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Abstract The log-rank test is used as the split function in many commonly used
survival trees and forests algorithms. However, the log-rank test may have a signif-
icant loss of power in some circumstances, especially when the hazard functions or
when the survival functions cross each other in the two compared groups. We inves-
tigate the use of the integrated absolute difference between the two children nodes
survival functions as the splitting rule. Simulations studies and applications to real
data sets show that forests built with this rule produce very good results in general,
and that they are often better compared to forests built with the log-rank splitting
rule.

Keywords Survival data · Right-censored data · Ensemble methods ·
Random forests · Survival forests

1 Introduction

There have been numerous studies on time-to-event data in a wide range of research
areas. One important feature of survival data is that some observations are cen-
sored, that is these observations are incomplete since the event has not yet occurred
at the time of data collection. In these situations, we must adequately incorporate
all the available information to optimize the prediction models. Parametric models
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(Gamma, Weibull, etc.…), and semi-parametric ones such as the Cox proportional
hazard model, can be useful and have been discussed in details in the literature (Hos-
mer Jr et al. 2011). However, (semi)parametric models have the important limitation
that the functional link between the survival time and the covariates must be spec-
ified in advance. This is why more flexible nonparametric methods, like survival
forests, that let the data automatically find the structure of the model, are useful
alternatives (e.g., Hothorn et al. 2006a; Ishwaran et al. 2008; Zhu and Kosorok
2012).

Tree-based methods were originally developed to model the relation between
covariates and either a categorical or a continuous outcome. The Classification and
Regression Tree paradigm (CART) is widely popular (Breiman et al. 1984). Survival
trees, introduced by Gordon and Olshen (1985), are an adaptation of the tree paradigm
to right censored data. A variety of split rules have been suggested for survival trees so
far. First, Gordon and Olshen (1985) used the idea of imposing homogeneity in each
node through the use of a Wasserstein distance between the Kaplan–Meier estimators
of the two survival functions. Even though this test does not require any underling
assumption, it has not been used much in later works. Wilcoxon–Gehan statistics and
Kolmogorov–Smirnov test are other metrics to maximize the heterogeneity between
two children nodes that were proposed (Ciampi et al. 1988). However, the log-rank
statistic proposed by Ciampi et al. (1986) gained the most popularity. The reader can
refer to Bou-Hamad et al. (2011) for a review on various splitting statistics proposed
in the literature.

As is well known, single trees, despite being a very powerful descriptive tool, can
be unstable predictive tools. Ensemble methods constructed from trees as base learn-
ers such as random forests (Breiman 2001) can improve the predictive performance
through additional randomization. The reader can refer to Siroky (2009) and Verikas
et al. (2011) that provided recent surveys on random forests or to Rokach (2009) for
a discussion on ensemble methods, in general. A similar argument can be applied to
the survival data settings; a combination of survival trees generally leads to higher
predictive accuracy. For more in-depth discussions on survival trees and forests, the
reader can refer to Bou-Hamad et al. (2011) for a comprehensive overview, and to
Boulesteix et al. (2012) and Chen and Ishwaran (2012) for an overview of the subject
in genomics and bioinformatics.

Perhaps, the most popular random forest technique for survival data is the one
proposed by Ishwaran et al. (2008), called random survival forest (RSF). It is imple-
mented in their R package randomForestSRC (Ishwaran andKogalur 2014). In this
method, an ensemble of cumulative hazard function is built by averaging the Nelson–
Aalen cumulative hazard function of each survival tree. It uses the log-rank statistic
(Segal 1988; Leblanc and Crowley 1993) as the default splitting rule. Other available
splitting rules in randomForestSRC are log-rank score (Hothorn and Lausen 2003)
and random splitting rule (Cutler and Zhao 2001; Lin and Jeon 2006). According to
Ishwaran et al. (2008), RSF is the only survival forest technique that adheres to all ran-
dom forest principles introduced byBreiman (2001). They also provided a built-in new
missing data handling algorithm which deals with two problems not addressed by the
previous missing data methods for forests: (i) the biasedness of out-of-bag estimates
of prediction error and (ii) the inability to predict on test data sets including missing
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values. Further, Ishwaran and Kogalur (2010) proved uniform consistency of RSF
under the assumption that all variables are categorical. Ishwaran et al. (2010) came up
with a regularization strategy for RSF, applicable to survival data where the sample
size is small and the number of covariates is large. In their method, the importance of a
covariate ismeasured by the tree depth at which the first split on that covariate happens,
a concept called “theminimal depth of amaximal subtree”. This technique is useful for
both variable selection and variable importance ranking. Ishwaran et al. (2011) pro-
vided a follow-up for the use of this method through the randomSurvivalForest
package, the older version of randomForestSRC. They discussed ways to select
the tuning parameters of random forest as well as a weighted variable selection tech-
nique in order to better regularize the forest. Chen and Ishwaran (2013) studied the
use of the minimal depth concept through the randomSurvivalForest pack-
age in high–dimensional genomic data for effective pathway selection and suggested
a “pathway hunting” algorithm for extremely high–dimensional data. Recently, Zhu
and Kosorok (2012) proposed a nonparametric regression technique called recursively
imputed survival tree (RIST) suitable for right-censored data. In this method, through
calculation of the conditional survival distribution, censoring information of observa-
tions is retained and then, through recursive imputation and refitting steps, conditional
failure information is constantly updated leading to higher predictive accuracy of the
final model. The authors suggest three to five steps of imputation to get the best perfor-
mance. In their implementation, the best split is again obtained through the log-rank
test statistic.

