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Abstract For many forms of cancer, patients will receive the initial regimen of
treatments, then experience cancer progression and eventually die of the disease.
Understanding the disease process in patients with cancer is essential in clinical, epi-
demiological and translational research. One challenge in analyzing such data is that
death dependently censors cancer progression (e.g., recurrence), whereas progression
does not censor death. We deal with the informative censoring by first selecting a suit-
able copula model through an exploratory diagnostic approach and then developing
an inference procedure to simultaneously estimate the marginal survival function of
cancer relapse and an association parameter in the copula model. We show that the
proposed estimators possess consistency and weak convergence. We use simulation
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studies to evaluate the finite sample performance of the proposedmethod, and illustrate
it through an application to data from a study of early stage breast cancer.

Keywords Copula model · Informative censoring · Model diagnostic · Semi-
competing risks · Simultaneous inference

1 Introduction

Medical research frequently yields multiple event times that correspond to land-
marks in disease progression. The events may be non-terminal events, such as disease
recurrence, defined as progressive disease, or a terminal event, such as death. Semi-
competing risks data (Fine et al. 2001; Peng et al. 2007) are encountered when the
terminal event censors the non-terminal event, but the non-terminal event does not pre-
vent subsequent observation of the terminal event. An example of this can be found in
a retrospective study of data collected from women diagnosed with stage I or II breast
cancer, and maintained as the early stage breast cancer repository (ESBCR) at the
University of TexasMDAnderson Cancer Center. For this study, breast cancer relapse
is the non-terminal event and death is the terminal event. It is essential to evaluate the
survival distribution for women who experience breast cancer relapse following the
initial treatment regimen in order to predict the risk of relapse for ongoing patients and
make further treatment decisions. However, this endeavor is a challenge because of the
informative censoring issue in the semi-competing risks data. Specifically, the occur-
rence of death is expected to be positively correlated with cancer relapse and cannot
be considered as independent censoring. Consequently, the Kaplan–Meier estima-
tor (Kaplan and Meier 1958) will tend to overestimate the true survival probabilities
associated with cancer relapse in the presence of death.

One approach to semi-competing risks data is to use crude quantities, such as the
cause-specific hazard and cumulative incidence function due to the identifiability issue.
The naive method ignores the information available after the non-terminal event by
only considering the time and type of the first event. Xu et al. (2010) considers the
crude quantity (cause-specific hazard) and developed an extension of the illness-death
model with a shared frailty, which can take into account the information after the
non-terminal event. Another approach focuses on net quantities, such as the marginal
distribution of the non-terminal event time, which is not identifiable without further
assumption on the dependence structure between the non-terminal and terminal event
times (similar to how competing risks are handled). This approach can fully utilize the
observed data and provide useful information on the non-terminal event, but is subject
to theoretical and computational challenges due to informative censoring (Fine et al.
2001; Peng and Fine 2007; Hsieh et al. 2008; Ding et al. 2009; Hsieh and Huang 2012;
Chen 2012). This paper investigates the semi-competing risks data based on the net
quantities.

To handle informative censoring, it is common to assume that the bivariate dis-
tribution of non-terminal and terminal event times is a known copula. For example,
a Gamma frailty copula (Clayton 1978), which assumes a constant association, has
been used for modeling dependence structure (Fine et al. 2001; Jiang et al. 2005).
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The estimating procedure proposed by Fine et al. (2001) requires a separate estima-
tion for the association parameter using a concordance estimating function at the first
stage. These inferences were extended to some other parametric copulas by Wang
(2003). Peng and Fine (2007) and Hsieh and Huang (2012) developed copula-based
models to account for the time-varying effects of a treatment on the marginal dis-
tribution of a non-terminal event. Chen (2012) proposed a nonparametric maximum
likelihood estimation approach for the semiparametric transformational models for
marginal regressions, where dependence is modeled under an assumed copula. How-
ever, in reality, a specific copula model specification does not fit most applications,
so its use will probably lead to incorrect statistical inference. Thus, an immediate
question is how to choose an appropriate copula model for the dependence structure
based on observed bivariate survival data. Chen and Bandeen-Roche (2005) provided
a diagnosticmethod to infer the choice of frailty distribution (copula) family for bivari-
ate survival data, which can be implemented by exploiting the relationship between
a local version of Kendall’s tau and the frailty distribution. Specifically, a constant
relationship may suggest the Gamma frailty copula, and an increasing one may prefer
a positive stable copula (Gumbel 1960).

