
Lifetime Data Analysis (2019) 25:546–568
https://doi.org/10.1007/s10985-018-09459-5

Copula-based score test for bivariate time-to-event data,
with application to a genetic study of AMD progression

Tao Sun1 · Yi Liu1 · Richard J. Cook2 ·Wei Chen3 · Ying Ding1

Received: 9 March 2018 / Accepted: 6 December 2018 / Published online: 17 December 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
Motivated by a genome-wide association study to discover risk variants for the pro-
gression of Age-relatedMacular Degeneration (AMD), we develop a computationally
efficient copula-based score test, in which the dependence between bivariate progres-
sion times is taken into account. Specifically, a two-step estimation approach with
numerical derivatives to approximate the score function and observed information
matrix is proposed. Both parametric and weakly parametric marginal distributions
under the proportional hazards assumption are considered. Extensive simulation stud-
ies are conducted to evaluate the Type I error control and power performance of the
proposed method. Finally, we apply our method to a large randomized trial data, the
Age-related Eye Disease Study, to identify susceptible risk variants for AMD progres-
sion. The top variants identified on Chromosome 10 show significantly differential
progression profiles for different genetic groups, which are critical in characterizing
and predicting the risk of progression-to-late-AMD for patients with mild to moderate
AMD.

Keywords AMD progression · Bivariate time-to-event · Copula · GWAS ·
Generalized score test

1 Introduction

Our research is motivated by a genome-wide association study (GWAS) on identify-
ing risk variants for the progression of a bilateral eye disease—Age-related Macular
Degeneration (AMD). AMD is a common, polygenic, and progressive neurodegener-
ative disease, which is a leading cause of blindness in the developed world (Swaroop
et al. 2009; The Eye Diseases Prevalence Research Group 2004). The overall preva-
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lence of AMD in the US population of adults who are 40 years and older is estimated
to be 1.47%, with more than 1.75 million citizens having AMD. Both common and
rare variants associated with AMD risk (i.e., whether or not the disease will develop)
have been identified in multiple large-scale case-control association studies (Fritsche
et al. 2013, 2016). However, the genetic causes for AMD progression have not been
well-studied. Several studies evaluated the effects of a few known AMD risk variants
on its disease progression (Seddon et al. 2009, 2014). These studies analyzed only
one eye per subject (e.g., the faster progressed eye). Recently, Sardell et al. (2016)
and Ding et al. (2017) evaluated a set of known AMD risk variants on progression
using both eyes with a robust marginal Cox model, where the between-eye correlation
was taken into account. All these aforementioned studies on AMD progression only
analyzed a small set of known AMD risk variants. Very recently, Yan et al. (2018)
performed a GWAS on AMD progression using the robust Cox regression approach.

The Age-related eye disease study (AREDS) was a multi-center, controlled, ran-
domized clinical trial of AMD and age-related cataract, sponsored by the National
Eye Institute (AREDS Group 1999). It was designed to assess the clinical course
and risk factors for the development and progression of AMD and cataract. The study
collected DNA samples of consenting participants and performed genome-wide geno-
typing. With progression times available for both eyes and a large collection of SNPs
to be tested, our endeavor was to develop a stable, robust and computationally efficient
test procedure for bivariate time-to-event data.

For multivariate survival analysis, Hougaard (2000) and Joe (1997) provided thor-
ough reviews and examples. One of the earliest distribution families for correlated
bivariate measurements is the Copula family (Clayton 1978), originated from the
Sklar’s Theorem (Sklar 1959), of which the joint distribution is modeled as a func-
tion of each marginal distribution together with an dependence parameter. Another
popular approach for analyzing multivariate survival data is the frailty model, which
was originally proposed by Oakes (1982). In this approach, a common latent frailty
variable, as a random effect, introduces the correlation between survival times. The
frailty model is typically suitable for a situation where the number of clusters is not
large and the parameter of interest is at a cluster level. The third approach is a marginal
method, which was developed under the Generalized Estimation Equation framework
(Wei et al. 1989; Lee et al. 1992). A robust sandwich estimator from the estimating
equation is used to obtain the variance-covariance matrix of the regression param-
eter. Although the within-cluster correlation is taken into account in this approach,
the strength of such correlation cannot be estimated and the joint survival probability
cannot be obtained. Given that the objective of our study is to discover risk variants for
the progression of this bilateral disease, we propose to develop a test procedure based
on copula models, so that we can (1) assess the genetic effect on a marginal (popu-
lation) level, and (2) estimate the joint progression-free profiles for different genetic
groups. In the meantime, we can model the strength of the dependence between the
two margins by the dependence parameter in the copula.

In the GWAS setting, the score test is usually preferred to other likelihood-based
tests, such as the Wald test or the likelihood ratio test (Cantor et al. 2010; Sha et al.
2011). This is because the score test needs to fit the model only once, under the null of
noSNPeffect, rather thanfittingmillions of (alternative)models for eachSNP.This can
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save computational time significantly. We develop a computationally efficient copula-
based score test procedure for analyzing bivariate time-to-event data, and apply it on
AREDS to identify significant variants associated with AMD progression.