From the above discussion, it appears that the log-rank test is routinely used in the
various implementations of survival forests. This means that the best split is chosen as
the one that makes the two children nodes the most significantly different according
to this test. However, it is well known that the log-rank test may have a significant
loss of power in some circumstances, especially when the hazard functions or when
the survival functions cross each other in the two compared groups (Lin and Wang
2004; Lin and Xu 2010). This means that if the goal is to accurately estimate the
conditional survival function, then using the log-rank test as splitting criterion may
not be adequate. This is why we propose and investigate a splitting rule which works
directly with the survival function, defined by:

L1 = (nLnR)

∫
t
|ŜL(t) − ŜR(t)|dt, (1)

where ŜL(t), ŜR(t), nL and nR are the Kaplan–Meier survival function estimates
and the number of observations in the left and right node, respectively. We call it L1
splitting rule. The L1 splitting rule is related to the test statistic proposed by Lin and
Xu (2010).

The rest of the paper is organized as follows. Section 2 describes the data setting and
the proposed method. The results from a simulation study are presented in Sect. 3. It
aims at comparing the proposed method to traditional and popular methods. Section 4
pursues the comparisonwith real data sets. Section 5 concludes and provides directions
for further work.
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2 Survival forest approach and splitting criterion

We have data on N independent subjects. For each subject i , observations are in the
form of (τi , δi , xi ) where τi is the observed survival time, δi is the censoring index
which takes a value of 0 if i is right censored and a value of 1 if i has experienced
the event of interest, and xi is a vector of covariates. Note that only time-invariant
covariates are considered in this paper. The true time-to-event and the true censoring
times for subject i are denoted by Ui and Vi , respectively. We have τi = min(Ui , Vi )
and assume thatUi and Vi are independent given xi . The survival function for subject
i is denoted by Si (t) = P(Ui > t). We use this simplified notation but it should be
obvious that τi , δi , Ui and Vi depend on xi .

We assume that the reader is familiar with the CART paradigm (Breiman et al.
1984) and the basic random forest method (Breiman 2001). Basically, a forest is a
collection of large unpruned trees built on bootstrap samples from the original data.
Moreover, at each node of any tree, a random subset of the predictors are selected
at random and the best split is obtained from them. The final forest prediction is the
average of the predictions from the individual trees.

The main focus of this paper is to investigate the use of a new splitting criterion to
build the trees in the forest. Assume that we are at a given node of a tree and we want
to split it in two children nodes. If x is continuous (or at least ordinal), the possible
splits take the form C = I (x ≤ c). If x is categorical, the possible splits take the form
C = x ∈ {c1, . . . , cq} where {c1, . . . , cq} is a subset of the possible values of x . Once
the best split is found, observations with C = 0 go to the left node and the ones with
C = 1 go to the right node. We saw in the introduction that, typically, the log-rank test
with the two children nodes acting as the two samples is used as the splitting criterion.
However, the log-rank test has a low power for detecting differences between the two
groups in some situations. For the testing problem, Lin and Xu (2010) proposed a new
method that has greater power than the log-rank test under a variety of situations. To
avoid introducing unnecessary notation, suppose we want to test the equality of the
survival functions in two children nodes, L (left) and R (right). Their test is based
on

� =
∫ τ

0
|ŜL(t) − ŜR(t)|dt

=
∑
j |t j<τ

|ŜL(t j ) − ŜR(t j )|(t j+1 − t j )

where SL and SR are the Kaplan–Meier estimators of the survival function in nodes
L and R, t1 < t2 < · · · < tk are the pooled distinct event times, and τ is the last time
point by which the areas under the survival curves can be calculated for both groups.
To perform a formal test, Lin and Xu (2010) use the standardized statistic�∗ =
(� − Ê(�))/(̂Var(�))1/2 where Ê(�) and ̂Var(�) are suitable estimates of the
mean and variance of �. However, since the splitting criterion has to be evaluated a
large number of times when building a forest, we proceed to a simplification, detailed
in Appendix, to speed up computations. With this simplification, we consider
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L∗
1 = √

nLnR� = √
nLnR

∫
t
|ŜL(t) − ŜR(t)|dt (2)

as the splitting criterion, where nL and nR are the left and right node sizes.We call it the
L∗
1 splitting criterion, as opposed to the L1 splitting criterion given by L1 = (nLnR)�

and introduced in (1). As we will see in the next sections, both versions provide good
results but the L1 criterion was slightly better in the cases considered in this paper. For
completeness, we will report the results for both splitting criteria. A more complete
discussion about these two criteria appears in the concluding remarks section. To use
any of these criteria for tree building, we simply compute it with the two groups formed
by the left and right nodes for each candidate binary split. The one with the maximal
value is the best split.

