λ0 j
, (16)

where λ̃0 jk j (β, v), ( j = 1, 2, 3) are the solutions of the estimating equations,
∂m/∂λ0 jk j = 0, for k j = 1, . . . , Dj . Secondly, in Method 2 we consider the partial
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Frailty modelling approaches for semi-competing risks data 117

h-likelihood h p = h p(v, β, α) in (11), where λ0 has been already eliminated by pro-
filing. Thus we can construct a partial marginal log-likelihood mp (Ha et al. 2010) by
integrating out the frailty v from h p,

mp = mp(β, α) = log

{∫
exp(h p) dv

}
. (17)

The marginal log-likelihood m often requires a numerical integration (e.g. for the
log-normal frailty) except for the gamma frailty. Note that the resultingML estimators
by maximizingm are equivalent to those by maximizingm∗. The partial marginal log-
likelihood mp gives a partial ML estimator without finite sample biases (Therneau
et al. 2003; Gu et al. 2004) due to an efficient elimination of the nuisance quantities.
However, mp is is not easy to use due to intractable integration that does not allow
a closed form even with the gamma frailty. Moreover, mp involves high dimensional
integrationwhere the dimension increases with the number of frailties (Gu et al. 2004).

As an adequate approximation to mp, Ha et al. (2010) proposed to use an adjusted
profile marginal likelihood pω(m), which was defined as a function of (β, α),

pω(m) =
[
m − 1

2
log det{H(m, ω)/(2π)}

] ∣∣∣∣
ω=ω̃

, (18)

where ω = (ω1, . . . , ωr )
T with ωk = log λ0k , H(m, ω) = −∂2m/∂ω2 is an adjust-

ment term to eliminate λ0, and ω̃ solves ∂m/∂ω = 0. Under the standard gamma
frailty models, Ha et al. (2010) showed that as n∗ = min1≤i≤q ni → ∞ for cluster
size ni for subject i ,

pω(m) ≈ sv(h p).

Remark 1 For the semi-competing risks models (5)–(7) with gamma frailty, the
marginal likelihood has an explicit form. In “Appendix A”, we show that the marginal
likelihood procedure is equivalent to that of Xu et al. (2010). In “Appendix B”, we
show that given α, the h-likelihood and marginal likelihood procedures give the same
estimators as in the standard gamma frailty models (Ha et al. 2001; Ha and Lee 2003)
and they are compared in terms of the EM, which provides the ML estimators. ��

For simplicity, we consider the gamma frailty models for semi-competing risks
data where the marginal likelihood m has an explicit form. We have found that sv(h p)

sometimes gives a convergence problem in fitting the semi-competing risks gamma
frailty models, particularly for a large α (e.g. α ≥ 1). To overcome this problem, we
further consider a higher-order approximation based on the h-likelihood. Following
Tierney andKadane (1986) and Lee et al. (2017), we can show that with gamma frailty,
the fourth-order Laplace approximation (denoted bymv(h)) to themarginal likelihood
m is given by

mv(h) = sv(h) − F∗(h),

123



118 I. D. Ha et al.

where sv(h) = pv(h) − F(h) is the second-order Laplace approximation to m in (15)
and F∗(h) = (1/360)

∑
i (α

−1 + δi+)−3, which is equivalent to approximating m by
the fourth-order Stirling approximation

log
(x)
.= (x − 1/2) log(x) + log(2π)/2 − x + 1/(12x) − 1/(360x3).

Accordingly we define a modified h-likelihood based on h p,

mv(h p) = sv(h p) − F∗(h), (19)

where sv(h p) is a function of (β, α) as is given in (14). The modified h-likelihood
mv(h p) is also a function of (β, α) and is a higher-order approximation to mp in (17).
Note that sv(h) and sv(h p) are the second-order Laplace approximations to m in (15)
and mp in (17), respectively and that mv(h) and mv(h p) are the fourth-order Laplace
approximations to m and mp, respectively.

The first-order Laplace approximation becomes exact as n∗ = min1≤i≤q ni → ∞.
However, it may lead to a serious bias when cluster size ni is small. The second-order
approximation generally reduces such bias to some extent (Lee et al. 2017). In the
semi-competing risks setting, we suggest an even higher order approximationmv(h p)

(fourth order) for more effective bias correction.
In summary, we consider four likelihoods forψ = (β, α)T constructed byMethods

1 and 2 as follows:

m∗ in (16): a profile marginal likelihood byMethod 1,
pω(m) in (18) : an adjusted profile marginal likelihood by Method 1,
sv(h p) in (14): the second-order Laplace approximation to mp byMethod 2,
mv(h p) in (19): a modified h-likelihood based on h p by Method 2,

where the h-likelihood methods have been mainly used in Method 2. Notice that
simultaneous eliminations (e.g. pλ0,v(h)) of the nuisance quantities (λ0, v)may require
a heavy computation because the dimension of the corresponding Hessian matrix
H(h, (λ0, v)) increases with sample size and the number of events.

We call the estimators maximizing the marginal likelihoods m∗ and pω(m) the
maximum marginal likelihood 1 (MML1) and 2 (MML2) estimators, respectively. It
can be shown that with gamma frailty, the MML1 estimator is equivalent to the ML
estimator provided byXu et al. (2010): see “Appendix A” for more details.We also call
the estimators maximizing the partial likelihoods sv(h p) and mv(h p) the maximum
partial likelihood 1 (MPL1) and 2 (MPL2) estimators, respectively. Accordingly, the
four estimators of ψ = (β, α)T are summarized as follows:

Method 1 ψ̂MML1 = argmax
ψ

m∗ and ψ̂MML2 = argmax
ψ

pω(m),

Method 2 ψ̂MPL1 = argmax
ψ

sv(h p) and ψ̂MPL2 = argmax
ψ

mv(h p).

