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Abstract Clinical studies aimed at identifying effective treatments to reduce the risk
of disease or death often require long term follow-up of participants in order to observe
a sufficient number of events to precisely estimate the treatment effect. In such studies,
observing the outcome of interest during follow-up may be difficult and high rates of
censoringmaybeobservedwhichoften leads to reducedpowerwhen applying straight-
forward statisticalmethods developed for time-to-event data.Alternativemethods have
been proposed to take advantage of auxiliary information that may potentially improve
efficiency when estimating marginal survival and improve power when testing for a
treatment effect. Recently, Parast et al. (J Am Stat Assoc 109(505):384–394, 2014)
proposed a landmark estimation procedure for the estimation of survival and treatment
effects in a randomized clinical trial setting and demonstrated that significant gains in
efficiency and power could be obtained by incorporating intermediate event informa-
tion as well as baseline covariates. However, the procedure requires the assumption
that the potential outcomes for each individual under treatment and control are inde-
pendent of treatment group assignment which is unlikely to hold in an observational
study setting. In this paper we develop the landmark estimation procedure for use in
an observational setting. In particular, we incorporate inverse probability of treatment
weights (IPTW) in the landmark estimation procedure to account for selection bias
on observed baseline (pretreatment) covariates. We demonstrate that consistent esti-
mates of survival and treatment effects can be obtained by using IPTW and that there
is improved efficiency by using auxiliary intermediate event and baseline informa-
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tion. We compare our proposed estimates to those obtained using the Kaplan–Meier
estimator, the original landmark estimation procedure, and the IPTW Kaplan–Meier
estimator. We illustrate our resulting reduction in bias and gains in efficiency through
a simulation study and apply our procedure to an AIDS dataset to examine the effect
of previous antiretroviral therapy on survival.

Keywords Treatment effect · Survival analysis · Intermediate event ·
Nonparametric · Robust

1 Introduction

While randomized studies are the gold standard for estimating treatment effectiveness,
there are numerous occasionswhen they are not feasible.Moreover, there are numerous
times when meaningful information is available from observational studies regarding
the potential effectiveness of a particular treatment on an outcome. Unfortunately,
with rare diseases or outcomes, observational and clinical studies aimed at identifying
effective treatments to reduce the risk of disease or death often require long term
follow-up of participants in order to observe a sufficient number of events to precisely
estimate the treatment effect. In such studies, observing the outcome of interest during
follow-up may be difficult and high rates of censoring may be observed which often
leads to reduced power when applying straightforward statistical methods developed
for time-to-event data.

In light of these challenges, alternative methods have been proposed to take advan-
tage of auxiliary information that may potentially improve efficiency when estimating
marginal survival and improve power when testing for a treatment effect in a ran-
domized study (Cook and Lawless 2001). For example, when the available auxiliary
information consists of a single discrete variable, fully nonparametric approaches (Rot-
nitzky and Robins 2005; Murray and Tsiatis 1996) that incorporate this variable when
estimating marginal survival have been shown to produce more efficient estimates
when compared to the Kaplan–Meier estimator (Kaplan and Meier 1958). When the
auxiliary information includes continuous variables and/or multiple variables, semi
parametric and parametric approaches such as regression adjustment are often con-
sidered. However, while these methods can be used to improve efficiency, they often
rely on correct model specification. For example, the Cox proportional hazards model
(Cox 1972) incorporating baseline covariates is often used to obtain an estimate of
marginal survival and test for a treatment effect but the validity and performance of
this approach also depends on the correct specification of the Cox model (Lagakos
1988; Lagakos and Schoenfeld 1984; Lin and Wei 1989).

A promising alternative to regression adjustment methods that has gained much
recent attention is augmentation approaches which generally involve an augmentation
term that is a function of the auxiliary information (Lu and Tsiatis 2008; Garcia et al.
2011; Tian et al. 2012; Zhang 2015; Zhang et al. 2008; Parast et al. 2014). For example,
Lu and Tsiatis (2008) proposed an augmentation procedure to improve the efficiency
of estimating the log hazard ratio from the Cox model, and demonstrated substantial
gains in power when compared to the standard log-rank test. Garcia et al. (2011) used
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a similar covariate augmentation approach to improve efficiency when using a more
general class of survival models and Zhang (2015) developed augmented versions of
the Nelson–Aalen and Kaplan–Meier estimators.

When auxiliary information consists of information collected over time such as
repeated measurements after baseline or the occurrence of an intermediate event,
incorporating this information to improve efficiency becomes more difficult due to the
semi-competing risks nature of the data (Fine et al. 2001). That is, when the primary
outcome is a terminal event such as death and the intermediate event is a non-terminal
event such as hospitalization or cancer recurrence, the occurrence of the terminal event
would censor the non-terminal event but not vice versa. Therefore, if an individual dies
before the intermediate event occurs or before the repeatedmeasurements are obtained,
this auxiliary information is not available for that individual. Recently, Parast et al.
(2014) proposed a landmark estimation procedure that uses a landmarking approach to
overcome these semi-competing risk issues. Specifically, this procedure incorporates
intermediate event information observed up to a landmark time, t0, for those who have
survived and are still under observation at t0, in the estimation of marginal survival
and a treatment effect. In addition, a smoothing component of the landmark estimation
procedure ensures the consistency of survival estimates and thus these estimates do
not require one to correctly specify a model relating the intermediate event to the
primary outcome. Parast et al. (2014) demonstrated that significant gains in efficiency
can be obtained. Other previously proposed methods to improve efficiency by using
intermediate information include a kernel estimation approach (Gray 1994), a three-
state model approach (Finkelstein and Schoenfeld 1994), an augmented score and
augmented likelihood approach (Fleming et al. 1994), a multiple imputation approach
(Faucett et al. 2002), a nonparametric approach (Murray and Tsiatis 1996, 2001), and
a targeted shrinkage regression approach (Li et al. 2011).

While the methods described above allow for increased efficiency and power
through the use of auxiliary information, they are generally not valid in observa-
tional study settings. That is, these methods require the assumption that the potential
outcomes for each individual under treatment and control are independent of treatment
group assignment, an assumption that holds in a randomized clinical trial setting but
is very unlikely to hold in an observational setting. When this assumption is violated,
methods that do not account for this “selection” bias can result in biased estimates of
survival and treatment effectiveness.