The forest algorithm can be described as follows:

1. Draw B bootstrap samples from the original data.
2. For each bootstrap sample, grow a tree with the L1 (or L∗

1) splitting criterion.
At each node, randomly select k out of p covariates where k ≤ p and is a
user-specified parameter. Splitting ends when a stopping criterion is reached; for
instance, when a node has less than a predetermined number of observations. No
pruning is performed.

3. To compute the estimated survival function of an observation with covariate vector
x , use a “similarity”weighting scheme as inHothorn et al. (2006a).More precisely,
send x in all B trees and collect all the observations that end in the same terminal
nodes. Note that some observations may appear more than one time. Ŝ(t |x) is then
the Kaplan–Meier estimate of this pooled set of observations.

Evaluating the performance of any model on a given data set with survival data
is not a straightforward task because of the censoring. One approach is to use the
Brier score (Graf et al. 1999) and other criteria derived from it. The R package pec
(Mogensen et al. 2012) can be useful for that matter. We will use one of them, the
integrated Brier score, in Sect. 4 when we analyse real data sets. We will also use
the C-index (Harrell et al. 1982) as a complement measure. Evaluating how close an
estimated survival curve is to the actual one is a lot easier in a simulation setting where
the latter is known. In this case, well known criteria like the integrated absolute error
and the integrated square error, as defined in the next section, can readily be used.

3 Simulation study

In this section, we investigate the performance of our proposed method through a sim-
ulation study. Nine methods are compared, seven forest methods and two benchmarks.
They are:

A forest where trees are build with the proposed L1 splitting rule. It is denoted
by L1-forest. A forest where trees are build with the proposed L∗

1 splitting rule. It
is denoted by L∗

1-forest. A forest where trees are build with the log-rank splitting
rule. It is denoted by RFsrc1. A forest where trees are build with the log-rank score
splitting rule. It is denoted by RFsrc2. A forest where trees are build with the random
splitting rule. It is denoted by RFsrc3. A forest built with three-step imputation in
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the RIST method (Zhu and Kosorok 2012). It is denoted by RIST3. A forest built
with five-step imputation in the RIST method (Zhu and Kosorok 2012). It is denoted
by RIST5. A Cox model where the covariates are entered linearly with main effects
only. This is the first benchmark. It is denoted by Cox. A Kaplan–Meier estimator,
which does not use the covariates. This is the second benchmark. It is denoted by
KM.

The L1-forest and L∗
1-forest are implemented in Fortran and callable from R (RCore

Team 2014). The R package randomForestSRC (Ishwaran and Kogalur 2014) was
used for RFsrc1, RFsrc2 and RFsrc3. The R code generously made available by the
authors Zhu and Kosorok (2012) was used for RIST3 and RIST5. Note that in case of
no censoring in the data, no imputation is required with the RIST method. Therefore,
a simple forest was used in these scenarios. We denote it by RIST0. The R package
survival (Therneau 2014) was used for both the Cox model and the Kaplan–Meier
estimator.

In all seven forest methods, 100 trees are grown and the number of covariates tried
at each split is set to the integer part of

√
p, as suggested by Ishwaran et al. (2008).

As a stopping criterion, the minimum number of observations in a terminal node is 3,
the default value in randomForestSRC.

To evaluate the performance of these methods, two commonly used criteria were
employed to measure howwell the survival function is estimated. Assume that S is the
true survival function and that Ŝ is the estimated survival function. The two criterion
are the Integrated Absolute Error (IAE) and the Integrated Square Error (ISE) defined
by:

IAE =
∫
t
|S(t) − Ŝ(t)|dt (3)

and

ISE =
∫
t
(S(t) − Ŝ(t))2dt. (4)

Since the results for the ISE were very similar, only the ones for the IAE are reported.

3.1 Simulation design

In the main simulation study, five Data Generating Processes (DGPs) are used to
generate artificial data. For each DGP, six different censoring proportion ranging from
0 to 50% are considered, namely, 0, 10, 20, 30, 40 and 50%. Thus, overall 30 scenarios
are investigated.

Each model is fitted with a training sample of size 500. Then the performance of the
fitted models is evaluated with an independent test set of size 1000. Each simulation
is repeated 500 times. Here are a detailed description of the DGPs. In all cases, the
parameter α controls the proportion of censoring. The values of α which produce the
desired censoring proportions were found empirically.
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Fig. 1 The two survival curves in the terminal nodes of the tree for DGP 1

3.1.1 DGP 1

The model is a tree with two equally likely terminal nodes with respective survival
functions illustrated in Fig. 1. Ten iid uniform covariates on the interval (0,1) are
available, X1, . . . , X10, but the response is only related to X1. The censoring times
are uniformly distributed on the interval (0,α). The hazard function is presented in
Appendix.