The fitting algorithm for the four estimation methods is summarized as follows:

Step 0 Find the initial estimates of (β, v); i.e. take (0,…,0, 0,…,0) as all initial
estimates of components of (β, v).
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Step 1 In the inner loop, given α, we maximize h p for β and v.
Step 2 In the outer loop, given β and v the four likelihoods, m∗, pω(m), sv(h p)

andmv(h p) are maximized for α. A simple grid search method is used to estimate
α (Therneau and Grambsch 2000; Ha et al. 2010).

After convergence, we compute the estimated standard errors of β̂ from the inverse
of the observed information, −∂2h p/∂τ 2, in (12).

3 Simulation study

We have performed simulation studies to assess the finite sample performance of
the proposed estimation methods, MML2, MPL1 and MPL2, in comparison with the
MML1 method developed by Xu et al. (2010).

We generated data under the semi-competing risks frailty models (5)–(7) as fol-
lows: (i) generate the common frailty ui from a gamma distribution with mean 1 and
variance α = 0.5 or 1.0, and (ii) given the frailty, generate two event times ti1 and ti2
independently from the proportional hazards models (5) and (6), i.e.

λ1i (t1|ui ; xi ) = λ01(t1) exp(x
T
i β1)ui and λ2i (t2|ui ; xi ) = λ02(t2) exp(x

T
i β2)ui ,

respectively, and (iii) the transition time t∗i2 is generated based on the transition model
from state 1 to state 2 in the form of

λ12i (t2|ui ; xi ) = λ03(t2) exp(x
T
i β3)ui .

First,we consider a single covariate casewhere xi = xi1,which follows the standard
normal distribution, for i = 1, . . . , n. The baseline hazard rates are set to be λ01(t1) =
λ02(t2) = 1, λ03(t2) = 2, and the regression coefficients to be β1 = β2 = β3 = 0.5.

We evaluate the proposed methods under two scenarios with fixed and random
censoring times, denoted by ci , as follows:

(i) Scenario 1 ci is fixed as the duration of the follow-up, ci = 3, yielding a censoring
rate ranging from 40% to 60% for the non-terminal event time yi1 and 10% to
30% for terminal event time yi2, and

(ii) Scenario 2 ci is randomlygenerated froma50-50mixture of a uniformdistribution
on interval (1.5, 3) and a degenerate distribution concentrated at 3, according to
the censoring scheme used in Xu et al. (2010), resulting in the similar ranges of
censoring rates for yi1 and yi2 as in Scenario 1.

We considered various sample sizes of n = 100, 250 and 500, and implemented
200 replications for each simulation setting. Simulation results from different methods
are reported in terms of percentage of relative bias (%rbias) and mean squared error
(MSE) for α̂ and β̂ = (β̂1, β̂2, β̂3)

T . Based on 200 replications, we also computed the
standard deviation (SD) and the mean of the estimated standard errors (SE) for β̂. The
SEs were obtained from the inverse of the observed information, −∂2h p/∂τ 2, in (12).
The results are presented in Tables 1, 2 for Scenario 1 and Tables 3, 4 for Scenario 2.
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Table 1 Simulation results under Scenario 1 with fixed censoring time