The paper is organized as follows. Section 2 introduces the proposed test procedure.
Section 3 presents simulation studies for evaluating type-I error control and power per-
formance under various settings. Section 4 presents the real data analysis on AREDS
using the proposed method. Finally in Sect. 5, we discuss the practical challenges and
possible extensions of the proposed method.

2 Methods

2.1 Copula model for bivariate time-to-event data

First, we introduce the notation for bivariate time-to-event data. Assume that there
are n subjects. Let (T1i , T2i ) and (C1i ,C2i ), i = 1, . . . , n, denote the bivariate failure
times and censoring times for the i th subject, respectively. Denote byΔi = (Δ1i ,Δ2i )

the censoring indicator and Xi = (X1i , X2i ) the risk factors for the i th subject. We
consider right censoring and assume that given covariates X , (T1, T2) and (C1,C2)

are independent. Then for each subject, we observe

Di = {(Y1i ,Y2i ,Δ1i ,Δ2i , X1i , X2i ) : Yki = min(Tki ,Cki ),

Δki = I (Tki ≤ Cki ), k = 1, 2}.

Let S(t1, t2) = P(T1 ≥ t1, T2 ≥ t2) denote the joint survival function for (T1, T2)
and let f (t1, t2) = ∂2S(t1, t2)/∂t1∂t2 denote its corresponding density function.
Denote by θ all the parameters in S(t1, t2), then the joint likelihood for the observed
data {Di }ni=1 can be written as

L(θ; D = (Y1, Y2, Δ1, Δ2, X1, X2))

=
n∏

i=1

f (y1i , y2i )
δ1i δ2i ×

[
− ∂S(y1i , y2i )

∂ y1i

]δ1i (1−δ2i )

×
[
− ∂S(y1i , y2i )

∂ y2i

](1−δ1i )δ2i
× S(y1i , y2i )

(1−δ1i )(1−δ2i ),

(2.1)

where (δ1i , δ2i ) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}.
Copula functions provide a parametric assumption about the dependence between

two correlated margins. A bivariate copula is a function defined as {Cη : [0, 1]2 →
[0, 1] : (u, v) → Cη(u, v), η ∈ R} (Nelsen 2006). Assume that U , V are both
uniformly distributed random variables. The parameter η in copula function describes
the dependence between U and V . By Sklar’s theorem (Sklar 1959), one can model
the joint distribution by modeling the copula function and the marginal distributions
separately. The theorem states that, if marginal survival functions S1(t1) = P(T1 > t1)
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and S2(t2) = P(T2 > t2) are continuous, then there exists a unique copula function
Cη such that for all t1 ≥ 0, t2 ≥ 0,

S(t1, t2) = Cη(S1(t1), S2(t2)), t1, t2 ≥ 0.

Define the density function for Cη to be cη = ∂2Cη(u, v)/∂ u∂ v, then the joint
density function of T1 and T2 can be expressed as

f (t1, t2) = cη(S1(t1), S2(t2)) f1(t1) f2(t2), t1, t2 ≥ 0.

Copula functions allow robust modeling of dependence structures and have nice prop-
erties. For example, the rank-based dependence measurement Kendall’s τ can be
directly obtained as a function of η in some copula models.

In this work, we focus on Archimedean copula family, which is one of the most
popular copula families because of its flexibility and simplicity. Two most frequently
used Archimedean copulas in survival analysis are:
Clayton copula (Clayton 1978)

Cη(u, v) = (u−η + v−η − 1)−1/η, η ∈ (0,∞),

and
Gumbel-Hougaard copula (Gumbel 1960)

Cη(u, v) = exp
{
−[(− log u)η + (− log v)η]1/η

}
, η ∈ [1,∞).

The Clayton copula models lower tail dependence in survival functions, while the
Gumbel copula models upper tail dependence in survival functions. For the Clayton
copula, the dependence parameter η corresponds to the Kendall’s τ as τ = η/(η + 2).
Thus, T1 and T2 are positively associated when η > 0 and are independent when
η → 0. While for the Gumbel copula, τ = (η − 1)/η, meaning T1 and T2 are
positively associated when η > 1 and are independent when η = 1.