There are a number of statisticalmethods available that attempt to account for poten-
tial selection bias including regression adjustment, matching methods, and inverse
probability of treatment (IPT) weighting (or propensity score weighting). The goal
of such methods is to estimate survival and treatment effects appropriately adjusting
for the fact that individuals in one treatment group may differ from those in another
group on factors other than treatment alone. In the case of IPT weighting, an average
treatment effect in the population can be estimated by re-weighting individuals based
on their probability of treatment such that the treatment groups are, in essence, bal-
anced on all observed factors other than treatment (Hernán et al. 2000; Rosenbaum and
Rubin 1983b, 1984). Xie and Liu (2005) proposed an IPT weighted Kaplan–Meier
estimate of survival and a corresponding test statistic to test for a difference in survival
distributions and showed that consistent estimates that account for selection bias can
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be obtained. Other methods based on weighting and stratification include Nieto and
Coresh (1996) and Amato (1988) where the general approach is to stratify individuals
by the observed confounders, estimate survival in each strata, and appropriately com-
bine the resulting survival estimates. Alternatively, survival estimates can be adjusted
for observed confounders and compared using a specified regression model such as
the Cox model, but as in the case where one aims to gain efficiency by using a Cox
model, when the model is not correctly specified the resulting estimates may not be
valid (Thomsen et al. 1991; Therneau 2000; Chen and Tsiatis 2001). A number of
doubly robust estimators that combine IPT weights (IPTW) and a model for survival,
often a Cox regression model, have been proposed and lead to consistent estimates
when either the model used to obtain the IPTW or the regression model is correct
(Zhang and Schaubel 2012a, b; Bai et al. 2013).

While these previously developed time-to-event methods provide valuable tools
for inference in an observational setting, methods that can improve efficiency through
the use of auxiliary information that includes intermediate event information and
are valid in an observational setting are still lacking. In this paper we develop the
landmark estimation procedure of Parast et al. (2014) for use in an observational setting
such that one can obtain consistent estimates of survival and a treatment effect with
improved efficiency by taking advantage of baseline and intermediate event auxiliary
information. We compare our proposed estimates to those obtained using the Kaplan–
Meier estimator, the original landmark estimation procedure (which one would expect
to be biased as selection bias is not accounted for), and the IPTweightedKaplan–Meier
estimator (whichwe expect to be unbiased but less efficient since auxiliary information
is not incorporated).We illustrate the resulting reduction in bias and gains in efficiency
through a simulation study and apply our procedure to an AIDS dataset to examine
the effect of previous antiretroviral therapy on survival.

2 Estimation of survival in an observational study

2.1 Notation and potential outcomes framework

For the i th subject, let TLi denote the time of the primary event of interest, TSi denote
the vector of intermediate event times, Zi denote the vector of baseline (pretreatment)
covariates, and Ci denote the censoring time assumed independent of (TLi ,TSi,Zi ).
Due to censoring, TLi and TSi are only potentially observed. Instead, we observe
XLi = min(TLi ,Ci ),XSi = min(TSi,Ci ) and δLi = I (TLi ≤ Ci ), δSi = I (TSi ≤ Ci ).
When TLi is a terminal event, such as death, this would represent a semi-competing
risks setting where TSi is additionally subject to informative censoring by TLi , while
TLi is only subject to administrative censoring and cannot be censored by TSi. Let t0
denote some landmark time prior to t , such as a 1-year check up time following disease
diagnosis. Our goal is to estimate S(t) = P(TLi > t) appropriately using baseline
covariate information and intermediate event information collected up to t0, where t is
a clinically relevant pre-specified time point such that P(XLi > t | TLi ≥ t0) ∈ (0, 1)
and P(TLi ≤ t0, TSi ≤ t0) ∈ (0, 1).
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In order to rigorously define the survival and treatment effect quantities we aim to
estimate, we consider a potential outcomes framework. Assume there are two treat-
ments, Treatment 1 and Treatment 0 and let Gi = 1 or 0 denote the treatment received
by individual i . Each individual has two potential outcomes: TL1i , which is the time
of the long term event after receiving treatment 1, and TL0i , which is the time of
the long term event after receiving treatment 0. However, in reality we only observe
one of these outcomes for each patient TLi = TL1i I (Gi = 1) + TL0i I (Gi = 0).
Due to censoring, we define XL1i = min(TL1i ,Ci ),XS1i = min(TS1i,Ci ) and δL1i =
I (TL1i ≤ Ci ), δS1i = I (TS1i ≤ Ci ) or XL0i = min(TL0i ,Ci ),XS0i = min(TS0i,Ci )

and δL0i = I (TL0i ≤ Ci ), δS0i = I (TS0i ≤ Ci ). In essence, there are two levels
of missing data in this framework. First, since individuals are assigned to only one
treatment, only TL1i ,TS1i or TL0i ,TS0i are potentially observable. Second, we are addi-
tionally not able to observe TL1i ,TS1i for all individuals with Gi = 1 (and similarly
TL0i ,TS0i for all individuals with Gi = 0) due to censoring.

2.2 Estimation of survival using the Kaplan–Meier estimator

We aim to estimate survival at time t within each treatment group, S1(t) = P(TL1 > t)
and S0(t) = P(TL0 > t). To make our assumptions explicit we define:

Assumption A.1 (TL1i ,TS1i, TL0i ,TS1i,Zi ) ⊥ Ci | Gi

Assumption A.2 (TL1i , TL0i ,TS1i,TS0i) ⊥ Gi | Zi

Assumption A.1 assumes independent censoring and Assumption A.2 is often referred
to as the assumption of no unmeasured confounders (Rosenbaum and Rubin 1983b)
or the assumption of strong ignorability (Robins et al. 2000). Without loss of gen-
erality, we first focus on estimation of S1(t). In a randomized clinical trial (RCT)
setting, instead of Assumption A.2, one could make the much stronger assumption
that (TL1i , TL0i ,TS1i,TS0i) ⊥ Gi which would hold due to random treatment assign-
ment. In such a randomized setting, a common nonparametric approach to estimate
survival is the Kaplan–Meier (KM) estimate (Kaplan and Meier 1958),

̂S KM, j (t) =
{

1 if t < t1 j
∏

tk j≤t

[

1 − dk j
yk j

]

if t ≥ t1 j
(1)

where t1 j , . . . , tDj are the distinct observed long term event times in treatment group
j, dkj is the number of events at time tk j in treatment group j, and yk j is the number of
patients at risk at tk j in treatment group j.

However, in an observation study where treatment is not randomized, one cannot
assume that
(TL1i , TL0i ,TS1i,TS0i) ⊥ Gi . Indeed, individual characteristics that may be associated
with treatment may also be associated with the potential outcome. For example, if the
exposure of interest was diabetes and the long term outcome was death, individual
characteristics such as age, body mass index, gender and diet may be associated with
both the likelihood of having diabetes and survival. Analyses which ignore selection
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bias (i.e. that the distribution of confounders differ in the two treatment groups) can
result in biased estimates of treatment effectiveness, particularly if treatment selection
is related to treatment effectiveness or the primary long term event of interest. How-
ever, it may be possible to identify such individual characteristics and appropriately
adjust methods originally developed for an RCT setting accordingly. Specifically, if
Zi contains all individual characteristics that may be associated with both treatment
and the outcome, then among individuals with the same Zi , treatment group and the
potential outcomes would be independent (Assumption A.2). Therefore, methods that
appropriately account for the differential distribution of Zi within treatment groups
will lead to valid estimation of the quantities of interest (RosenbaumandRubin 1983b).