α n Parameter MML1 MML2 MPL1 MPL2

%rbias MSE %rbias MSE %rbias MSE %rbias MSE

0.5 100 α − 26.4 0.132 − 17.8 0.202 18.6 0.299 13.4 0.254

β1 5.4 0.048 0.4 0.053 6.8 0.055 6.0 0.054

β2 4.2 0.059 − 3.0 0.044 3.6 0.047 2.8 0.046

β3 − 4.8 0.070 − 6.8 0.083 3.8 0.088 2.6 0.085

0.5 250 α − 25.4 0.087 2.6 0.091 15.6 0.120 10.0 0.102

β1 − 3.8 0.020 − 0.2 0.018 0.8 0.019 − 0.2 0.019

β2 − 4.6 0.016 − 0.2 0.015 1.8 0.016 0.8 0.015

β3 − 7.4 0.027 1.0 0.033 3.4 0.032 1.8 0.031

0.5 500 α − 24.2 0.059 − 6.0 0.047 2.4 0.052 − 1.4 0.048

β1 − 6.2 0.011 − 2.0 0.010 − 0.4 0.010 − 1.0 0.010

β2 − 3.2 0.009 0.6 0.008 2.4 0.009 1.6 0.008

β3 − 6.4 0.016 0.2 0.015 2.6 0.015 1.4 0.015

1 100 α − 48.2 0.424 − 19.7 0.331 4.0 0.445 − 8.3 0.342

β1 0.4 0.063 − 0.5 0.066 3.0 0.070 1.2 0.065

β2 0.4 0.062 1.5 0.060 3.3 0.065 1.5 0.060

β3 − 7.9 0.089 − 6.2 0.100 − 1.7 0.107 − 4.1 0.100

1 250 α − 37.7 0.319 − 13.9 0.220 6.8 0.293 − 7.8 0.197

β1 − 3.2 0.022 − 1.4 0.022 1.5 0.023 − 0.5 0.021

β2 − 3.4 0.026 − 1.2 0.025 1.6 0.027 − 0.4 0.025

β3 − 5.7 0.043 − 1.2 0.038 3.1 0.043 0.2 0.037

1 500 α − 21.1 0.187 − 8.7 0.157 6.8 0.208 − 7.3 0.138

β1 − 2.4 0.015 − 0.6 0.015 1.7 0.016 − 0.4 0.014

β2 − 2.6 0.014 − 0.4 0.013 1.9 0.014 − 0.2 0.013

β3 − 4.6 0.023 − 2.0 0.020 1.3 0.022 − 1.6 0.019

MML maximum marginal likelihood, MPL maximum partial likelihood
%rbias, percentage of relative bias
MML1, m∗ in (16); MML2, pω(m) in (18)
MPL1, sv(h p) in (14); MPL2, mv(h p) in (19)

From Table 1, we find that the relative biases of the proposed MML2, MPL1 and
MPL2 estimates are smaller than those of the MML1 estimates in most of the settings.
The MML1 method exhibits non-negligible biases in estimating the parameters, espe-
cially for the frailty parameter α, which confirms the simulation results in Ha et al.
(2010) for the standard gamma frailty models. Table 2 shows that the proposed SEs
are generally slightly underestimated as compared to the SDs. The similar findings are
observed in Scenario 2 under the random censoring scheme, as shown in Tables 3, 4.

In Tables 1 and 3, the existing MML1 method gives somewhat smaller MSEs
compared to other three methods (MML2, MPL1 and MPL2), especially when the
frailty parameter α is as small as α = 0.5, possibly due to underestimation of α by the
MML1 method. It is worth noting that the proposed MPL2 estimation outperforms all
the other proposed methods in terms of the MSE when the frailty parameter α is as
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Table 2 Simulation results for comparison between estimated standard error (SE) and sample standard
deviation (SD) for β under Scenario 1 with fixed censoring

α n Parameter MML1 MML2 MPL1 MPL2

SD SE SD SE SD SE SD SE

0.5 100 β1 0.217 0.187 0.230 0.191 0.233 0.203 0.231 0.201

β2 0.241 0.187 0.210 0.191 0.217 0.203 0.213 0.201

β3 0.263 0.232 0.286 0.235 0.296 0.253 0.292 0.250

0.5 250 β1 0.140 0.115 0.134 0.120 0.139 0.123 0.138 0.121

β2 0.126 0.115 0.123 0.120 0.126 0.122 0.124 0.121

β3 0.159 0.138 0.181 0.147 0.178 0.151 0.175 0.149

0.5 500 β1 0.099 0.081 0.097 0.084 0.099 0.085 0.098 0.084

β2 0.095 0.081 0.092 0.084 0.092 0.085 0.091 0.084

β3 0.121 0.097 0.123 0.101 0.123 0.103 0.122 0.102

1 100 β1 0.251 0.196 0.257 0.212 0.263 0.225 0.254 0.218

β2 0.248 0.197 0.244 0.213 0.253 0.227 0.244 0.220

β3 0.288 0.256 0.310 0.273 0.326 0.289 0.314 0.280

1 250 β1 0.144 0.126 0.146 0.135 0.150 0.142 0.144 0.137

β2 0.157 0.126 0.157 0.135 0.164 0.142 0.158 0.137

β3 0.199 0.158 0.195 0.171 0.205 0.181 0.193 0.174

1 500 β1 0.122 0.093 0.121 0.097 0.125 0.101 0.119 0.097

β2 0.115 0.093 0.114 0.096 0.118 0.100 0.112 0.097

β3 0.144 0.117 0.139 0.121 0.148 0.127 0.137 0.122

large as α = 1. This advantage might be from a reduced number of tied observations
under Scenario 2 and improvememt in bias correction of the MPL2 estimation using
the higher-order approximation (19) to amodifiedmarginal likelihoodmp as described
in Sect. 2.

We have conducted further simulations to assess performance of the proposed esti-
mation methods when there are multiple covariates in each transition model. The
simulation scheme is the same as before, except that three additional covariates were
considered in each model, that is, xi = (xi1, xi2, xi3)T , where xi1 and xi2 fol-
low the standard normal distribution, xi3 follows a Bernoulli(0.5) distribution, for
i = 1, . . . , n. The corresponding coefficients were set to be β1 = (β11, β12, β13) =
(0.5, 0.5,−0.5), β2 = (β21, β22, β23) = (0.5, 0.5,−0.5) and β3 = (β31, β32, β33) =
(1, 1,−1).