3.1.2 DGP 2

This DGP is slightly more complex than DGP 1. It is a tree with four equally likely
terminal nodes with respective survival functions illustrated in Fig. 2. Again, ten iid
uniform covariates on the interval (0,1) are available, X1, . . . , X10. The response is
related to X1 and X2. The censoring times are uniformly distributed on the interval
(0,α). The hazard function is presented in Appendix.

3.1.3 DGP 3

It is an altered version of scenario 2 from Sect. 4.1 of Zhu and Kosorok (2012). Ten
iid uniform covariates on the interval (0,1) are available, X1, . . . , X10. Survival times
are drawn from an exponential distribution with mean μ where μ = 10| sin(X1π −
1)| + 3|X2 − 0.5| + X3. The censoring times are uniformly distributed on the interval
(0,α).
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Fig. 2 The four survival curves in the terminal nodes of the tree for DGP 2

3.1.4 DGP 4

It is adapted from scenario 3 in Sect. 4.1 of Zhu and Kosorok (2012). Twenty-five
covariates X1, . . . , X25 are generated from a multivariate normal distribution with
covariance matrix σi j = 0.75|i− j |. The survival time follows a gamma distribution
with shape parameter μ = 0.5 + 0.3|∑15

i=11 Xi | and scale parameter of 2. The cen-
soring times are uniformly distributed on the interval (0,α).

3.1.5 DGP 5

This is a dependent censoringDGP. It is adapted from scenario 1 in Sect. 4.1 of Zhu and
Kosorok (2012). Twenty-five covariates X1, . . . , X25 are generated fromamultivariate
normal distribution with covariance matrix σi j = 0.9|i− j |. The survival time follows
an exponential distribution with mean of μ = 0.1|∑20

i=11 Xi |. The censoring times
are drawn from an exponential distribution with mean μ/α.

3.2 Simulation results

Wefirst present a global summary of the results in Table 1. For each scenariowith some
censoring (that is, excluding the 0% censoring case), we are comparing nine methods.
For each individual data set, we ranked these methods from 1 to 9 with respect to the
IAE criterion (3) evaluated on the test set. The rank of one was given to the method
with the lowest value of the IAE, hence the best one for this data set. Table 1 reports
the average ranks over all 12,500 simulation runs with censoring. Namely, over the
500 repetitions × 5 proportions of censoring × 5 DGPs. We see that the L1 and L∗

1

123



L1 splitting rules in survival forests 679

Table 1 Average ranks (smaller is better), according to the IAE criterion, of the nine methods over all
individual data sets (12,500) with censoring

Name Cox KM RFsrc1 RFsrc2 RFsrc3 RIST3 RIST5 L1-forest L∗
1-forest

Average rank 5.60 7.80 5.15 7.84 6.66 3.64 3.37 2.12 2.78

forests obtained the best results overall. The L1-forest came in 2.12th place among the
nine methods, on average, while the L∗

1-forest came in 2.78th place. The two RIST
methods have the next best average ranks, followed by RFsrc1. Not surprisingly, the
KM method which does not use the covariates, comes in last.

The detailed results for all DGPs are summarized in Figs. 1–5 of the Supplementary
Material. As an overall summary, only results for DGP 1, DGP 3 and DGP 4 at 10
and 40 % censoring proportions are presented in Fig. 3. As expected, the L1-type
forests are the best performing method in terms of IAE in the first two DGPs with
crossing survival functions. RIST comes in second place for DGP 1 while RIST and
RFsrc1 also perform well for DGP 2. The first two DGPs were designed explicitly
to exhibit the advantage of the proposed methods when the survival functions are
crossing. But what is even more interesting is that the L1-type forests also do very
well for the other DGPs, that do not involve crossing survival functions. For DGP 3,
the RFsrc1 is the best for censoring proportions up to 20 %, then the L∗

1-forest does
better when the censoring proportion reaches 40 %. For DGP 4 and 5, RIST performs
best followed closely by the L1-type forests. Hence the L1-type forests seem to be
generally competitive in a wide variety of situations.

3.3 Additional simulations

We present briefly the results of some additional simulations following reviewers
suggestions. Complete results with seven additional figures are available in the Sup-
plementary Material.

Firstly, the performance of the methods is investigated with a smaller training
sample and with additional noise covariates. The same 30 scenarios are investi-
gated. But the training sample size is divided by two (hence it is 250) and the
number (which depends on the DGP) of noise covariates is multiplied by 5 in
each DGP. The added noise covariates are iid uniform covariates on the interval
(0,1). Table 2 presents the average ranks of the nine methods for these modified
DGPs. The results are very similar to those obtained before. Again, L1 type forests
obtained the best results overall, followed by the two RIST methods and then by
RFsrc1.