Methods that take advantage of this assumption to estimate survival and treatment
effects in the presence of selection bias include regression adjustment and IPT weight-
ing. IPTweighting involves appropriately weighting estimates or estimating equations
by the inverse of the probability of treatment or the propensity score, Wj (Zi ) =
P(Gi = j | Zi ), the probability of being in treatment group j given individual char-
acteristics. It has been shown that whenAssumptionA.2 holds andWj (Zi ) is known or
can be consistently estimated, TL1i ,TS1i, TL0i ,TS1i ⊥ Gi | Wj (Zi )(Rosenbaum and
Rubin 1983b, 1984; Hernán et al. 2000). That is, among individuals with the same
propensity score, treatment and the potential outcomes are independent. A particular
example of an IPTweighted estimator in our setting is the IPTweightedKaplan–Meier
(IPTW KM) estimator (Xie and Liu 2005) of S j (t):

̂SI PTW, j (t) =
{

1 if t < t1 j
∏

tk j≤t

[

1 − dw
k j
yw
k j

]

if t ≥ t1 j

where dw
k j =

∑

i :XLi=tk j ,δLi=1
̂Wj (Zi )

−1
δLi I (Gi = j) and yw

k j = ∑

i :XLi≥tk j
̂Wj (Zi )

−1

I (Gi = j),Wj (Zi ) = P(Gi = j | Zi ), and ̂Wj (Zi ) is the estimated propensity score.

2.3 Landmark estimation of survival in an observational study

In this section we aim to develop the landmark estimation procedure of Parast et al.
(2014) in the potential outcomes framework such that bias resulting from selection
bias would be eliminated and estimates obtained would provide improved efficiency
compared to the IPTWKM estimate by incorporating baseline and intermediate event
information. As in Parast et al. (2014), we note that for t > t0, S1(t) = P(TL1i > t)
can be expressed as S1(t | t0)S1(t0), where

S1(t | t0) = P(TL1i > t | TL1i > t0) and S1(t0) = P(TL1i > t0).

In essence, we aim to incorporate intermediate event information in estimation of
S1(t | t0) to improve the efficiency of the overall estimate of S(t), but we desire an
approach that (a) does not require that we correctly specify the relationship between
the intermediate event and the primary outcome since any specified model is unlikely
to hold in practice and (b) accounts for selection bias. Throughout, we assume that t0 is
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pre-selected and fixed, however we discuss the selection of t0 further in theDiscussion.
We first focus on obtaining a consistent estimate of S1(t | t0) and note that,

S1(t |t0)= P(TL1 > t | TL1> t0)=E{P(TL1 > t | TL1 > t0,H1)} = E{S1(t |t0,H1)}
(2)

where S1(t |t0,H1) = P(TL1 > t | TL1 > t0,H1) and H1 = {Z, I (TS1 ≤
t0),min(TS1, t0)}. That is, H1 contains all information that is potentially observable
up to the landmark time, t0, for an individual who has survived to t0 and could include
information on multiple intermediate events and/or covariates with repeated measure-
ments before t0, if such data were available. Note thatH1 is only observable for those
with Gi = 1 and XL1i > t0. If one were able to obtain a consistent estimate of
S1(t | t0,H1), denoted by ̂S1(t |t0,H1), then one could estimate S1(t | t0) by

̂S1(t |t0) = n−1 ∑n
i=1

̂W1(Zi )
−1

̂S1(t |t0,H1i )I (Gi = 1)I (XL1i > t0)

n−1
∑n

i=1
̂W1(Zi )−1 I (Gi = 1)I (XL1i > t0)

. (3)

We will now show that we may obtain such a consistent estimate, ̂S1(t |t0,H1), of
S1(t | t0,H1) by developing the two-stage procedure in Parast et al. (2014) for use in
a setting where selection bias is a concern using IPTW. We first reduce the dimension
of H1 by approximating S1(t | t0,H1) with a working semiparametric model, the
landmark proportional hazards model (Van Houwelingen and Putter 2012)

S1(t | t0,H1) = exp
{−Λ

t0
0 (t) exp(βT

1H1)
}

, t > t0 (4)

where Λ
t0
0 (·) is the unspecified baseline cumulative hazard function for TL1i among

Ωt0,1 = {XL1i > t0,Gi = 1} and β1 is an unknown vector of coefficients. Let ̂β1 be
the maximizer of the IPT weighted log partial likelihood function,

̂�t0(β1) =
∑

i∈Ωt0,1

δL1iW1(Zi )
−1

×
⎡

⎣βT
1H1i − log

⎧

⎨

⎩

∑

j∈Ωt0,1

W (Z j )
−1eβT

1H1 j I (XL1 j > XL1i , )

⎫

⎬

⎭

⎤

⎦ . (5)

In an effort to obtain a final estimate that is robust to model misspecification, we avoid
the assumption that this landmark proportional hazards model is correctly specified
by focusing only on the resulting risk score ̂U1i ≡ ̂β

T

1H1i . That is, instead of aiming
to obtain an estimate of S1(t | t0,H1) = P(TL1 > t | TL1 > t0,H1) in (2) and (3),
we now change our focus to obtaining an estimate of S1(t | t0,U1) = P(TL1 > t |
TL1 > t0,U1) where U1 = βT

10H1 and β10 is the limit of ̂β1. Note that the derivation
supporting (2) and (3) would still hold when S1(t | t0,H1) and ̂S1(t | t0,H1) are
replaced by S1(t | t0,U1) and ̂S1(t | t0, ̂U1), a consistent estimate of S1(t | t0,U1),
respectively. In this first stage, the workingmodel is essentially used as a tool to reduce
the dimension of H by constructing ̂U .

123



168 L. Parast, B. A. Griffin

In the second stage, we derive ̂S1(t |t0, ̂U1), such that an estimate of S1(t | t0) can
then be obtained as (3) with ̂S1(t | t0,H1) replaced by ̂S1(t | t0, ̂U1). We propose to
use an IPTweighted nonparametric conditional Nelson–Aalen estimator (Beran 1981)
based on subjects in Ωt0,1 to obtain an estimate of S1(t | t0,U1). Specifically for any
given t and u, the synthetic data {(XL1i , δL1i , ̂U1i ), i ∈ Ωt0,1} is used to calculate
the IPT weighted local constant estimator for the conditional hazard Λ1(t | t0, u) =
− log S1(t | t0, u) as

̂Λ1(t |t0, u) =
∫ t

t0

∑

i∈Ωt0,1
̂W1(Zi )

−1Kh(̂U1i − u)dNi (z)
∑

i∈Ωt0,1
̂W1(Zi )−1Kh(̂U1i − u)Yi (z)

where Yi (t) = I (TL1i ≥ t), Ni (t) = I (TL1i ≤ t)δL1i , K (·) is a smooth symmetric
density function, Kh(x) = K (x/h)/h, and h = O(n−v) is a bandwidth with 1/2 >

v > 1/4. The resulting estimate for S1(t | t0,U1) is ̂S1(t | t0, ̂U1) = exp{− ̂Λ1(t |
t0, ̂U1)}. Finally, S1(t | t0) is estimated as (3) with ̂S1(t |t0,H1i ) replaced by ̂S1(t |
t0, ̂U1i ) = exp{− ̂Λ1(t |t0, ̂U1i )}.