Under the copula model, the joint likelihood function (2.1) can be rewritten as

L((η, S1, S2); D) =
n∏

i=1

[
cη(S1(y1i ), S2(y2i )) f1(y1i ) f2(y2i )

]δ1i δ2i

×
[
− ∂ Cη(S1(y1i ), S2(y2i ))

∂ y1i

]δ1i (1−δ2i )

×
[
− ∂ Cη(S1(y1i ), S2(y2i ))

∂ y2i

](1−δ1i )δ2i

× Cη(S1(y1i ), S2(y2i ))
(1−δ1i )(1−δ2i )

(2.2)

2.2 Copula-based generalized score test

We consider testing each single SNP in a GWAS setting. Specifically, we are interested
in testing whether a given SNP is associated with disease progression, after adjusting
for other risk factors. We consider the marginal distributions under the Cox propor-
tional hazards (PH) assumption.We then further denote by S0 = (S01, S02) the baseline
survival functions for T1 and T2, and β = (βng, βg) the regression coefficients, where
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βng are the coefficients of non-genetic risk factors and βg is the coefficient of the SNP.
We assume that the regression coefficients β are the same for T1 and T2, which is
scientifically plausible for the bilateral eye disease we consider here. However, the
method can be easily generalized to the situation where each Tk has its own regression
coefficients.

Denote by θ = (β = (βng, βg), η, S0 = (S01, S02)) the full parameter set for the
copula model. We are interested in testing whether or not βg = 0. Thus we further
separate θ into two parts: θ1 = βg , which is the parameter of interest (to be tested),
and θ2 = (βng, η, S0), which is the nuisance parameter. Then the null hypothesis can
be expressed as H0 : θ1 = βg = 0 and θ2 is arbitrary.

The biggest advantage of score test in a GWAS setting is, one only needs to estimate
the unknown parameters once under the null model without any SNP effect (i.e.,
θ1 = βg = 0), since the non-genetic covariates are the same no matter which SNP
is being tested. The score test is much less computationally intensive as compared
to the likelihood ratio or the Wald test. In addition, when the testing SNP has a low
minor allele frequency (MAF), maximizing the complex log-likelihood under a copula
model (to obtain the parameter estimates) may produce an unstable result. Therefore,
we propose to use the score test for our problem.

Assume that θ̂0 = (θ1 = 0, θ2 = θ̂20) is the restrictedmaximum likelihood estimate
(MLE) of θ from (2.2) under the restriction θ1 = 0, then the corresponding score
function and Fisher’s information can be written as

U (θ̂0) = ∂

∂θ
log L(D|θ)

∣∣∣∣
θ=θ̂0

= (U ′
1(θ̂0),U

′
2(θ̂0))

′ = (U ′
1(θ̂0), 0

′)′,

where Uj (·) = ∂ log L/∂θ j , j = 1, 2, and

I(θ̂0) = −E

[
∂2

∂θ ′∂θ
log L(D|θ)

]∣∣∣∣
θ=θ̂0

=
[
I11 I12
I21 I22

]
,

where I11, I12, I21 and I22 are partitions of the information matrix I by θ1 and θ2. By
Cox and Hinkley (1979), we can obtain the generalized score test statistics as

Ts = U ′(θ̂0)I−1(θ̂0)U (θ̂0)

= (U ′
1(θ̂0), 0

′)I−1(θ̂0)(U
′
1(θ̂0), 0

′)′

= U ′
1(θ̂0)I11(θ̂0)U1(θ̂0),

where I11 = (I−1)11 = (I11 − I12 I
−1
22 I21)−1.

In practice, the observed information matrix J (θ̂0) is often used in the score test.
With bivariate copula models, the first and second order derivatives of log L(D|θ)

usually have very complex forms and the forms depend on the specific copula model
as well as the marginal distributions. Thus, we propose to use numerical differentia-
tion through Richardson’s extrapolation (Lindfield and Penny 1989) to approximate
the score function and the observed information matrix, denoted by Ũ and J̃ . This

123



Copula-based score test for bivariate time-to-event data… 551

numerical approximation only requires a close-formed log-likelihood function. There-
fore, the generalized score test statistic we propose is

T̃s = Ũ ′(θ̂0)J̃ −1(θ̂0)Ũ (θ̂0) = Ũ ′
1(θ̂0)J̃ 11(θ̂0)Ũ1(θ̂0), (2.3)

which asymptotically follows a χ2 distribution with degrees of freedom being the
dimension of θ1 under the null.

2.3 Choice of marginal distributions

Weassume that themarginal distributions are from the PH family, which can bewritten
as

λk(tki |xki ) = λ0k(tki )exp(x
′
kiβ), k = 1, 2, i = 1, . . . , n,

whereλ0k(·) is the baseline hazard function for the kthmargin, xki are the covariates for
the i th subject with kth margin. In general, the covariates can be either subject-specific
or margin-specific. For example, one can consider a fully parametric distribution such
as the Weibull distribution,

λ0k(t) = γkλk(λk t)
γk−1, γk > 0, λk > 0, k = 1, 2,

or the Gompertz distribution,

λ0k(t) = γkλke
λk t , γk > 0, λk > 0, k = 1, 2,

where λk is the scale parameter and γk is the shape parameter. In this case, the full
parameter set θ is (β = (βng, βg), η, γk, λk).