Secondly, since all covariates are continuous in themain simulation, a few scenarios
with binary covariates are investigated here. Only DGP 2 is considered. Recall that
only two covariates, X1 and X2, are related to the response. In the main simulation, X1
and X2 are uniformly distributed on (0,1). In the first variation, X2 is still uniformly
distributed on (0,1) but X1 is now a binary covariate taking values 0 and 1 with
probability 1/2. In the second variation, both X1 and X2 are binary covariates taking
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Fig. 3 IAE of methods for DGP 1, DGP 3 and DGP 4 at 10 and 40 % censoring proportions

values 0 and 1 with probability 1/2. Table 3 presents the average ranks, as before,
for DGP 2 only, for these three situations. For the original setup where both X1 and
X2 are continuous (top part of the table), the L1 type forests are the best but the Cox
model comes in third place, followed by the two RIST methods. Then, when X1 is
binary and X2 continuous (middle part), the Cox model comes in between the L1
type forests, followed again by the two RIST methods. Finally, when both X1 and
X2 are binary (bottom part), then the Cox model has the best performance followed
by the L1-forest. But this time both RIST perform better than the L∗

1-forest. Again,
more complete results are presented in the Supplementary Material which suggest
that the IAE of the forest methods did not really degrade when moving from the
continuous to the binary covariates. Rather, it is the performance of the Cox model
that improved.
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Table 2 Average ranks (smaller is better), according to the IAE criterion, of the nine methods over all
individual data sets (12,500) with censoring, for the modified DGPs (smaller n and larger p)

Method Cox KM RFsrc1 RFsrc2 RFsrc3 RIST3 RIST5 L1-forest L∗
1-forest

Average rank 7.90 6.26 4.57 7.39 6.85 3.76 3.71 2.26 2.30

Table 3 Average ranks (smaller is better), according to the IAE criterion, of the nine methods over all
individual data sets (2,500) with censoring for DGP 2

X1 and X2 continuous (original setup)

Name Cox KM RFsrc1 RFsrc2 RFsrc3 RIST3 RIST5 L1-forest L∗
1-forest

Ranking 3.75 7.18 5.42 7.58 6.77 5.17 5.19 1.65 2.24

X1 binary and X2 continuous

Name Cox KM RFsrc1 RFsrc2 RFsrc3 RIST3 RIST5 L1-forest L∗
1-forest

Ranking 2.63 7.25 6.69 7.70 6.39 4.39 4.50 2.39 3.04

X1 and X2 binary

Name Cox KM RFsrc1 RFsrc2 RFsrc3 RIST3 RIST5 L1-forest L∗
1-forest

Ranking 2.42 6.76 7.15 7.57 5.65 4.07 4.08 2.99 4.31

The original setup and two variations are presented

4 Real data sets

In this section,we compare the performance of the samemethods used in the simulation
study with six real data sets: The Primary Biliary Cirrhosis (PBC) data, the CSL liver
chirrosis data, the German Breast Cancer (GBC) Study Group data, the Wisconsin
Breast Cancer Prognostic (WPBC) data, the Veteran data, and the National Wilm’s
Tumor Study (NWTCO) data. A brief description of these data sets is presented in
Table 4.

The PBC data is described in the monograph by Fleming and Harrington (1991).
We use all twelve covariates used by Bou-Hamad et al. (2011) plus copper, sgot and
stage. The same 312 patients who participated in the randomized trial are used here.
Missing values are replaced by the median as in Bou-Hamad et al. (2011) and Fleming
and Harrington (1991). The CSL data was obtained by Schlichting et al. (1983) and is
provided in the timereg package (Scheike et al. 2009). In this example, we only use
the six time–invariant covariates. Records are grouped by id variable so the number
of observations used is 446. The GBC data (Schumacher et al. 1994) is obtained from
the package mfp (Ambler and Benner 2014). The data contains 686 observations and
eight covariates. There is no missing data. The WPBC data is available in the UCI
machine learning repository (Bache and Lichman 2013). There are 198 observations
in the data. However, four missing values are replaced by the median as in the PBC
data. Thirty-two covariates are used in this example. The Veteran data (Kalbfleisch
and Prentice 1980) is obtained from the randomForestSRC package (Ishwaran
and Kogalur 2014). There are 137 observations with no missing values. It contains six
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covariates. Finally, the NWTCO data (Breslow and Chatterjee 1999) is available in
the package survival (Therneau 2014). The four relevant covariates, instit, histol,
age and stage, are used here. The data consists of 4088 observations and no missing
values.

We use the same parameters as in the simulation section to build the forests. Namely,
100 trees are grown, the number of covariates tried at each split is set to the integer
part of

√
p, and the minimum number of observations in a terminal node is 3.