Now that we have proposed an estimation procedure for S1(t |t0), an estimate for
S1(t0) follows similarly from this same two-stage procedure replacing H with Z and
Ωt0,1 with Ω = {Gi = 1}. Specifically, we can obtain an estimate for S1(t0) as

̂S1(t0) =
1
n1

∑

̂W1(Zi )
−1

̂S1(t0|Zi )I (Gi = 1)
1
n1

∑

̂W1(Zi )−1 I (Gi = 1)
(6)

where ̂S1(t0|Zi ) is a consistent estimate of P(TL1 > t0|Zi ). To obtain ̂S1(t0|Zi ), we
use the two stage estimation procedure to obtain a risk score ̂U∗

1i in the first stage and
smooth over ̂U∗

1i to obtain ̂Λ1(t0 | ̂U∗) such that̂S1(t0 | ̂U∗
1i ) = exp{− ̂Λ1(t0 | ̂U∗

1i )} is
a consistent estimator of S1(t0 | U∗

1 ) = P(TL1i > t0|U∗
1 ) whereU∗

1 = β∗T
10Zi and β∗

10

is the limit of̂β
∗
1, the maximizer of the weighted Cox partial likelihood corresponding

to the working model,

S1(t0|Z1) = exp{−Λ0(t) exp(β
∗T
1 Z1)}, (7)

which uses only ZwhereΛ0(·) is the unspecified baseline cumulative hazard function
for TL1i , calculated in stage 1.

An estimate for the primary quantity of interest S1(t) in an observational study
incorporating intermediate event and covariate information collected up to t0 follows
as ̂S LM,1(t) ≡ ̂S1(t | t0)̂S1(t0) where LM indicates that a landmark time, t0, has
been used to decompose the estimate into two components. The estimate for S0(t)
follows similarly and is denoted as ̂S LM,0(t). The consistency of S j (t) follows from
the consistency of ̂S j (t | t0) and ̂S j (t0) . The consistency of ̂S j (t | t0) for S j (t |
t0) and ̂S j (t0) for S j (t0) is ensured by Assumption A.1 and Assumption A.2, the
assumption that the propensity scores ̂Wj (Zi ) are consistent estimates forWj (Zi ), the
consistency of ̂β j and ̂β

∗
j for some constants β j0 and β∗

j0, respectively, even under
misspecification of (4) and (7) (Lin 2000; Lin andWei 1989; Pan and Schaubel 2008),

123



Landmark estimation of survival and treatment effects... 169

and the uniform consistency of̂S j (t | t0, ̂Uj ) and̂S j (t0, Z) which can be shown using
similar arguments as in Cai et al. (2010), Du and Akritas (2002), and Parast et al.
(2014) under mild regularity conditions. We discuss the assumption concerning the
consistency of ̂Wj (Zi ) further in the Discussion.

It is worth noting that a similar two-stage approach could be used to gain efficiency
even if one only has baseline covariates and no intermediate event information. That
is, an estimate of S(t) incorporating only baseline covariate information, Z, can be
obtained as in (6) with t0 replaced by t . With this approach, no landmarking is used
and only a single working model specifying the relationship between TL j and Z for
j = 0, 1 is needed. In our numerical studies, we calculate this estimate to shed light
on how much of our observed efficiency gain is due to intermediate event information
versus Z information alone.

3 Estimation of the treatment effect in an observational study

We aim to estimate the average treatment effect (ATE) in terms of a difference in
survival at time t . That is, the treatment effect is defined as the risk difference, �(t) =
S1(t) − S0(t). Using landmark estimation in an observational setting, we may obtain
̂� LM(t) = ̂S LM,1(t)−̂S LM,0(t) sincêS LM, j (t) is a consistent estimate of S j (t). The stan-
dard error of ̂� LM(t) can be estimated as σ̂ (̂� LM(t)) using a perturbation-resampling
procedure as described in Sect. 4. A normal confidence interval (CI) for �(t) may be
constructed accordingly. To test the null hypothesis of H0 : �(t) = 0, a Wald-type
test may be performed based on ̂Z LM(t) = ̂� LM(t)/σ̂ (̂� LM(t)). To examine bias and
efficiency in estimation of a treatment effect, we compare this testing procedure to a
test based on (1) the KM estimate in an RCT setting, ̂� KM(t) = ̂S KM,1(t)−̂S KM,0(t), 2)
the landmark estimation procedure for an RCT setting ̂� RCT

LM (t) = ̂S RCT
LM,1(t) −̂S RCT

LM,0(t),

and 3) the IPTW KM estimate ̂� IPTW(t) = ̂S IPTW,1(t) − ̂S IPTW,0(t), where ̂S RCT
LM, j (t) is

the estimate of survival for treatment group j obtained using the landmark estimation
procedure for an RCT setting.

4 Variance estimation using perturbation-resampling

To obtain variance estimates, we use a perturbation-resampling method (Park andWei
2003;Cai et al. 2005;Tian et al. 2007). Specifically, let {V(b) = (V (b)

1 , . . . , V (b)
n )T, b =

1, . . . , B} be n× B independent copies of a positive random variable U from a known
distribution with unit mean and unit variance such as an Exp(1) distribution. To esti-
mate the variance of our proposed procedure, for j = 0, 1, let

̂S LM, j (t |t0)(b)

=
n−1
t0, j

∑

i∈Ωt0, j

[

̂Wj (Zi )
(b)

]−1
exp

{

− ̂Λ
(b)
j

(

t |t0, ̂U (b)
j i

)}

I (Gi = j)I (XL j i > t0)V
(b)
i

n−1
t0, j

∑

i∈Ωt0, j

[

̂Wj (Zi )(b)
]−1

I (Gi = j)I (XL j i > t0)V
(b)
i
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where

̂Λ
(b)
j

(

t |t0, ̂U (b)
j i

)

=
∫ t

t0

∑

i∈Ωt0, j
V (b)
i

[

̂Wj (Zi )
(b)

]−1
Kh

(

̂U (b)
j i − u

)

dNi (z)
∑

i∈Ωt0, j
V (b)
i

[

̂Wj (Zi )(b)
]−1

Kh

(

̂U (b)
j i − u

)

Yi (z)
,

̂U (b)
j i = ̂β

(b)
j H j i and ̂β

(b)
j is the solution to (5) but with additional weights V (b)

i and

̂Wj (Zi )
(b) = ̂P(b)(Gi = j | Zi ) where ̂P(b)(Gi = j | Zi ) is obtained using weights

V (b)
i . For example, if ̂Wj (Zi ) is estimated using logistic regression,the perturbed ver-

sion is estimated using weighted logistic regression with weights V (b)
i . Similarly,

̂S(b)
j (t0) can be obtained by replacing Hi = Zi throughout and using all patients

{Gi = j}. We now let ̂S(b)
LM, j (t) ≡ ̂S(b)

j (t | t0)̂S(b)
j (t0) and estimate the variance of

̂S LM, j (t) as the empirical variance of {̂S(b)
LM, j (t), b = 1, . . . , B}. This procedure can be

used to obtain ̂�
(b)
LM (t) = ̂S(b)

LM,1(t)−̂S(b)
LM,0(t) for b = 1, . . . , B. Then one can estimate

σ̂ (̂� LM(t)) as the empirical variance of {̂�(b)
LM (t), b = 1, . . . , B}. In the numerical

examples, we use this approach to obtain variance estimates for the standard KM esti-
mator, the IPTWKMestimator, and theRCTversion of the landmark estimator aswell.