Again, we consider the following two scenarios with fixed and random censoring
times ci :

(i) Scenario 3 ci is fixed as the duration of the follow-up, ci = 3, which yields a
censoring rate ranging from 50% to 60% for the non-terminal event time yi1 and
20% to 30% for terminal event time yi2, and

(ii) Scenario 4 ci is randomlygenerated froma50-50mixture of a uniformdistribution
on interval (1.5, 3) and a degenerate distribution concentrated at 3, resulting in
the similar ranges of censoring rates for yi1 and yi2 as in Scenario 3.
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Table 3 Simulation results under Scenario 2 with random censoring

α n Parameter MML1 MML2 MPL1 MPL2

%rbias MSE %rbias MSE %rbias MSE %rbias MSE

0.5 100 α − 24.0 0.107 − 11.4 0.225 19.2 0.307 14.8 0.282

β1 10.4 0.040 0.2 0.051 6.2 0.055 5.0 0.054

β2 11.8 0.040 2.0 0.047 8.0 0.052 6.8 0.050

β3 − 7.2 0.071 − 6.8 0.089 2.4 0.098 0.6 0.094

0.5 250 α − 30.4 0.101 − 3.0 0.101 13.4 0.160 6.8 0.122

β1 − 4.0 0.017 0.8 0.019 4.0 0.021 3.0 0.020

β2 − 3.2 0.015 2.2 0.017 5.4 0.019 4.4 0.018

β3 − 10.8 0.028 − 3.4 0.026 0.8 0.028 − 0.6 0.027

0.5 500 α − 24.0 0.073 − 4.6 0.064 3.6 0.080 0.0 0.067

β1 − 4.4 0.010 − 0.2 0.009 1.4 0.010 0.8 0.009

β2 − 5.0 0.009 − 0.6 0.008 0.8 0.009 0.2 0.008

β3 − 9.4 0.022 − 3.4 0.021 − 1.2 0.022 − 2.6 0.021

1 100 α − 48.5 0.453 − 21.4 0.367 4.9 0.477 − 9.1 0.352

β1 − 0.9 0.056 0.6 0.052 4.3 0.058 2.4 0.053

β2 − 0.4 0.059 − 2.5 0.062 0.8 0.066 − 1.1 0.063

β3 − 10.3 0.100 − 7.2 0.094 − 1.4 0.103 − 4.0 0.097

1 250 α − 32.9 0.351 − 8.1 0.298 12.1 0.370 − 4.5 0.243

β1 − 2.7 0.029 0.0 0.027 2.8 0.029 0.5 0.025

β2 − 1.7 0.028 1.0 0.026 3.8 0.028 1.6 0.025

β3 − 7.5 0.049 − 2.7 0.049 1.6 0.052 − 1.6 0.046

1 500 α − 24.6 0.198 − 11.9 0.170 6.2 0.246 − 9.3 0.145

β1 − 3.6 0.015 − 1.8 0.014 0.8 0.016 − 1.0 0.014

β2 − 2.9 0.015 − 1.2 0.013 1.3 0.015 − 0.6 0.013

β3 − 4.3 0.028 − 1.1 0.026 2.6 0.030 − 0.7 0.025

Simulation results based on 200 replications over different values of α (frailty
variance) are presented in the Supplementary Material, where Tables S1-S4 are under
Scenario 3 and Tables S5-S8 under Scenario 4. From Tables S1-S2, we can see that
the relative biases of the proposed MML2, MPL1 and MPL2 estimates are smaller
than those of the MML1 estimates under all settings. The MML1 method exhibits
non-negligible biases in the parameter estimates, especially for the frailty parameter
α. These results confirm the simulation results from Ha et al. (2010) for the standard
gamma frailty models. Tables S3-S4 show that the proposed estimated standard errors
are closer to their corresponding sample SDs compared to the SEs for the MML1
estimator in most cases, implying that the estimated SEs for the proposed estimators
work more effectively than that for MML1 estimator.

The similar observations can be made from Tables S5-S8 under Scenario 4 with a
random censoring scheme. From Tables S1, S2, S5 and S6, we find that all of those
four methods produce comparable estimation for β in terms of the MSEs, while the
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Table 4 Simulation results for comparison between estimated standard error (SE) and sample standard
deviation (SD) for β under Scenario 2 with random censoring

α n Parameter MML1 MML2 MPL1 MPL2

SD SE SD SE SD SE SD SE

0.5 100 β1 0.193 0.188 0.226 0.191 0.232 0.201 0.230 0.200

β2 0.190 0.189 0.216 0.192 0.224 0.202 0.220 0.200

β3 0.264 0.238 0.297 0.243 0.313 0.258 0.307 0.255

0.5 250 β1 0.127 0.114 0.139 0.120 0.144 0.124 0.142 0.122

β2 0.123 0.115 0.129 0.121 0.135 0.124 0.132 0.123

β3 0.157 0.139 0.159 0.148 0.168 0.153 0.164 0.151

0.5 500 β1 0.095 0.081 0.096 0.084 0.099 0.085 0.096 0.085

β2 0.093 0.082 0.090 0.084 0.093 0.086 0.090 0.085

β3 0.142 0.098 0.144 0.103 0.148 0.105 0.144 0.104

1 100 β1 0.236 0.197 0.227 0.214 0.238 0.228 0.229 0.221

β2 0.243 0.199 0.248 0.213 0.256 0.228 0.250 0.220

β3 0.299 0.255 0.298 0.277 0.321 0.297 0.309 0.287

1 250 β1 0.168 0.128 0.164 0.137 0.167 0.144 0.159 0.139

β2 0.167 0.129 0.162 0.138 0.163 0.145 0.156 0.139

β3 0.208 0.163 0.219 0.175 0.227 0.185 0.215 0.177

1 500 β1 0.118 0.093 0.118 0.096 0.126 0.101 0.116 0.097

β2 0.117 0.093 0.114 0.096 0.123 0.101 0.112 0.097

β3 0.162 0.117 0.160 0.122 0.172 0.128 0.158 0.123

MPL2 method slightly outperforms the other methods in estimating α. Overall, the
above findings indicate that the performance of the proposed estimators is sustainable
for the semi-competing risks models with multiple covariates.