In some circumstances, a specific parametric marginal distribution may not fit the
data properly. Kim et al. (2007) has shown that the dependence parameter estimation
in copula models is not robust to misspecification of the marginal distributions. Thus,
a relaxed assumption may be more desired for marginal distributions. For example,
the piecewise constant hazards assumption given by

λ0k(t) = ρ jk for t ∈ A jk = (a( j−1)k, a jk], j = 1, . . . , r , k = 1, 2

where 0 = a0k < a1k < · · · < ark = max yik are pre-specified cutoff points, can
be considered. The full parameter set θ in this case will be (β = (βng, βg), η, ρ jk).
More generally, one could also consider nonparametric marginal distributions and
may use the Breslow estimator (Breslow 1972) for baseline hazards, which essentially
treats λ0k(·) as piecewise constants between all uncensored failure times. We focus
on parametric and weakly parametric marginal distributions. We also explore the non-
parametric margin case in terms of parameter estimation, without fully establishing
its asymptotic properties.
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Under the PH family, the marginal survival function for Tki given covariate Xki can
be expressed as

Sk(tki |xki ) = P(Tki ≥ tki |xki ) = S0k(tki )
exp(x ′

kiβ), k = 1, 2, i = 1, . . . , n,

where S0k(tki ) = exp
{
− ∫ tki

0 λ0k(s) ds
}
.

2.4 Two-step estimation procedure for �̂0

In order to derive the above score test statistic in (2.3), we need to estimate θ under
H0. Motivated by the two-stage estimation approach from Shih and Louis (1995), we
propose a two-step maximum likelihood estimation procedure to obtain the restricted
MLE θ̂0 = (0, θ̂20). In step 1, we first obtain initial estimates of the parameters in
marginal distributions (i.e., βng and S0) based on marginal likelihood functions. Then
we maximize the pseudo joint likelihood (with the initial estimates of βng and S0
plugged in) to get an initial estimate of the dependence parameter η. Then in step 2,
we maximize the joint likelihood with estimates from step 1 being initial values to
obtain the final estimate θ̂0. Detailed steps are provided below:

(1) Obtain initial estimates of θ0:

(a) (β̂
(1)
ng , Ŝ(1)

0 ) = argmax
(βng,S0)

log L0(βng, S0), where L0 denotes the marginal likeli-

hood function under the null (βg = 0);

(b) η̂(1) = argmax
η

log L(β̂
(1)
ng , η, Ŝ(1)

0 ), where L(β̂
(1)
ng , η, Ŝ(1)

0 ) is the pseudo joint

likelihood function with βng and S0 replaced by their initial estimates from
(a).

(2) Maximize the joint likelihood function with initial value (β̂
(1)
ng , η̂(1), Ŝ(1)

0 ) to get
final estimates θ̂20 = (β̂ng, η̂, Ŝ0) = argmax

(βng,η,S0)
log L(βng, η, S0).

The standard two-step estimation procedure for copula models stops after the step
1(b), since the dependence parameter η is of the primary interest. Note that, the initial
estimates from the step 1 (β̂

(1)
ng , η̂(1), Ŝ(1)

0 ) are already consistent and asymptotically
normal (Shih andLouis 1995). However one cannot directly useHessianmatrices from
the step 1(a) to obtain variance estimates for β̂ng . The second step produces correct
variance covariance estimates for all the parameters by using the joint likelihood. In
theory, the model parameters can be estimated by a one-stepMLE procedure (i.e., step
2). The purpose of the first stage (step 1a and 1b) is to provide good initial values of
all unknown parameters (βng, η, S0) for the MLE procedure in the second step, which
could save computing time and reduce algorithm failure rate due to suboptimal initial
values. We demonstrate this in our simulation studies.

For nonparametric marginal baseline hazard case, such as using the Breslow esti-
mator, a pseudo-maximum likelihood (PML) estimation can be used in the step 2 by
fixing the cumulative baseline hazardΛ0k(t)with its estimate from themarginalmodel
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in step 1(a) and only updating (βng, η). In this way, the estimates for the regression
coefficients and the dependence parameter are still consistent and asymptotically nor-
mal. However, the Hessian matrix from the PML in the step 2 cannot be directly used
for estimating the variance of β̂ng and η̂. One solution is to use bootstrapped variance
estimates, for example, see Lawless and Yilmaz (2011).

2.5 Model selection and diagnostics

Several model selection procedures have been proposed for copula-based time-to-
event models. The Akaike’s Information Criteria (AIC) (Akaike 1998) and Bayesian
Information Criteria (BIC) (Schwarz 1978) have been widely used for model selec-
tion purpose in copula models. Wang and Wells (2000) proposed a model selection
procedure based on nonparametric estimation of the bivariate joint survival function
within the class of Archimedean copulas. For model diagnostics, Chen et al. (2010)
proposed a penalized pseudo-likelihood ratio test for copula models in non-censored
data. Recently, Zhang et al. (2016) proposed a goodness-of-fit test for copula models
using the pseudo in-and-out-of sample (PIOS) method. Then Mei (2016) extended
this PIOS method to censored survival data without covariates. For simplicity, we use
AIC for selecting a proper model in our real data analysis.