To construct 100(1 − α)% confidence intervals, one can either use the empirical
percentiles of the perturbed samples (i.e., 100α/2th and 100(1 − α/2)th percentiles)
or a normal approximation (i.e. ̂S LM, j (t) ± cσ̂ LM, j (t) where σ̂ LM, j (t) is the empirical

variance of {̂S(b)
LM, j (t), b = 1, . . . , B} and c is the 100(1 − α/2)th percentile of the

standard normal distribution). The validity of the perturbation-resampling procedure
can be shown using similar arguments as in Cai et al. (2010) and Zhao et al. (2010)
since the distribution of

√
n{̂S LM, j (t)− S j (t)} can be approximated by the distribution

of
√
n{̂S(b)

LM, j (t) − ̂S LM, j (t)} conditional on the observed data.

5 Simulation study

We conducted simulation studies to examine the finite sample properties of the pro-
posed estimation procedures. For illustration, t0 =1 year and t = 2 years i.e. we are
interested in the probability of survival past 2 years. In all simulations, Wj (Zi ) is
estimated using logistic regression, n=2000 for each treatment group and results
summarize 1000 replications. The single baseline covariate Z was generated from
a N (1, 2) distribution in the treatment group and from a N (0.5, 2) distribution in the
control group. Censoring, C , was generated from a mixed distribution where C =
BC1 + (1− B)C2, B ∼ Bernoulli(0.5), C1 ∼ Exp(0.5), and C2 ∼ Exp(0.9). In all
settings, Assumption A.1 (censoring is independent of potential outcomes and Z ) and
Assumption A.2 (treatment group is independent of potential outcomes given Z ) hold.

In simulation setting (i), there is no treatment effect, event times for the single
intermediate event are generated as TS = exp{−Y + εS} where Y ∼ N (0.7, 4) and
εS ∼ N (0, 0.49) in both groups, and survival times are generated as TL = TS +
exp{(−2Z + εL)/8} where εL ∼ N (1, 2.25) in both groups. That is, there is selection
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bias through Z . This two-part distribution was selected to reflect a situation where the
model describing the relationship between TL, TS and Z would be difficult to correctly
specify. Note that in these simulations TS occurs before TL but our method does not
require this to be true. In this setting, P(TL1i > t) = P(TL0i > t) = 0.436, about
61% of individuals in the treatment group are censored, 63% of individuals in the
control group are censored, 39% of individuals in the treatment group survive past t0,
41% of individuals in the control group survive past t0, of those that survive past t0,
52 and 54% have the intermediate event before t0 in the treatment and control groups,
respectively. In simulation setting (ii), there is a moderate treatment effect, event times
for the single intermediate event and survival times for the control group are generated
as in setting (i), event times for the single intermediate event in the treatment group are
generated as TS = exp{−Y + εS} where Y ∼ N (0.7, 4) and εS ∼ N (0.1, 0.49), and
survival times in the treatment group are generated as TL = TS+exp{(−1.5Z+εL)/8}
where εL ∼ N (2, 2.25). That is, treatment prolongs survival. In this setting, P(TL0i >

t) = 0.436, P(TL1i > t) = 0.483, about 64% of individuals in the treatment group are
censored, 63% of individuals in the control group are censored, 43% of individuals
in the treatment group survive past t0, 41% of individuals in the control group survive
past t0, of those that survive past t0, 55 and 54% have the intermediate event before
t0 in the treatment and control groups, respectively.

In each setting, we estimate S j (t) in each group using the Kaplan–Meier estimate,
̂S KM, j (t), the IPTW KM estimate, ̂S IPTW, j (t), the landmark estimator developed in
an RCT setting, ̂S RCT

LM, j (t), and the landmark estimator proposed here, ̂S LM, j (t). We
summarize our simulation results in terms of the average estimate, bias, empirical
standard error (the standard deviation of the 1000 estimates), average standard error
(the average of the 1000 standard error estimates), mean squared error (the average
of the 1000 squared bias estimates), relative efficiency (relative to the IPTW KM
estimate), and coverage of the truth for the 1000 95% confidence intervals. Table 1
shows the performance of the resulting survival estimates for the control group ( j = 0),
and for the treatment group ( j = 1) in setting (i) and (ii). Note that only the distribution
of the treatment group differs in setting (i) and (ii) and therefore the distribution of the
control group is the same in both settings. Results show that estimates obtained using
the standard Kaplan–Meier and the landmark estimation procedure for the randomized
setting are biased, as expected. Estimates obtained using either the IPTW Kaplan–
Meier estimate or the proposed landmark estimation procedure have very small bias
and the proposed landmark estimation procedure provides improved efficiency with
respect to the MSE ranging from 16–23%. For the proposed landmark estimation
procedure, standard error estimates obtained using perturbation-resampling procedure
are close to the empirical estimates and coverage levels are close to the nominal
0.95 level. Table 2 shows the performance of the treatment effect estimates, ̂� KM(t),
̂� IPTW(t), ̂� RCT

LM (t), and ̂� LM(t) in both settings. Unweighted estimates, ̂� KM(t) and
̂� LM(t) have large bias in both settings, Type 1 error rates much larger than 0.05
in the null setting, and poor power in the moderate treatment effect setting. Both
IPT weighted estimates have very small bias and Type 1 error rates close to 0.05
in the null setting. In terms of treatment effect estimation, the proposed landmark
estimation procedure provides increased efficiency (24–28%) compared to the IPTW
KM estimate and improved power in setting (ii) (0.439 vs. 0.525). We also obtained
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Table 1 Resulting survival estimates, ̂S KM, j (t), ̂S IPTW, j (t), ̂S
RCT
LM, j (t), and

̂S LM, j (t) for j = 0 and 1 and
corresponding bias, empirical standard error (ESE), average standard error (ASE), mean squared error
(MSE), relative efficiency (RE) for the unbiased estimates only with respect to the IPTW KM estimator,
and coverage (of 95% confidence intervals) in the null treatment effect setting (i) and moderate treatment
effect setting (ii); note that the control estimates in the moderate treatment effect setting are the same as the
control estimates in the null treatment effect setting

̂S KM,0(t) ̂S IPTW,0(t) ̂S RCT
LM,0(t)

̂S LM,0(t)