Remark 2 Our simulation experience indicates all of these fourmethodsmayencounter
a convergence problem, caused by a monotone likelihood (Heinze and Schemper,
2001) as shown in the Cox’s PH model. For example, the plot of the profile likelihood
m∗ against α shows a monotone function as in Ha et al. (2017, pp. 79). We have
observed that the MML1 method (m∗) has a serious convergence problem for a small
sample case (e.g. n = 100 with (q, ni ) = (50, 2)), while the other three methods,
i.e. MML2, MPL1 and MPL2, generally overcome such problems. In particular, the
MPL2 method converges most of the time except for a few cases with a small sample
size (e.g. n = 100 with (q, ni ) = (50, 2)), leading to a bias reduction.

4 A practical example

For an illustration, we consider a data set from the B-14 phase III breast cancer
clinical trial conducted by the National Surgical Adjuvant Breast and Bowel Project
(NSABP, Fisher et al. 1989, 1996). Total 2572 eligible patients were followed up
for five years since randomization. Patients were randomized to one of two treatment
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Table 5 Observed event types by two treatment arms (n = 2,572 patients)

Types of event Placebo Tamoxifen Total

Type 1 (State 0 → State 1): recurrence from study 108 72 180 (7.00%)

Type 2 (State 0 → State 2): death without recurrence 242 293 535 (20.80%)

Type 3 (State 1 → State 2): death after recurrence 331 209 540 (21.00%)

No event (Censoring) 613 704 1317 (51.21%)

arms, tamoxifen (1278 patients) or placebo (1294 patients). The patients’ median age
was 56 (range 25–75) and their average tumor size was about 2.2 cm.

The aim of this analysis is to investigate the effect of a hormonal treatment on a
cancer recurrence and/or death, considering three event types. Type 1 is breast cancer
recurrence, Type 2 is death without recurrence, and Type 3 is death after recurrence.
Table 5 gives the observed numbers of event types in this data set. Here 180 patients
(7.00%) experienced Type 1, 535 patients (20.80%) did Type 2, 540 patients (21.00%)
did Type 3, and the remaining 1317 patients (51.21%) had no events. Table 5 also
shows the numbers of observed event types by treatment arm.

In this analysis, we consider three covariates of interest: treatment (xi1 = 1 for
tamoxifen and 0 for placebo), tumor size (xi2) and age (xi3). We first apply the naive
transition model (5)–(7) without a frailty and then one with the gamma frailty. For
estimation under the gamma frailty model, we use four likelihood methods (MML1,
MML2, MPL1 and MPL2) as in the simulation study. The fitted results are listed in
Table 6. The results from the naive model and frailty models using the four likelihood
methods are very similar because the frailty-parameter estimates are all very small
(α̂ = 0.087 for MPL1, α̂ = 0.090 for MPL2, α̂ = 0.059 for MML1 and α̂ = 0.085
for MML2). Moreover, to test the frailty effect H0 : α ≡ var(ui ) = 0 which is on
the boundary of the parameter space, an asymptotic null distribution of the likelihood
ratio test follows a 50:50 chi-square mixture, denoted by χ2

0:1 (Self and Liang 1987;
Stram and Lee 1994; Ha et al. 2011) with its critical value equal to χ2

1,0.1 = 2.71 at
a 5% significance level. Let �B be the Breslow’s log-likelihood (1974) for the naive
model above, i.e. ui = 1 for all i in the gamma frailty model with (5)–(7), defined by
(Lee and Nelder 1996)

�B = lim
α→0

sv(h p).

The difference between the likelihood functions from the naive model and frailty
model (MPL1) is 2{sv(h p) − �B} = 0.7(< 2.71), indicating that the frailty effect is
not significant. Themarginal likelihoodmethod (MML1) also gives 2{m∗−�B} = 0.4.

In Table 6, the treatment effect (x1) is significant for time to recurrence and time to
death after recurrence, but not for time to death without recurrence. For time to death
without recurrence, the sign of treatment effect is positive, which may be explained
from the fact that more patients died without cancer recurrence in the tamoxifen group
(293/535) than the placebo group (242/535). We also see that the use of tamoxifen
significantly reduces breast cancer recurrence (Type 1), but it is not beneficial in
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Table 6 Fitted results from the semi-competing risks models for NSABP B-14 data

Model Time to recurrence Time to death
without recurrence

Time to death
after recurrence

Est. (SE) Est. (SE) Est. (SE)

Naive model

Treatment (x1) −0.543 (0.077) 0.058 (0.087) 0.329 (0.089)

Age (x2) −0.015 (0.004) 0.090 (0.006) 0.007 (0.004)

Tumor size (x3) 0.018 (0.002) 0.007 (0.003) 0.010 (0.003)

−2�B = 23886.1

Frailty model (MPL1)

Treatment (x1) −0.552 (0.078) 0.046 (0.089) 0.332 (0.094)

Age (x2) −0.015 (0.004) 0.090 (0.006) 0.008 (0.004)

Tumor size (x3) 0.018 (0.003) 0.008 (0.004) 0.011 (0.003)

Frailty α 0.087

−2sv(h p) = 23885.4

Frailty model (MPL2)

Treatment (x1) −0.552 (0.078) 0.046 (0.089) 0.332 (0.094)

Age (x2) −0.015 (0.004) 0.090 (0.006) 0.008 (0.004)