3 Simulation study

In this section, we evaluate the finite sample performance of the proposed test pro-
cedure through various simulation studies and compare it to the Wald test under the
Cox PH model with robust variance estimate (Lee et al. 1992). TheWald test from the
Cox model under independence assumption is also included for type-I error control
simulations.

3.1 Data generation

Recall that the bivariate joint survival function under a copula model is S(t1, t2) =
Cη(S1(t1), S2(t2)), where U = S1(T1), V = S2(T2) each follows a uniform distri-
bution U [0, 1]. Define Wv(u) = h(u, v) = P(U ≤ u|V = v), which equals to
∂Cη(u, v)/∂v. To generate bivariate survival data (t1i , t2i ), i = 1, .., n, we first gener-
ate vi and wi from two independent U [0, 1] distributions. Then let wi = h(ui , vi )(=
Cη(ui , vi )/∂vi ) and solve for ui from the inverse of h function h−1. Finally, we obtain
t1i and t2i from S−1

1 (ui ) and S−1
2 (vi ) respectively. We generate censoring times c1i

and c2i from uniform distribution U (0,C) with C chosen to yield desired censoring
rate.

The value for the dependence parameter η is chosen to introduce weak or strong
dependence, represented by Kendall’s τ = 0.2 and 0.6, respectively. We generate
SNP data from a multinomial distribution with values {0, 1, 2} and probabilities
{(1 − p)2, 2p(1 − p), p2}, where p is the MAF, chosen to be 40% or 5%. We also
include a continuous non-genetic risk factor Xng,k (k = 1, 2), generated from a normal
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distribution N (6, 22), where the mean and standard deviation are decided based upon
our AREDS data.

In all simulations, the sample size is N = 500 and we choose the same baseline
marginal distribution for the two survival times (i.e., S01(t) = S02(t)). For type-I error
control simulations, the SNP effect βg is set to be 0. We replicate 100,000 runs and
evaluate the type-I error at various α levels: 0.05, 10−2, 10−3 and 10−4, respectively.
These small tail levels (such as α = 10−3 or 10−4) are evaluated since our application
involves a large number of SNPs to be tested, the test performance at these smaller
tail levels is more critical. For power evaluation, we replicate 1000 runs under each
SNP effect size, where a range of βg values are picked to represent weak to strong
SNP effects.

3.2 Simulation I: parameter estimation

We first examined the parameter estimation and computing performance between our
proposed two-step estimation procedure and the one-step MLE procedure (i.e., step
2). Table 1 reports the results from the situation where data were simulated from the
Clayton copula with Weibull margins. The baseline hazard parameters were set to be
λ = 0.01 and γ = 2 and the censoring rate was set to be 50%. Both procedures achieve
accurate parameter estimates with appropriate coverage probabilities. However, on
average, the two-step procedure saves about 36% computing time compared to the
one-step procedure. Moreover, the one-step procedure causes about 23% failures due
to non-convergence of the optimizationwhile the two-step procedure only causes 0.4%
failures.

Thenwe examined the parameter estimation from various copulamodels in Table 2.
Data were simulated from the Clayton copula with Weibull margins. We fitted four
models: marginal Cox with robust variance estimates (Cox-R), Clayton copula with
Weibull (Clayton-WB), piecewise constant with r = 4 (Clayton-PW) and Breslow
(Clayton-BS) margins, respectively. Note that for the Clayton-BS model, the variance
estimates were obtained through bootstraps, since the analytic form of the asymptotic
variance (of the parametric parameters) has not been established under this case.

As we can see from the table, all four models produce virtually unbiased parameter
estimates with satisfactory coverage probabilities for the regression parameters. The
variances of β̂ng and β̂g from Clayton-WB and Clayton-PW are smaller than those
from Cox-R and Clayton-BS, since the latter two models use non-parametric baseline
cumulative hazards estimates which are more variable than the parametric models. For
the dependence parameter η, the biases under Clayton-WB and Clayton-BS models
are minimal and the coverage probabilities are close to the nominal level. However,
Clayton-PW produces non-negligible bias for η under the scenario with τ = 0.6.
These simulations provide reassurance that the proposed copula model with the two-
step estimation procedure performs well in finite samples. When the purpose is to test
the regression parameters, the specification of marginal distributions seem to be less
critical.
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3.3 Simulation II: score test under correctly specifiedmodels

In this section, we evaluated the score test performance under correctly specified
models. The true models are from Clayton copula withWeibull or Gompertz marginal
distributions.WithWeibull margin, we chose λ = 0.01 and γ = 2, andwith Gompertz
margin, we chose λ = 0.2 and γ = 0.05. In both scenarios, we also fitted copula
models with piecewise constant hazards margins. We evaluated three censoring rates,
25%, 50% and 75% and only present the results from 50% censoring here. The other
two censoring rates yield very similar results in terms of type-I error control and power
performance, and thus are omitted.