Null treatment effect setting (i): Control

Truth 0.4363 0.4363 0.4363 0.4363

Estimate 0.4553 0.4365 0.4564 0.4377

Bias 0.0189 0.0002 0.0201 0.0013

ESE 0.0180 0.0178 0.0161 0.0160

ASE 0.0180 0.0177 0.0163 0.0160

MSE 0.0007 0.0003 0.0007 0.0003

RE – 1.0000 – 1.2267

Coverage 0.8110 0.9450 0.7670 0.9480

̂S KM,1(t) ̂S IPTW,1(t) ̂S RCT
LM,1(t)

̂S LM,1(t)

Null treatment effect setting (i): Treatment

Truth 0.4363 0.4363 0.4363 0.4363

Estimate 0.4180 0.4367 0.4188 0.4375

Bias −0.0184 0.0004 −0.0176 0.0012

ESE 0.0178 0.0182 0.0166 0.0168

ASE 0.0177 0.0180 0.0161 0.0162

MSE 0.0007 0.0003 0.0006 0.0003

RE – 1.0000 – 1.1617

Coverage 0.8160 0.9410 0.7890 0.9430

Moderate treatment effect setting (ii): Treatment

Truth 0.4830 0.4830 0.4830 0.4830

Estimate 0.4652 0.4832 0.4660 0.4840

Bias −0.0178 0.0002 −0.0170 0.0010

ESE 0.0181 0.0183 0.0164 0.0164

ASE 0.0183 0.0185 0.0164 0.0165

MSE 0.0006 0.0003 0.0006 0.0003

RE – 1.0000 – 1.2340

Coverage 0.8370 0.9460 0.8130 0.9520

estimates of survival and treatment effect using the two-stage approach incorporating
baseline Z information only and observed efficiency gains in terms of MSE ranging
from 5 to 7% demonstrating that the efficiency gains of 24–28% observed using the
proposed approach can be attributed to incorporating both baseline and intermediate
event information.
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Table 2 Resulting treatment effect estimates, ̂� KM(t), ̂� IPTW(t), ̂� RCT
LM (t), and ̂� LM(t) and corresponding

bias, empirical standard error (ESE), average standard error (ASE), mean squared error(MSE), relative
efficiency (RE) for the unbiased estimates only with respect to the IPTW KM estimator, and Type 1 error
in the null treatment effect setting (i) and power in the moderate treatment effect setting (ii)

̂� KM(t) ̂� IPTW(t) ̂� RCT
LM (t) ̂� LM(t)

Setting (i): Null treatment effect

Truth 0 0 0 0

Estimate −0.0373 0.0002 −0.0376 −0.0002

Bias −0.0373 0.0002 −0.0376 −0.0002

ESE 0.0253 0.0253 0.0227 0.0227

ASE 0.0253 0.0250 0.0229 0.0225

MSE 0.0020 0.0006 0.0019 0.0005

RE − 1.0000 − 1.2419

Type 1 error 0.313 0.055 0.371 0.058

Setting (ii): Moderate treatment effect

Truth 0.0467 0.0467 0.0467 0.0467

Estimate 0.0099 0.0466 0.0096 0.0463

Bias −0.0368 −0.0001 −0.0371 −0.0004

ESE 0.0253 0.0251 0.0223 0.0222

ASE 0.0257 0.0254 0.0231 0.0227

MSE 0.0020 0.0006 0.0019 0.0005

RE − 1.0000 − 1.2855

Power 0.072 0.439 0.065 0.525

6 Example

We illustrate the proposed procedures using a dataset from the acquired immunodefi-
ciency syndrome (AIDS) Clinical Trial Group (ACTG) Protocol 175 (Hammer et al.
1996). This dataset consists of 2464 patients with human immunodeficiency virus
(HIV) randomized to 4 different treatments: zidovudine only, zidovudine + didano-
sine, zidovudine + zalcitabine, and didanosine only. In the original study the goal was
to compare the relative effectiveness of these four treatment conditions on time until
progression to AIDS (measured by a 50% decline in CD4 cell counts) or death with
death alone being a secondary end point. In this paper, we aim to examine the effect
of previous antiretroviral treatment on time until death using patients from ACTG
175. Prior use of antiretrovirals (ART) was measured at baseline in the study for all
study participants and it has been shown that previous antiretroviral therapy is highly
predictive of survival. Results on the direction can vary. While ART itself is generally
associated with improved survival rates, individuals receiving or who have received
ART tend to be sicker which means that selection bias can result in that group show-
ing worse survival (Hammer et al. 1997; Patel et al. 2008; Bhatta et al. 2013; Wood
et al. 2003; Mocroft et al. 1999). Thus, it is important for any analysis involving prior
antiretroviral to appropriately take into account the fact that patients who are anti-
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retroviral naïve and patients with prior antiretroviral may differ from one another on
a number of important baseline characteristics. We aim here to understand how such
characteristics might bias the estimated relationship between prior antiretrovirals and
survival in patients with HIV. Specifically, our analysis compares survival among the
1065 individuals who were antiretroviral naïve (Group 0) versus the 1399 individuals
with prior antiretroviral therapy (Group 1).

Our long term event of interest, TL, is the time from treatment randomization
to death and intermediate event information consists of two intermediate events,
TS = (TS1, TS2)

T where TS1 = time from randomization to an AIDS-defining event
e.g. pneumocystis pneumonia and TS2 = time from randomization to a 50% decline
in CD4. If a patient experienced multiple intermediate events of one kind, for exam-
ple multiple AIDS-defining events, the earliest occurrence of the event was used. For
illustration, t0 = 1 year and t = 2.5 years. Among individuals with prior antiretroviral
therapy experience, 15.7% were censored before 2.5 years while 31.8% of antiretro-
viral therapy naïve individuals were censored before 2.5 years. Seventy individuals
(5.0%) with prior antiretroviral therapy experience and 25 (2.3%) antiretroviral ther-
apy naïve individuals experienced a decrease in CD4 count of at least 50% within
the first year of the study and survived past the first year, respectively. Twenty-seven
(1.9%) individuals with prior antiretroviral therapy experience and 9 (0.8%) antiretro-
viral therapy nave individuals experienced an AIDS defining event within the first year
of the study and survived past the first year, respectively.