Since the true survival function is not known, we can not compute the IAE (or ISE)
as we did with the artificial data sets. Instead, our primary criterion is the integrated
Brier score (Graf et al. 1999). Let Ŝ(t |x) denote the estimated survival function,
estimated by any model, at time t for a subject with covariate vector x . Let Ĝ denote
the Kaplan–Meier estimate of the censoring distribution. The Brier score at any time
t is computed as

BS(t) = 1

N

n∑
i=1

(
(Ŝ(t |xi )2 I (τi ≤ t and δi = 1)Ĝ−1(τi )

+ (1 − Ŝ(t |xi ))2 I (τi > t)Ĝ−1(t)

)
.

The integrated Brier score is given by

IBS = 1

max(τi )

∫ max(τi )

0
BS(t)dt.

Lower values of IBS indicate better performances. Basically, the IBS is an integrated
weighted squared distance between the estimated survival function and the empirical
survival curve. The inverse weighting scheme is used to adjust for censoring. It is thus
similar in spirit to the IAE used in the previous section.

Table 4 Description of the data sets

Name # Covariates Sample size % Censoring Source

PBC 15 312 60 Fleming and Harrington (1991)

CSL 6 446 39 Schlichting et al. (1983) in timereg
package (Scheike et al. 2009)

GBC 8 686 56 Schumacher et al. (1994) in mfp package
(Ambler and Benner 2014)

WPBC 32 198 76 (Bache and Lichman 2013)

Veteran 6 137 7 Kalbfleisch and Prentice (1980) in
randomForestSRC package (Ishwaran
and Kogalur 2014)

NWTCO 4 4088 85 Breslow and Chatterjee (1999) in
survival package (Therneau 2014)
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Fig. 4 Integrated Brier score, across 20 runs of 10-fold cross-validation, for the real data sets

Table 5 Ranking of methods based on % increase of median IBS with respect to best method

Name Cox RFsrc1 RFsrc2 RFsrc3 RIST3 RIST5 L1-forest L∗
1-forest

PBC 5.08 3.73 12.55 8.89 1.78 2.29 1.66 0.00

Veteran 6.72 0.39 2.47 3.38 0.00 0.77 1.05 0.22

GBC 0.12 3.92 4.26 4.58 0.96 0.46 1.20 0.00

CSL 0.00 13.72 11.73 6.41 8.46 8.22 5.32 5.43

NWTCO 1.95 7.62 4.96 0.62 1.02 1.07 0.00 0.71

WPBC 19.30 6.27 3.78 2.45 0.04 0.00 0.90 2.33

Average 5.52 5.90 6.62 4.36 2.03 2.14 1.69 1.44
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Figure 4 illustrate the results for the IBS across 20 runs of 10-fold cross-validation
for each data set. Note that the results for the Kaplan–Meier method are not included
because it is so much worse than the other methods that the plots would have been
distorted. Table 5 provide another look at these results by computing the % increase
of the median IBS with respect to best method for each data set. The median here is
the one over the 20 runs of 10-fold cross-validation. We see in Table 5 that the L1 type
forests are globally the best according to the average % increase in IBS. Indeed, the
IBS of L∗

1-forest is only 1.44 % greater than the IBS of the best method, on average.
It is even the best one for two of the six data sets. Moreover, the IBS of L1-forest is
1.69 % greater than the IBS of the best method, on average. It is also the best method
for the NWTCO data. The two RIST methods have the next best performance with
average percent increases just above 2 %. Hence, we get the same top four methods
as the ones we obtained with the artificial data sets. The fact that the L1 type forests
are always competitive for all data sets is clearly seen in Fig. 4.

Another popular criterion to evaluate a model with survival data is the C-index
(Harrell et al. 1982). We use it as a complement measure here because we think the
IBS ismore appropriate when the goal is to estimate the survival function. The C-index
is a concordance measure that evaluates if the predictions from a model are ranked
in the same way as the observed times. Following Ishwaran et al. (2008), let Ĥ(t |x)
denote the estimated cumulative hazard function, estimated by any model, at time t
for a subject with covariate vector x . Let t1 < t2 < · · · < tm be the distinct event
times and let Ĥi = ∑m

l=1 Ĥ(tl |xi ). The C-index, using the usable pairs, is computed
as following

CI =
∑

i< j (I (ti < t j )I (Ĥi > Ĥ j )δi + I (ti > t j )I (Ĥi < Ĥ j )δ j )∑
i< j (I (ti < t j )δi + I (ti > t j )δ j )

.

Higher values of CI indicate better performances. Figure 5 illustrate the results for the
CI across 20 runs of 10-fold cross-validation for each data set. Table 6 reports the %
decrease of the median CI with respect to best method for each data set. We see in
Table 6 that the Cox model has the best performance according to the CI, followed
by the two RIST methods and the L1 type forests. The average percent decrease in
CI of these methods are all below 2 %. As a matter of fact, all methods do fairly
well except maybe for RFsrc1 which is a bit further apart. Hence, it seems that the
CI is a less discriminating criterion compared to the IBS, for these data sets. Zhu and
Kosorok (2012) also report that the C-index is not as sensitive as other measurements
and even that its interpretability is sometimes unclear. This may be partly explained
by the fact that the C-index is uniquely a discrimination measure. That is, it measures
if the predicted survival times are in the right order. The IBS is a discrimination and
calibration measure. The calibration aspect measures the similarity between the actual
and predicted survival curves; see De Bin et al. (2014). Hence for these data sets, it
seems that all methods do fairly well in terms of discrimination, but the L1 type forests
perform better in terms of calibration.