Table 3 presents type-I error rates under different α levels for four models, namely,
(1) the Cox model under independence assumption (Cox-I), (2) Cox-R, (3) the copula
model with parametric marginal distributions (Cop-PM, either Weibull or Gompertz),
and (4) the copula model with piecewise constant marginal distributions (Cop-PW).
The test performance under the copula model with nonparametric margins (i.e., Bres-
low) was not examined due to its large computational time (for bootstrapped variance
estimates), especially under low α’s.

It is clearly seen that when MAF = 40%, all models, except Cox-I, control the
type-I error well. However, whenMAF = 5%, Cox-R yields inflated type-I error rates
at all α levels, especially with lower α levels. For example, with data generated from
Clayton–Weibull, the type-I error from Cox-R is 0.003 and 0.0007 for α = 0.001
and 0.0001, respectively, which is 3 or 7 times of the expected value. The two copula
models control type-I error very well under both common and rare allele frequency
scenarios, with Cop-PW showing slightly more conservative type-I error comparing
to Cop-PM. The Cox-I model always inflates the type-I error, which is not surprising.

Figure 1 presents the power curves over different genetic effect sizes for the three
models that can control type-I error: Cox-R, Clayton-WB, and Clayton-PW. When
the dependence between margins is strong, both copula models yield better power as
compared to Cox-R. The parametric copula method is slightly more powerful than
the weakly parametric copula model, which is as expected. When the dependence is
weak, all three models produce similar power.

We also fitted the robust Weibull method for the case where the marginal distri-
butions are Weibull. The results (in terms of both type I error control and power) are
very close to the results from Cox-R (not shown). Therefore, the inflated type-I error
issue when MAF is small exists in the robust parametric marginal model as well.

3.4 Simulation-III, score test under misspecifiedmodels

In this section, we evaluated the method performance in situations where either the
copula function or the marginal distributions are misspecified. In the case of copula
function beingmisspecified, datawere generated from theGumbel copulawithWeibull
margins. For misspecification on marginal distributions, data were generated from the
Clayton copula with Gompertz margins. In both scenarios, data were fitted by the
Clayton copula with Weibull margins or piecewise constant hazards margins.
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Fig. 1 Simulation results for power comparison between Cox-R, Clayton-WB and Clayton-PW models
over different genetic effect sizes. Number of replicates = 1000, sample size = 500

Table 4 presents type-I errors under different α levels for the two misspecified sce-
narios. The same four models as in Sect. 3.3 were compared. Under both scenarios,
two Cox model approaches do not depend on copula model specifications (so long as
the marginal distributions are still from the PH family), and thus yield similar perfor-
mance as those in Table 3. When the copula function is misspecified, the parametric
copula model (Cop-PM) shows an obvious inflation on type-I errors, especially when
the dependence is strong. The copula model with piecewise constant margins (Cop-
PW) shows a smaller degree of inflation on type-I error rates. When the marginal
distributions were misspecified, Cop-PM shows a conservative type-I error control
while Cop-PW produces type-I errors closer to the nominal levels. Overall, Cop-PW
is more robust against incorrectly specified models.
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4 Real data analysis

We implemented our proposed method on AREDS data to identify genetic vari-
ants associated with the progression of late-AMD. All the phenotype and genotype
data of AREDS are located from the public available website dbGap (accession:
phs000001.v3.p1, and phs001039.v1.p1, respectively) and have been reported by our
previous studies (Ding et al. 2017; Yan et al. 2018). In this longitudinal study, each
subject was followed every 6 months (in the first 6 years) or 1 year (after year 6)
for about 12 years. A severity score, scaled from 1 to 12 (with larger value indi-
cating more severe disease), was recorded for each eye of each participant at every
visit. We analyzed 629 Caucasian participants who had at least one eye in moderate
AMD stage at baseline, defined by severity scores between 4 to 8. The time-to-late
AMD was calculated for each eye of these participants, defined as the time from
the baseline visit to the first visit when the severity score reached 9 or above. The
overall censoring rate was 54% for our analysis sample. In this work, we specifi-
cally tested the common variants (i.e. SNPs with MAF ≥ 5%) from chromosome
10, since one of the most significant regions associated with AMD risk (i.e., the
ARMS2 gene region) is on chromosome 10. In total, we analyzed around 350,000
SNPs. To decide which non-genetic risk factors to include in the model, we consid-
ered the same variables as in Ding et al. (2017) and performed univariable analysis
using the Clayton copula with Weibull margins (Table 5). Variables with a p < 0.05
were included in the final copula model, which are baseline age and baseline severity
score.