We estimate the average treatment effect using IPTW estimated using a logistic
regression model that included all available baseline covariates. Namely, we aim to
balance patients in our two exposure groups on the available observed covariates: the
mean of two baseline CD4 counts, Karnofsky score, age at randomization, weight,
symptomatic status, and treatment group to which they were originally randomized.
Assessing balance is an important step given our requirement that our weights are
consistently estimated. While it can be difficult to ensure that this assumption holds
in practice, achieving balance in the two groups after weighting provides a good indi-
cation that bias in the treatment effect estimate due to observed covariates will be
minimized (Stuart et al. 2013; Harder et al. 2010; Marcus et al. 2008). Table 3 shows
balance for the groups before and after IPT weighting where we evaluate balance
between the two prior therapy groups on the observed baseline covariates by exam-
ining a balance metric that summarizes the differences between the two univariate
distributions of each baseline covariate, the absolute standardized mean difference
(ASMD). For each covariate, the ASMD is the absolute value of the Group 1 mean
minus the Group 0 mean divided by the pooled sample (Group 0 and 1) standard devi-
ation. Sufficient balance is achieved when ASMD < 0.10 for all baseline covariates
(Austin 2007; Austin and Stuart 2015; Austin 2009; Normand et al. 2001; Hankey
and Myers 1971). The unweighted portion of the table shows that there were three
notable differences between two prior therapy groups. Specifically, individuals in
the antiretroviral therapy experienced group are more likely to have a lower average
CD4 count at baseline (ASMD = 0.316), a lower mean weight (ASMD = 0.154) and a
higher mean age at randomization (ASMD = 0.181). These characteristics associated
with antiretroviral therapy experience are also known to be highly associated with sur-
vival among individuals with HIV. For example, patients who are older and skinnier
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Table 3 Balance tables when using (a) no weights and (b) IPTW obtained using logistic regression across
all covariates for the group with more than 52 weeks of antiretroviral therapy experience (Group 1) and
the group with no antiretroviral therapy experience (naïve) (Group 0) where SD denotes standard deviation
and ASMD denotes the absolute standardized mean difference

Covariate Group 1 Mean Group 1 SD Group 0 Mean Group 0 SD ASMD p-value

(a) Unweighted

Mean of two
baseline CD4 counts

337.445 102.884 371.110 108.124 0.316 0.000

Karnofsky score 0.565 0.496 0.617 0.486 0.105 0.010

Age at
randomization

35.585 8.767 34.014 8.435 0.181 0.000

Weight (kg) 74.018 12.591 76.085 14.293 0.154 0.000

Symptomatic status 0.191 0.393 0.160 0.366 0.082 0.042

Assigned to
Zidovudine

0.249 0.433 0.251 0.434 0.003 0.944

Assigned to
Zidovudine and
Didanosine

0.250 0.433 0.247 0.431 0.007 0.854

Assigned to
Zidovudine and
Zalcitabine

0.249 0.432 0.251 0.434 0.005 0.912

(b) IPT weighted

Mean of two
baseline CD4 counts

352.352 107.574 352.696 105.570 0.003 0.939

Karnofsky score 0.585 0.493 0.585 0.493 0.001 0.981

Age at
randomization

34.927 8.604 34.905 8.846 0.003 0.951

Weight (kg) 74.913 12.951 74.885 13.808 0.002 0.959

Symptomatic status 0.176 0.381 0.177 0.382 0.001 0.986

Assigned to
Zidovudine

0.250 0.433 0.251 0.434 0.002 0.969

Assigned to
Zidovudine and
Didanosine

0.248 0.432 0.246 0.431 0.004 0.930

Assigned to
Zidovudine and
Zalcitabine

0.251 0.434 0.252 0.434 0.001 0.979

are likely to be less healthy than other patients and at a higher risk of death. After
IPT weighting, the two prior therapy groups appear balanced on all covariates. After
weighting, there are no meaningful differences between the two prior therapy groups
(all ASMD’s below 0.005). Given this, the IPTW obtained using logistic regression
are used to estimate survival and the effect of prior antiretroviral therapy in both the
IPTW KM estimates and the IPTW landmark estimation procedure.

Figure 1 displays the unweighted KM estimate of survival in each group. As shown,
without adjustment, individuals in the prior antiretroviral group appear to have worse
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Fig. 1 Kaplan–Meier estimate of survival for antiretroviral naïve group (black line) and antiretroviral
experienced group (grey line)

survival than those in the naïve group. Table 4 shows the estimated 2.5-year survival
for each prior therapy group and the estimated treatment effects comparing the two
groups using four different methods: unweighted KM, IPTW KM, RCT landmark
estimation, and IPTW landmark estimation. As shown, the unweighted KM estimates
show 2.5-year survival in the naïve therapy and prior therapy groups to be 0.953
and 0.937, respectively (p = 0.1034). The RCT landmark estimation supports similar
survival estimates for the two groups. After weighting by the IPTW in either the KM
or landmark estimation approach, we find the survival estimates for the two groups
to be more similar, 0.948 versus 0.945, with IPTW KM and 0.950 and 0.947 with
IPTW landmark estimation. This shift in survival estimates shows a clear connection
to the imbalances in the baseline covariates between the two groups. Without IPTW
adjustment, the group of individuals with prior ART appeared to have worse survival
because they also tended to have higher CD4 counts, lower weight, and higher mean
age. After proper adjustment for the imbalances, no significant differences are found
between the two groups (p-values for both IPTW methods >0.50). Nonetheless, the
IPT weighted landmark estimation procedure is roughly 16% more efficient than
that from the IPTW KM estimate, showing one example of the types of increases in
precision that might be gained by using landmark estimation in observational studies.

To shed light on whether this observed efficiency gain is due to the incorporation of
both intermediate event information and baseline covariate information, we compared
our estimates to those obtained using the two-stage procedure with only baseline
covariates. The estimate of survival in the antiretroviral naïve group was 0.949 (SE =
0.008), the estimate of survival in the antiretroviral experienced groupwas 0.946 (SE =
0.006), and the estimate of the treatment effect in terms of the difference in survivalwas
−0.0027 (SE=0.01). Thegains in efficiencyusingonly baseline information compared
to the IPTW KM estimate were thus about 3% for the survival estimates and 6%
for the treatment effect estimate. Comparing these efficiency gains to those obtained
using intermediate event information and baseline covariate information (5–10% for
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Table 4 Resulting estimates of (a) S(t) and (b) �(t) for t = 2.5 years in two exposure groups from ACTG
Protocol 175 using the Kaplan–Meier estimator, ̂S KM, j (t), ̂� KM(t); the IPTW KM estimator, ̂S IPTW, j (t),
̂� IPTW(t); the landmark estimator from an RCT setting, ̂S RCT

LM, j (t),
̂� RCT

LM (t); and the proposed landmark

estimator, ̂S LM, j (t), ̂� LM(t), with corresponding standard error from the perturbation-resampling method
(SE), and relative efficiency (RE) for the unbiased estimates only with respect to the IPTW KM estima-
tor, and corresponding p-values in (b), where j = 0 indicates antiretroviral naïve and j = 1 indicates
antiretroviral experienced

(a) Survival estimates

̂S KM,0(t) ̂S IPTW,0(t) ̂S RCT
LM,0(t)

̂S LM,0(t)

Estimate 0.9530 0.9477 0.9556 0.9504

SE 0.0071 0.0081 0.0066 0.0075

RE − 1 − 1.0861

̂S KM,1(t) ̂S IPTW,1(t) ̂S RCT
LM,1(t)

̂S LM,1(t)

Estimate 0.9370 0.9449 0.9391 0.9467

SE 0.0067 0.0060 0.0064 0.0057

RE − 1 − 1.0478

(b) Treatment effect estimates

̂� KM(t) ̂� IPTW(t) ̂� RCT
LM (t) ̂� LM(t)

Estimate −0.0161 −0.0028 −0.0165 −0.0038

SE 0.0099 0.0103 0.0093 0.0095

RE − 1 − 1.1565

p-value 0.1034 0.7841 0.0742 0.6933

survival, 16% for treatment effect) demonstrates that in this particular application,
the use of intermediate event information leads to improved efficiency over just using
baseline measures.