To conclude this section, we will take a closer look at the GBC data analysed
in details in Sauerbrei and Royston (1999). We will refer to this paper by SR for
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Fig. 5 C-index, across 20 runs of 10-fold cross-validation, for the real data sets

Table 6 Ranking of methods based on % decrease of median C-index with respect to best method

Name Cox RFsrc1 RFsrc2 RFsrc3 RIST3 RIST5 L1-forest L∗
1-forest

PBC 0.94 1.21 1.05 0.00 0.35 0.52 1.09 0.86

Veteran 0.00 0.37 1.72 4.22 0.54 0.17 0.92 1.26

GBC 1.81 0.36 0.00 0.05 0.15 0.09 0.90 0.07

CSL 0.00 4.40 4.17 4.09 4.64 4.46 4.48 4.25

NWTCO 0.57 8.64 7.28 3.83 2.48 2.52 0.00 0.09

WPBC 4.36 7.49 0.27 0.00 0.04 1.05 2.80 5.08

Average 1.28 3.74 2.41 2.03 1.37 1.47 1.70 1.94
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Fig. 6 Predicted and observed survival curves by prognosis group in GBC data

simplicity. After a careful analysis and using fractional polynomials, SR came up
with a seemingly good Cox model based on the covariates (X1/50)−2, (X1/50)−0.5,
I (X4 ≥ 2), exp(−0.12X5), and (X6+1)0.5; seeModel III in Table 4 of SR. Following
SR,wedivide the sample into three groups of nearly equal sizes based on the prognostic
index PIi = xi β̂, where β̂ are the estimates of the parameters in the above Cox model.
The 228 subjects with the lowest PI scores are assigned to the best prognosis group, the
following 229 subjects are assigned to the median prognosis group, and the remaining
229 with the highest PI scores go into the worse prognosis group. Note however that
SR used another simpler model to define the three groups. But that model had only 27
different covariates patterns which caused the group sizes to be imbalanced. Figure 4
of SR shows the Kaplan–Meier curves of each group. Fleming and Harrington (1991)
present a similar plot (see their Figure 4.6.13 on page 195) in their analysis of the PBC
data set. They also plotted the average estimated survival curves of each group in order
to visually inspect the goodness-of-fit of their model. Figure 6 is such a plot where the
average survival curves of the Cox model and of the L∗

1-forest are depicted. We can
observe that the Coxmodel seems to fit the data fairly well in all groups. But strikingly,
the L∗

1-forest seems to fit the data slightly better, even though the groups are derived
from the Cox model. This simple example illustrates the fact that, sometimes, a good
off-the-shelf method like a forest do as well as a carefully crafted parametric model.
When confronted between two models with similar performance, the choice should
often be the one which is easier to interpret. In this case, it would be the Cox model
even though interpreting the effect of the transformed covariates is not straightforward.
Thus, a forest can serve as a benchmark to evaluate if an easier to interpret parametric
model fits well enough.
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5 Discussion and concluding remarks

The log-rank test is commonly used as the splitting rule in the various implementations
of survival forests within the CART paradigm, such as in Ishwaran et al. (2008) and
Zhu and Kosorok (2012). However, the log-rank test is not designed to detect all
possible differences between two survival curves. For instance, the log-rank test is
inadequate to detect a difference between two groups when the hazard or survival
functions cross each other in the two compared groups. Consequently, if the goal is
to accurately estimate the conditional survival function, then using the log-rank test
as splitting criterion may not be optimal. This was never thoroughly investigated for
survival forests. At a time where more refinements and features are added to existing
packages, it seemed that going back to “basics” was in order. In this paper, it was
showed that forests built with a simple splitting rule, based on the integrated absolute
difference between the two children nodes survival functions, are very competitive
compared to forests built with the log-rank splitting rule. Indeed, these forests often
got the best performance in the cases considered, either with simulated data or with
real data sets. Hence, it is certainly worthwhile to consider the proposed methods
as potential competitors. It would certainly be helpful if some well established, very
comprehensive and useful package like randomForestSRC could incorporate L1-
type splitting rules.