Tumor size (x3) 0.018 (0.003) 0.008 (0.004) 0.011 (0.003)

Frailty α̂ 0.090

−2mv(h p) = 23885.4

Frailty model (MML1)

Treatment (x1) −0.549 (0.077) 0.050 (0.088) 0.332 (0.093)

Age (x2) −0.015 (0.004) 0.090 (0.006) 0.007 (0.004)

Tumor size (x3) 0.018 (0.002) 0.008 (0.004) 0.011 (0.003)

α̂ 0.059

−2m∗ = 23885.7

Frailty model (MML2)

Treatment (x1) −0.551 (0.078) 0.046 (0.089) 0.332 (0.094)

Age (x2) −0.015 (0.004) 0.090 (0.006) 0.008 (0.004)

Tumor size (x3) 0.018 (0.003) 0.008 (0.004) 0.011 (0.003)

Frailty α̂ 0.085

−2pω(m) = 23885.4

Naive model, semi-competing risks model without frailty
Frailty model, semi-competing risks model with gamma frailty
α, variance of gamma frailty

death after recurrence (Type 3). In terms of the other covariates, the age effect (x2)
is very significant for event types 1 and 2. The effect of tumor size (x3) is positively
significant for all three event types, implying that the event rate is significantly higher
among patients whose tumor sizes were larger at surgery.

Next we restricted the data analysis only to older patients (1,776 patients with
age ≥ 50). The results are summarized in Table 7. Here we present the results only
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from three methods (MPL2, MML1 and MML2) because the MPL1 method did not
converge. We find that the frailty parameter estimates are all larger compared to those
in Table 5. The likelihood difference from the naive model is 2{mv(h p)−�B} = 9.8 >

2.71, indicating that the frailty effect is significantly large, i.e. α > 0. The difference
between the naive and profile marginal likelihoods also gives 2{m∗ − �B} = 9.3,
selecting the frailty model again. Thus, the results from the naive and frailty models
are expected to be somewhat different. The treatment effects are overall similar to
those in Table 6 even though their signs in the frailty model have changed for time to
death without recurrence in Table 7. However, for time to death without recurrence
and time to death after recurrence, the tumor size effect is not significant in the naive
model, whereas it is in the frailty model.

In addition, we also considered older patients only (484 patients with age ≥ 65).
The results are also summarized in Table 7. In particular, we find that the MML1
estimate for α (α̂ = 0.482) is somewhat smaller compared to other two methods
(α̂ = 1.021 from MPL2 and α̂ = 1.238 from MML2), which was also demonstrated
in the simulation study. This underestimation is also reflected in the likelihood ratio test
for H0 : α = 0. That is, the likelihood difference is 2{m∗−�B} = 1.5 < 2.71, whereas
2{mv(h p) − �B} = 4.3 > 2.71 and 2{pω(m) − �B} = 4.4 > 2.71. This implies that
the MPL2 and MML2 methods are sensitive enough to detect the significance of the
frailty effect, but the MML1 method does not. We also observe that the sign of tumor-
size effect is negative from the MML1method, but becomes positive in the MPL2 and
MML2 methods.

5 Discussion

We have shown how to eliminate nuisance quantities from the h-likelihood and thus
how to find effective modifications (MML2, MPL1 and MPL2) to reduce the bias of
the maximum likelihood estimators (MML1). In general, the adjusted profile marginal
likelihood (pω(m)) is hard to use because an explicit form of the marginal likelihood
(m) is not available. For the models such as the lognormal frailty or with correlated
frailties, we recommend using the modified likelihoods, sv(h p) or mv(h p), based on
the partial h-likelihood h p. This implies that elimination of the nuisance quantities by
Method 2 proposed in Sect. 2.3 is practically effective. Based on our experience in
numerical studies in the current and previous work for the frailty models, the proposed
h-likelihood based methods (i.e. the modified likelihood approaches using sv(h p) or
mv(h p)) often provide estimators with smaller biases than that from the marginal
likelihood method. Theoretical justification of this property as inquired by a referee
would merit future research.

Section 3 presents simulation results for the parameters of interest (α, β) only,
while the estimates of the nuisance parameters, i.e. three baseline cumulative hazards
	01(t),	02(t) and 	03(t), are excluded. In fact, even though our simulations also
included estimation of those three functions, their estimates from all of the four meth-
ods tends to be biased as the time t increases, yet had only minimal impact on the
estimation of (α, β). It would be worth a further investigation to improve the accuracy
of the baseline cumulative hazard estimates.
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Table 7 Fitted results from the semi-competing risks models for older patients in the NSABP B-14 data

Model Time to
recurrence

Time to death without
recurrence

Time to death
after recurrence

Age ≥ 50 Est. (SE) Est. (SE) Est. (SE)

Naive model

Treatment (x1) −0.631 (0.097) 0.081 (0.092) 0.471 (0.112)

Tumor size (x3) 0.023 (0.003) 0.005 (0.004) 0.006 (0.004)

−2�B = 16417.1

Frailty model (MPL2)

Treatment (x1) −0.775 (0.116) −0.101 (0.119) 0.472 (0.150)

Tumor size (x3) 0.032 (0.004) 0.016 (0.005) 0.015 (0.006)

α̂ 1.315

−2mv(h p) = 16407.3

Frailty model (MML1)

Treatment (x1) −0.787 (0.120) −0.116 (0.126) 0.466 (0.160)