To decide which copula function and marginal distribution to select for this dataset,
we considered two copula functions, Clayton andGumbel, and threemarginal distribu-
tions, Weibull, Gompertz and piecewise constant with r = 4. Table 6 presents the AIC
values for each model under the null hypothesis (H0 : βg = 0). The Weibull margins
under both copula models produce similar AIC values, which are smaller than other
AICs. We performed analyses using both Gumbel and Clayton copulas with Weibull
margins and their results are very similar. We also analyzed the data using Cox-R
and copula with piecewise constant margins (Clayton-PW) models, as they are more
robust to model misspecification based on our simulations.

Table 7 presents fivemost significant variants discovered from our analysis. In addi-
tion to the p values from the Clayton-WBmodel, we also report p values from Cox-R
and Clayton-PWmodels. Aswe can see, the p values fromClayton-WB are all smaller
than those from the other two models. One top variant rs2672599 is a known common
variant from the ARMS2 gene region with MAF = 35%. The estimated hazard ratio
for this SNP is 1.42, with a 95% CI = [1.23, 1.65] (from Clayton-WB). Figure 2a
is the marginal (eye-level) Kaplan-Meier (K-M) plot, which shows this variant can
separate AMD progression curves quite well. Two of these five variants (rs2672599
and rs2284665) have also been reported in Yan et al. (2018) to be associated with
AMD progression.

In addition to the score test result for each variant, we can obtain both estimated
joint and conditional survival functions from copula models, which can be used to
establish a predictive model for progression-free probabilities. We demonstrate these
using fitted results from Clayton-WB model. For example, Figure 2b plots the joint
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Table 5 The univariable analyses for non-genetic risk factors using the Clayton-WB model on AREDS
data

Variable Mean (SD)/N (%) HR (95% CI) p

Baseline severity score 5.81 (1.27) 1.59 (1.46, 1.73) 3.3 × 10−25

Baseline age (year) 69.55 (5.23) 1.03 (1.01, 1.05) 2.6 × 10−3

Baseline smoking

Never 272 (43%) Reference

Former 324 (52%) 1.15 (0.96, 1.32) 0.13

Current 33 (5%) 1.86 (1.32, 2.62) 3.5 × 10−4

Sex

Male 269 (43%) Reference

Female 360 (57%) 1.20 (0.97, 1.44) 0.07

Education

≤ high school 223 (35%) Reference

> high school 406 (65%) 0.85 (0.71, 1.01) 0.06

Treatmenta

Placebo 149 (24%) Reference

Antioxidants only 159 (25%) 0.81 (0.64, 1.03) 0.09

Zinc only 157 (25%) 1.13 (0.89, 1.45) 0.31

Antioxidants + zinc 164 (26%) 0.98 (0.77, 1.24) 0.85

aTreatment effect is adjusted by baseline AMD severity score

Table 6 The AIC values for
candidate models under the null
hypothesis with non-genetic risk
factors only

Weibull Gompertz Piecewise

Marginal 4533.956 4573.909 4660.391

Copula

Clayton 4429.703 4481.172 4540.680

Gumbel 4425.260 4455.810 4519.084

Table 7 The p values from the Clayton-WB, Clayton-PW, and Cox-R models for the top five significant
SNPs on chromosome 10

SNP Gene MAF Clayton-WB Clayton-PW Cox-R

rs72798393 LOC101928913 0.09 8.6 × 10−8 3.8 × 10−7 3.2 × 10−5

rs73292512 C10or f 11 0.05 1.7 × 10−7 8.4 × 10−7 2.0 × 10−5

rs2284665 HT RA1 0.33 9.1 × 10−7 2.0 × 10−6 2.1 × 10−4

rs2672599 ARMS2 0.35 1.8 × 10−6 4.0 × 10−6 7.5 × 10−5

rs10828143 SLC39A12 0.15 7.1 × 10−6 2.7 × 10−5 2.3 × 10−5
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Fig. 2 The estimated AMD progression profiles separated by a top SNP rs2672599 (from ARMS2 gene
region): a the eye-level K-M plot, with the total number of eyes and the percentage of progressed eyes in
each genetic group given in parenthesis. b The (Clayton-WB) estimated joint progression-free probability
contours (the baseline severity score and age are fixed at their mean values: 5.8 and 69.6, respectively). c
The (Clayton-WB) estimated conditional progression-free probabilities of remaining years (since year 5)
for one eye, given the other eye has been progressed by 5 year (the baseline severity score and age are also
fixed at their mean values: 5.8 and 69.6, respectively)

5-year progression-free probability contours (i.e., neither eye is progressed by year
5) for subjects having the same baseline severity score (= 5.8) and age (= 69.6) but
different genotypes of the variant rs2672599. Figure 2c plots the conditional 5-year
progression-free probability of the remaining years for one eye, given that the other
eye has progressed at year 5. It is clearly seen that in both plots, the three genotype
groups are well separated, with the AA group having the largest progression-free
probabilities.