The two splitting rules investigated are L1 = (nLnR)� and L∗
1 = √

nLnR� where
� = ∫

t |ŜL(t)− ŜR(t)|dt . The factors (nLnR) and
√
nLnR can be seen as penalization

factors that favor splits with children nodes of nearly equal sizes. For instance, if we
have two potential splits with the same value of �, then the one with the largest value
of nLnR should be favored because the two Ŝ in � are obtained from larger sample
sizes. As an extreme example, assume that nL + nR = 100 and that two splits have
an equal value of �. We would be more confident with a split with nL = 50 and
nR = 50, than one with nL = 5 and nR = 95 because, in the second case, there is a
lot of variability in the estimation of ŜL which induces a larger variance for �. In fact,
Appendix establishes that, under some simplifying assumptions, the factor

√
nLnR is

the one producing a test statistic which is asymptotically normally distributed. The
factor

√
nLnR favors more heavily splits with nearly equal size children nodes than

the factor nLnR . But in practice, at a given node, we do not know if the best split
is located more towards the center (with respect to the children nodes sizes) or not.
So we do not know how much we should favor splits towards the center. Even if the
factor

√
nLnR has a theoretical justification, the factor nLnR had globally a slightly

better performance with the data generating processes considered in the simulation
study. But with the real data sets, the factor

√
nLnR had a slightly better performance

according to the integrated Brier score and was slightly worse according to the C-
index. In practice, one possibility would be to try forests built with both splitting rules
and select the one according to the integrated Brier score under a cross-validation
scheme. More research on this aspect could lead to more specific recommendations.

The scope of this work is limited to traditional forests built within the CART para-
digm. Other paradigms including “unbiased” trees are also available; see Loh (2002,
2013) for the GUIDE approach and Hothorn et al. (2006b) for the ctree approach. For

123



688 H. Moradian et al.

example, the GUIDE approach fits different types of proportional hazards regression
models for censored data. Hence, it would be interesting to investigate the robustness
of this method when the proportionality assumption is not met. Moreover, we saw in
the additional simulations that the covariates’ types can have an impact on the perfor-
mance. Hence, developing forests built with unbiased trees using L1 types criteria for
variable and split selections might be interesting.
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Appendix

Hazard function formula for DGP 1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.27t x1 ≤ 0.5, t ≤ 2

0.2(t − 2) + 5.4 x1 ≤ 0.5, t > 2

0.1t x1 > 0.5, t ≤ 6

5.5(t − 6) + 0.6 x1 > 0.5, t > 6.

Hazard function formula for DGP 2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.27t x1 ≤ 0.5, x2 ≤ 0.5, t ≤ 2

0.2(t − 2) + 5.4 x1 ≤ 0.5, x2 ≤ 0.5, t > 2

0.27t x1 ≤ 0.5, x2 > 0.5, t ≤ 2

5.5(t − 2) + 5.4 x1 ≤ 0.5, x2 > 0.5, t > 2

0.1t x1 > 0.5, x2 ≤ 0.5, t ≤ 6

0.2(t − 6) + 0.6 x1 > 0.5, x2 ≤ 0.5, t > 6

0.1t x1 > 0.5, x2 > 0.5, t ≤ 6

5.5(t − 6) + 0.6 x1 > 0.5, x2 > 0.5, t > 6.

Simplification of the Lin and Xu (2010) statistic leading to the L∗
1 splitting rule

For i = L , R, the left and right nodes, denote by σ̂ 2
i the estimated variance of Ŝi

from Greenwood’s formula. To perform a formal test of the equality of the survival
functions in the left and right nodes, Lin and Xu (2010) propose the statistic

�∗ = � − Ê(�)√
̂Var(�)
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where

Ê(�) =
∑
j |t j<τ

{2/π(σ̂ 2
L(t j ) + σ̂ 2

R(t j ))}1/2(t j+1 − t j )

and

̂Var(�) =
∑
j |t j<τ

(t j+1 − t j )
2(1 − 2/π)(σ̂ 2

L(t j ) + σ̂ 2
R(t j ))

+
∑

j< j ′|t j ,t j ′<τ

(t j+1 − t j )(t j ′+1 − t j ′)(1 − 2/π)

×{(σ̂ 2
L(t j ) + σ̂ 2

R(t j ))(σ̂
2
L(t j ′) + σ̂ 2

R(t j ′))}1/2

are estimates of E(�) and Var(�). These estimates arise from a normal approxima-
tion for ŜL(t) − ŜR(t), and the test statistic �∗ is asymptotically normally distributed
under the null hypothesis of equality of the two survival functions. To simplify this
statistic in order to speed up computations for tree building, assume that all observa-
tions are from the same population with survival function S(t), that is we are under
the null hypothesis and there is no censoring. Then Var(Ŝi (t)) = S(t)(1− S(t))/ni ,
for i = L , R. In that case,

Ê(�) = √
2/π

√
(nL + nR)/(nLnR)

∑
j |t j<τ

(S(t j )(1 − S(t j )))
1/2(t j+1 − t j )

= c1/
√
nLnR

where c1 is the same constant for all candidate splits. Similarly,̂Var(�) = c22/(nLnR)

where c2 is the same constant for all candidate splits. Hence,

� − Ê(�)√
̂Var(�)

=
√
nLnR�

c2
− c1

c2
.

But using this last expression is equivalent to using
√
nLnR� as the splitting criterion.
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