Tumor size (x3) 0.033 (0.005) 0.017 (0.006) 0.016 (0.006)

α̂ 1.444

−2m∗ = 16407.8

Frailty model (MML2)

Treatment (x1) −0.814 (0.124) −0.152 (0.134) 0.452 (0.165)

Tumor size (x3) 0.035 (0.005) 0.019 (0.006) 0.018 (0.007)

α̂ 1.751

−2pω(m) = 16404.3

Age ≥ 65 Est. (SE) Est. (SE) Est. (SE)

Naive model

Treatment (x1) −0.621 (0.200) 0.070 (0.139) 0.318 (0.232)

Tumor size (x3) 0.026 (0.007) 0.003 (0.006) −0.005 (0.009)

−2�B = 4112.5

Frailty model (MPL2)

Treatment (x1) −0.793 (0.230) −0.116 (0.194) 0.425 (0.320)

Tumor size (x3) 0.034 (0.009) 0.009 (0.009) 0.003 (0.014)

α̂ 1.021

−2mv(h p) = 4108.2

Frailty model (MML1)

Treatment (x1) −0.709 (0.214) −0.016 (0.164) 0.412 (0.287)

Tumor size (x3) 0.030 (0.008) 0.006 (0.007) −0.001 (0.012)

α̂ 0.482

−2m∗ = 4111.0

Frailty model (MML2)

Treatment (x1) −0.823 (0.237) −0.156 (0.206) 0.424 (0.330)

Tumor size (x3) 0.036 (0.010) 0.010 (0.010) 0.004 (0.015)

α̂ 1.238

−2pω(m) = 4108.1
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For modelling the semi-competing risks data, we used a shared frailty in three
transition models. Extension to a model, where the transitions are affected by differnt
frailties that are correlated, would be an interesting furtherwork. Furthermore, we have
assumed a Markov process for such transitions, but comparison with a semi-Markov
assumption, i.e. λ12(t2|t1) = λ12(t2 − t1), may be also interesting. The marginal
likelihood may involve evaluation of analytically intractable integrals over the frailty
distribution (e.g. log-normal distribution),whereas the h-likelihood obviates such inte-
gration. Extension of the proposed h-likelihood method to general frailty distributions
including the log-normal distribution would be also an interesting future topic.
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Appendix

Appendix A: Marginal-likelihood estimation procedure

For gamma frailty models with E(ui ) = 1 and var(ui ) = α, we have an explicit
marginal likelihood as follows. Since the second term of h-likelihood in (8) under the
gamma frailty is given by

�2i = �2i (α; vi ) = α−1(vi − ui ) + c(α),

with c(α) = − log
(α−1) − α−1 logα, from (8) and (15) we have that

m =
∑

i

[δi1{log λ01(yi1) + xTi β1} + δi2(1 − δi1){log λ02(yi2) + xTi β2}

+ δi1δi2{log λ03(yi2) + xTi β3}]
−

∑

i

[(α−1 + δi+) log(1 + αμi+) − log{αδi+
(α−1 + δi+)/
(α−1)}]

=
∑

k1

d1(k1) log λ01k1 +
∑

i

δi1(x
T
i β1) +

∑

k2

d2(k2) log λ02k2

+
∑

i

δi2(1 − δi1)(x
T
i β2) +

∑

k3

d3(k3) log λ03k3 +
∑

i

δi1δi2(x
T
i β3)

−
∑

i

[(α−1 + δi+) log(1 + αμi+) − δi1δi2 log(1 + α)], (A.1)
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where δi+ = δi1 + δi2 and μi+ = ∑3
j=1 μi j with

μi1 = 	01(yi1) exp(x
T
i β1) =

∑

k1

λ01k1 I (y1(k1) ≤ yi1) exp(x
T
i β1),

μi2 = 	02(yi2) exp(x
T
i β2) =

∑

k2

λ02k2 I (y2(k2) ≤ yi1) exp(x
T
i β2),

μi3 = 	03(yi1, yi2) exp(x
T
i β3) =

∑

k3

λ03k3 I (yi1 < y3(k3) ≤ yi2) exp(x
T
i β3).

In fact, the marginal likelihood (A.1) is the same as that of Xu et al. (2010).
Under the gamma frailty, the score equations for β are given by

∂m

∂β1
=

∑

i

{
δi1 −

(
α−1 + δi+
α−1 + μi+

)
μi1

}
xi , (A.2)

∂m

∂β2
=

∑

i

{
δi2(1 − δi1) −

(
α−1 + δi+
α−1 + μi+

)
μi2

}
xi , (A.3)

∂m

∂β3
=

∑

i

{
δi1δi2 −

(
α−1 + δi+
α−1 + μi+

)
μi3

}
xi . (A.4)

In particular, the solutions of ∂m/∂λ0 jk j = 0 ( j = 1, 2, 3) lead to closed forms:

λ̃0 jk j (β, α) = d j(k j )∑
i∈R(k j )

exp(xTi β j )ũi
, (A.5)

where ũi = (α−1 + δi+)/(α−1 + μi+). We see that the score equations of (β, λ0 j )

in (A.2)–(A.4) and (A.5) are extensions of those in the shared gamma frailty models
(Andersen et al. 1997). Finally, the score equation for the frailty parameter α is given
by

∂m

∂α
=

∑

i

{
δi1δi2(1 + α)−1 + α−2 log(1 + αμi+) − (α−1 + δi+)μi+(1 + αμi+)−1

}
.