Instead of restricting to theGamma frailty copula formodeling dependence between
breast cancer relapse and death in the ESBCR data and estimating its association para-
meter separately at an earlier stage, we first use the exploratory diagnostic method
(Chen and Bandeen-Roche 2005) to check the association pattern between cancer
relapse and death. Then, we develop a semiparametric method for simultaneous infer-
enceon themarginal distributionof breast cancer relapse and the associationparameter,
based on a chosen copula model.

The remainder of the article is organized as follows. In Sect. 2, we introduce the
notation and copula model for semi-competing risks data. In Sect. 3, a suitable copula
model is selected by exploring the association pattern in the ESBCR data. Section 4
presents the simultaneous inference on the association parameter and the marginal
distribution of the non-terminal event time. In Sect. 5, simulation studies are conducted
to assess the performance of the proposed method. An application to the ESBCR data
is presented as an illustration in Sect. 6. Some concluding remarks are given in Sect. 7.
The proof of the asymptotic properties is provided in the Appendix.

2 Notation and model

Let T1 be the time from the initial event (e.g., initial treatment) to a non-terminal event
(e.g., disease relapse), and T2 be the time from the initial event to the terminal event
(e.g., death). The random variable T2 may dependently censor T1, but not vice versa.
Let C be the independent censoring time of both T1 and T2, such as an administrative
loss to follow-up. Define Z = min(T1, T2), X = min(Z ,C), Y = min(T2,C),
δ1 = I (T1 ≤ Y ), δ2 = I (T2 ≤ C), and δ0 = I (Z ≤ C) = δ1 + δ2 − δ1δ2. The
observed data can be denoted as {(Xi , δ1i ,Yi , δ2i , Zi , δ0i ), i = 1, . . . , n}.

With semi-competing risks data, the dependence structure is usually of biological
interest and is required to ensure the validity for the estimation of themarginal survival
function of T1. As a commonly used model, a copula Cα is a bivariate distribution
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function with density cα on [0, 1]2 for α ∈ �1(Oakes 1982). Under a copula, the
bivariate survival function and density function of (T1, T2) can be written as

S(t1, t2) = Pr(T1 > t1, T2 > t2) = Cα {S1(t1), S2(t2)} , 0 ≤ t1 ≤ t2,

f (t1, t2) = cα {S1(t1), S2(t2)} f1(t1) f2(t2), 0 ≤ t1 ≤ t2,

where (S1, S2) and ( f1, f2) are the corresponding marginal survival and density func-
tions, respectively. One reason for the popularity of copulas is that the association
parameter α is related to a local dependence measure, the cross ratio (Oakes 1989),
which is defined as

θ(t1, t2) = λ(t1|T2 = t2)

λ(t1|T2 > t2)
, (1)

where λ(t1|A) is a conditional hazard function,

λ(t1|A) = limε→0
Pr(T1 < t1 + ε|T1 ≥ t1, T2 ∈ A)

ε
.

The choice of the copula Cα determines the expression of θ(t1, t2). Particularly, under
a popular class of copulas, namely the Archimedean copula, the bivariate survival
function can be expressed as

S(t1, t2) = φα

[
φ−1

α {S1(t1)} + φ−1
α {S2(t2)}

]
,

where φα is a non-increasing convex function defined on (0, 1] with φα(0) = 1.
Examples of Archimedean copulas include the Clayton (Gamma frailty) copula,

S(t1, t2) =
{
S1(t1)

1−α + S2(t2)
1−α − 1

} 1
1−α

, α > 1,

the positive stable copula,

S(t1, t2) = exp
(
−

[
{− log S1(t1)} 1

α + {− log S2(t2)} 1
α

]α)
, 0 < α < 1,

and the Frank copula (Frank 1979) as

S(t1, t2) = logα

{

1 + (αS1(t1) − 1)(αS2(t2) − 1)

α − 1

}

.