Among the 1399 individuals with prior antiretroviral therapy in the trial, 476 indi-
viduals had 1–52 weeks of prior antiretroviral therapy and 923 individuals had over
52 weeks of prior antiretroviral therapy. Because the effect of antiretroviral therapy on
survival may be quite different for those with extended prior therapy, we provide an
additional analysis in the Supplementary Material comparing individuals who were
antiretroviral naïve to those who had over 52 weeks of prior antiretroviral therapy. We
discuss this further in the Discussion.

7 Discussion

In this paper we have developed the landmark estimation procedure of Parast et al.
(2014) for use in an observational setting. It is particularly important to account
for the possibility of selection bias in an observational setting when treatment is not
randomized since failure to do so may lead to biased estimates. Our simulation study
shows that the use of the landmark estimation procedure from an RCT setting in
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the presence of selection bias does lead to biased estimates of survival and treatment
effects. Furthermore, our proposed extension leads to unbiased estimates and improved
efficiency compared to the unbiased IPTW KM estimator.

In addition to providing improved efficiency, our approach is robust to model mis-
specification of (4) and (7). If one were to assume that the outcome models (4) and
(7) were correctly specified, one could simply use these models to obtain the desired
survival probabilities and average over the observed covariate patterns. If these mod-
els are indeed correct, this approach would likely be more efficient than our proposed
approach. However, if these models are not correct, this approach may lead to biased
estimates. While such robustness is desirable, it is important to note that our proposed
approach does still rely on the consistency of our IPTW. The literature is now rich
with methods available to estimate IPTW (McCaffrey et al. 2004; van der Laan 2014;
Breiman et al. 1984; Hill 2011; Imai and Ratkovic 2014; Liaw and Wiener 2002).
In all applications of IPTW, concerns about the treatment assignment model being
misspecified arise. In practice, parametric methods, such as logistic regression, tend
to be used to model the treatment assignment indicator and estimate associated prob-
abilities. However, generalized boosted models (GBM) and other machine learning
techniques like the super learner have been proposed as an alternative for IPTW esti-
mation as a way to minimize bias from incorrect assumptions about the form of the
model used (McCaffrey et al. 2004; van der Laan 2014; Imbens 2000; Robins et al.
2000). These methods eliminate reliance on a simple parametric logistic regression
model and do not require the researcher to determine which covariates and interactions
should be included in themodel. It has been shown that the resultingweights from these
approaches yieldmore precise treatment effect estimates and lowermean squared error
than traditional logistic regres- sion methods and other alternative machine learning
techniques (Harder et al. 2010; Lee et al. 2010). As a sensitivity analysis, we examined
weights and resulting balance from GBM applied to the AIDS Clinical Trial dataset
from Sect. 6 and our results were similar. In our approach, there is a trade-off between
using parametric models like the logistic regression model and machine learner meth-
ods like GBM when constructing the IPTW. When utilizing logistic regression, the
perturbation-resampling procedure described in Sect. 4 is straightforward and easily
applied as it only involves fitting a weighted logistic model for each iteration while
with GBM and other machine learners, perturbation-resampling becomes computa-
tionally intensive and in some cases infeasible if the machine learner method cannot
incorporate the weights V(b)

i . Future work is still needed to develop best practices for
perturbation-resamplingwithmachine learning procedures. In light of these trade-offs,
we suggest that IPTW estimated by logistic regression models be utilized as long as
balance between treatment and comparison groups has been obtain (e.g., a sign that
bias from observed covariates in the treatment effect estimate should be limited) to
allow for efficient use of the perturbation resampling approach. In contrast, if poor
balance is obtained using parametric models we suggest the use of more state of the
art methods like GBM to estimate the IPTW at the expense of foregoing perturbation-
resampling of the IPTW.

We illustrated our proposed method using an AIDS clinical trial dataset and exam-
ined the effect of prior antiretroviral therapy on survival. We performed two analyses,
one using all individuals and dichotomizing into prior therapy naïve compared to prior
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therapy experienced, and a second analysis removing individuals with 1-52 weeks of
prior antiretroviral therapy (presented in the Supplementary Material). However, it
would be of interest to instead use the actual time of prior antiretrovival therapy expe-
rience rather than dichotomizing into two groups. The use of methodology that allows
for treatment effect estimation with a continuous treatment, rather than dichotomous
treatment groups,would be applicable in this example (Imai andVanDyk 2004;Hirano
and Imbens 2004; Zhu et al. 2015). Furthermore, future development of a landmark
estimation procedure that can accommodate continuous treatmentwould bewarranted.

A limitation of our proposedmethod is the required strong assumption that there are
no unmeasured confounders in the model for the IPTW (Assumption A.2). In practice,
one could consider sensitivity analyses to examine how sensitive the observed findings
might be to violations of this assumption (Griffin et al. 2013; Rosenbaum and Rubin
1983a; Higashi et al. 2005).

A second limitation of our proposedmethod is the assumption that t0 is pre-selected
and fixed. There are several issues to consider when selecting t0. First, as was shown
in Parast et al. (2014), the gain in efficiency that is observed when using a landmark
estimation approach that incorporates intermediate event information is due to both the
correlation between TL and {TS, Z} and censoring. If therewasweak correlation or very
little censoring between t0 and t , we would not expect to gain much efficiency using
this approach. Second, if t0 is chosen to be too close to baseline (or time of treatment
initiation), wewould not expect to observemany intermediate events between baseline
and t0 and thus incorporating intermediate event information is unlikely to lead to
large gains in efficiency. On the other hand, if t0 is chosen to be too close to t , then
the subgroup with XL > t0 may be very small and thus we may also expect only
small gains in efficiency and/or potentially small bias due to smoothing over a small
sample. In the Supplementary Material we present simulation results across a range
of t0 (fixing t = 2) and results from the example across a range of t0 (fixing t = 2.5
years). While the results for the example show that our findings are quite robust to the
choice of t0, the results for the simulation study do demonstrate variability in relative
efficiency with respect to the choice of t0. For example, when t0 = 0.5 in the moderate
treatment effect setting, the relative efficiency with respect to the IPTWKM estimator
is almost 27% but when t0 = 1.5 in this setting, the relative efficiency is less than 6%.
Future work on the selection of t0 either by examining efficiency across a range to
identify the optimal t0 (accounting for the selection procedurewhenmaking inference)
or by considering a combination of multiple landmark times would be very useful in
practice.

An R package implementing the methods described here, called landest, is
available on CRAN.
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