Then the estimates of fixed parameters (β, α, λ0) can be obtained using a numerical
iterative method such as the Newton-Raphson method. Note that the maximum like-
lihood estimating equations, ∂m/∂(β, α, λ0) = 0, by Xu et al. (2010) are equivalent
to ∂m∗/∂(β, α) = 0, where m∗ is the profile marginal likelihood in (16).

Appendix B: Comparison of h-likelihood withmarginal likelihood

We assume that α is known. Recall that given (β, v), the score equations ∂h/∂λ0 jk j =
0 ( j = 1, 2, 3) provide the non-parametric maximum h-likelihood estimators in
Sect. 2.2, i.e.
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λ̂0 jk j (β, v) = d j(k j )∑
i∈R(k j )

exp(xTi β j )ui
.

The maximum h-likelihood estimating equations for β, under the gamma frailty,
become

∂h

∂β1

∣∣∣λ01=̂λ01
=

∑

i

{
δi1 − μi1ui

}
xi

∣∣∣λ01=̂λ01
= 0 , (B.1)

∂h

∂β2

∣∣∣λ02=̂λ02
=

∑

i

{
δi2(1 − δi1) − μi2ui

}
xi

∣∣∣λ02=̂λ02
= 0 , (B.2)

∂h

∂β3

∣∣∣λ03=̂λ03
=

∑

i

{
δi1δi2 − μi3ui

}
xi

∣∣∣λ03=̂λ03
= 0 . (B.3)

From

∂h

∂vi
= (δi+ − μi+ui ) + α−1 − α−1ui = 0,

we have that

ûi = α−1 + δi+
α−1 + μi+

, (B.4)

which also becomes E(ui |yoi ) because the conditional distribution of ui given the
observed data yoi = (yi1, yi2, δi1, δi2) is gamma. Here δi+ = δi1 + δi2 and μi+ =
μi1 +μi2 +μi3. From (12) we see that the estimating Eqs. (B.1)–(B.3) with (B.4) are
equivalent to the estimating Eqs. (A.2)–(A.4) with (A.5), given by

∂m

∂β1

∣∣∣λ01=̃λ01
=

∑

i

{
δi1 − μi1

(
α−1 + δi+
α−1 + μi+

)}
xi ,

∣∣∣λ01=̃λ01
= 0 (B.5)

∂m

∂β2

∣∣∣λ02=̃λ02
=

∑

i

{
δi2(1 − δi1) − μi2

(
α−1 + δi+
α−1 + μi+

)}
xi ,

∣∣∣λ02=̃λ02
= 0 (B.6)

∂m

∂β3

∣∣∣λ03=̃λ03
=

∑

i

{
δi1δi2 − μi3

(
α−1 + δi+
α−1 + μi+

)}
xi ,

∣∣∣λ03=̃λ03
= 0 . (B.7)

Accordingly, the maximum h-likelihood (MHL) estimator for β given α is the same
as the marginal maximum likelihood (ML) estimator as shown in the standard gamma
frailty models (Ha et al. 2001; Ha and Lee 2003). Note, however, that both methods
give different estimators for α.

Themarginal likelihood does not often have an analytic form (e.g. log-normal frailty
model), so that the natural approach to the maximum likelihood estimator (MLE)
is to use the EM treating the random effects as missing data. Below we present the
comparison of the proposed h-likelihoodmethodwith the EMmethod for obtaining the
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MLE. The EM equations for fixed parameters θ can be expressed via the h-likelihood
as follows:

E(∂h/∂θ |data) = 0,

which is equivalent to theML equations, i.e. ∂m/∂θ = 0 (Lee and Nelder 1996; Engel
and Keen 1996; Ha et al. 2001).

In the semi-competing risks frailty models (5)–(7), the EM equations for (β, α) are
given by

E
(
∂h/∂(β, α)| yoi , λ̃∗

0 jk j

)
= 0.

Here, the EM equations of the baseline hazards λ0 jk j are given by

E(∂h/∂λ0 jk j | yoi ) = 0,

which lead to

λ̃∗
0 jk j (β, v) = d j(k j )∑

i∈R(k j )
exp(xTi β j )E(ui |yoi )

.

Following Ha et al. (2001), in the gamma frailty models, given α the MHL equations
for β

∂h p/∂β = (∂h/∂β)|λ0=̂λ0
= 0,

with (B.4) are equivalent to the EM equations

E(∂h/∂β| yoi , λ̃∗
0 jk j ) = 0,

since E(ui |yoi ) becomes ũi in (A.5) and thus λ̃∗
0 jk j

is identical to λ̃0 jk j in (A.5) as

well as to λ̂0 jk j . However, in general the EM may be difficult to apply because the
conditional distribution of ui given yoi is not trivial to be evaluated. For example, in
the log-normal frailty with vi = log ui ∼ N (0, α), the EM equation for β1 is given
by

E
(
∂h/∂β1| yoi , λ̃∗

0 jk j

)
=

∑

i

{
δi1 − μ̃∗

i1E(ui |yoi )
}
xi = 0,

where

μ̃∗
i1 = 	̃∗

01(yi1) exp(x
T
i β1) =

∑

k1

λ̃∗
01k1 I (y1(k1) ≤ yi1) exp(x

T
i β1).

Note here that the computation of E(ui |yoi ) requires a numerical integration.
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