We further picked two variants, rs72798393 from the gene LOC101928913 and
rs2672599 from the gene ARMS2, and plotted the predicted 5-year joint progression-
free probabilities by genotype, varying the eye-level baseline severity score values
(Fig. 3). We can see that carrying more T allele of rs72798393 leads to larger
progression-free probabilities, indicated by the overall lighter color of the plot. On
the other hand, carrying more C allele of rs2672599 leads to smaller progression-free
probabilities, indicated by the overall darker color of the plot. Within each genotype
group, having larger value of the baseline severity scores leads to smaller progression-
free probabilities.

Moreover, in Fig. 4, we plotted the predicted joint progression-free probability
function P(t1,i−1 < t1 < t1,i , t2,i−1 < t2 < t2,i ) within a bivariate time interval
varying the interval values of (t1,i−1, t1,i , t2,i−1, t2,i ) for subjects in different genotype
groups of rs2672599. It is clearly seen that the joint progression-free probabilities
decrease as the years increase, with smaller probabilities in subjects carrying more C
alleles.We can also see that the two eyes aremore likely to progresswithin the similarly
years, observed by the darker color cloud around the diagonal lines, indicating that the
two eyes are correlated in terms of progression. The estimated η̂ from the Clayton-WB
model with SNP rs2672599 (and other two non-genetic risk factors) included is 1.12,
corresponding to Kendall’s τ̂ = 0.36, which also indicates a moderate dependence
between the two eyes.
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Fig. 3 Predicted joint 5-year progression-free probabilities P(T1 > 5, T2 > 5) for subjects with mean
age 69.6 and various baseline severity scores (between 4 and 8), separated by genetic groups defined by
rs72798393 (from gene LOC101928913) (top panel) or rs2672599 (from gene ARMS2) (bottom panel)

Fig. 4 Predicted joint progression-free probability P(t1,i−1 < t1 < t1,i , t2,i−1 < t2 < t2,i ) for subjects in
different genotype groups of rs2672599. The baseline severity score and age are fixed at their mean values:
5.8 and 69.6, respectively

5 Discussion and conclusion

In this work, we developed a computationally efficient copula-based score test pro-
cedure for bivariate time-to-event data. The copula model provides flexibility in
modeling the dependence and marginal distributions separately. The two-step esti-
mation approach with numerical derivatives to approximate the score function and the
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observed informationmatrixworkswell and is computationally feasible for theGWAS
setting that we consider here. The proposed method has been demonstrated to produce
correct type-I error control and satisfactory power performance when model assump-
tions are met. The proposed method has been implemented in R with key functions
can be found in GitHub (https://github.com/yingding99/CopulaRC).

Compared to the robust Cox model, which is frequently used in analyzing multi-
variate survival data, our copula-based method is more powerful when the model is
correctly specified. Moreover, our method appears to be more robust against lowMAF
in controlling type-I errors.

Our approach uses copula to model the dependence of twomargins. Certain equiva-
lence between Archimedean copulas and shared frailty models has been claimed in the
literature. For example, the joint distribution functions of the Clayton copula model
and the Gamma frailty model have the same mathematical expression. However, as
shown in Goethals et al. (2008), the two joint distributions are essentially different due
to the difference in their corresponding marginal functions. The two joint distribution
functions are identical only when the two margins are independent. Therefore, the two
types of approaches are fundamentally different.

Several directions may be pursued to extend the current proposed method. First,
instead of using one-parameter copula functions as we consider here, one may con-
sider using a two-parameter copula function, which is more flexible to characterize the
dependence structure of the bivariate data. For example, Chen (2012) has introduced
a framework for estimating two-parameter copula models. In that setting, the depen-
dence is described jointly by two parameters in the copula function. Both Clayton and
Gumbel copulas are special or limiting scenarios of the two-parameter copula family.

Secondly, for modeling marginal distributions, in addition to fully parametric or
nonparametric approaches, a semiparametric sieve-based smoothing technique may
be used to estimate baseline hazards (He and Lawless 2003; Ding and Nan 2011). In
that case, the semiparametric M-estimation theory applies and the variance estimates
for β̂ and η̂ can be obtained from the joint sieved log-likelihood in step 2.

Lastly, in our AREDS data, the actual time-to-late-AMD are interval censored due
to intermittent assessment times. We currently treat them as right censored data given
that the interval lengths are fairly small and similar for all subjects. However, it is
worthwhile to extend this test procedure to handle bivariate interval-censored data.
All these directions are currently under investigation.

Application of the proposed method on AREDS data jointly model the progression
profiles in both eyes, which, to the best of our knowledge, has not been done in any
previous studies onAMDprogression. The findings provide new insights about genetic
causes on AMD progression, which is critical to establish novel and reliable predictive
models of AMD progression to accurately identify high-risk patients at an early stage.
Our proposed methods are applicable to general bilateral diseases and are particularly
powerful for performing tests on a large number of markers.
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