The cross ratio under the Clayton copula is a constant θ(t1, t2) = α, while under the
positive stable copula, it is a function of S(t1, t2) and decreases with time θ(t1, t2) =
1−(1−α){α log S(t1, t2)}−1. Such a connection can be used to choose an appropriate
copula model in applications.
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2.1 A motivating study

The ESBCR was created for a retrospective cohort study of (n=2470) women diag-
nosed with American Joint Committee on Cancer pathologic stage I or II breast cancer
who were treated at The University of Texas MD Anderson Cancer Center between
January 1, 1985 and December 31, 2000 (Brewster et al. 2007). The inclusion crite-
ria for the ESBCR were female patients with stage I or II breast cancer, who were
residents of the state of Texas, underwent surgical treatment for breast cancer at MD
Anderson, had tissue samples available, and for whom a complete assessment of the
medical records was available. Among the 2470 ESBCR patients, 785 had died before
the end of the study, 1684were alive, and one recordwasmissing the vital status. There
were 2425 patients with complete information of disease relapse status and dates, vital
status, and death/last contact date. Among that group, 562 had data regarding disease
relapse, which included local lymph node recurrence, local breast cancer recurrence,
metastasis to the contralateral breast or chest wall, metastasis to other body sites, and
a second primary breast cancer.

3 Model selection by association pattern in ESBCR

Many existing estimation methods for semi-competing risks data require imposition
of the Gamma frailty model assumption on T1 and T2 (Fine et al. 2001; Jiang et al.
2005), which implies a constant association and may not always be biologically rea-
sonable in practical applications. To avoid possible misspecification on the copula and
the induction of misleading conclusions, we first aim to select an appropriate copula
model based on the observed bivariate survival data. Specifically, we apply an easily
implemented approach (Chen and Bandeen-Roche 2005) for diagnosing the associa-
tion pattern and choose the proper copula model for breast cancer relapse and death
in the ESBCR data. This diagnostic approach constructs an exploratory display that
plots the cross ratio and visually conveys the fit of a given Archimedean copula model.

We base our approach on the fact that the cross ratio defined in Eq. (1) is a ratio
of the probabilities that one pair of bivariate failure times is concordant or discordant,
conditional on the component-wise minimum failure times (Oakes 1989). For any
pair of bivariate times, Ti = (T1i , T2i ) and Tj = (T1 j , T2 j ), let (T1i j , T2i j ) be the
corresponding component-wiseminimumof (Ti , Tj ), defined by T1i j = min(T1i , T1 j )
and T2i j = min(T2i , T2 j ). Define a pair of bivariate times (Ti , Tj ) as concordant if(
T1i − T1 j

) (
T2i − T2 j

)
> 0, and discordant if

(
T1i − T1 j

) (
T2i − T2 j

)
< 0.We have

θ(t1i j , t2i j ) = Pr
{(
T1i − T1 j

) (
T2i − T2 j

)
> 0| (T1i j , T2i j

) = (
t1i j , t2i j

)}

Pr
{(
T1i − T1 j

) (
T2i − T2 j

)
< 0| (T1i j , T2i j

) = (
t1i j , t2i j

)} ,

whichprovides an estimator of the cross ratio θ byusing the counts of concordances and
discordances. Chen and Bandeen-Roche (2005) suggested using a plot of θ̂ (t1i j , t2i j )
against Ŝ(t1i j , t2i j ) to approximate the functional relationship between the cross ratio
and the bivariate survival function. Specifically, a horizontal linemay support aGamma
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Fig. 1 Relationship between the estimated cross ratio and the estimated bivariate survival function using
10 bins for the ESBCR data

frailty model selection. If θ̂ (t1i j , t2i j ) increases as Ŝ(t1i j , t2i j ) increases, a positive
stable model may be appropriate for the dependence structure.

In the ESBCR data, the time from the initial treatment for breast cancer to disease
relapse is T1, and the time from the initial treatment to death is T2. To avoid unnecessary
computational complexity, we used a subgroup of 350 patients for whom the observed
times are available for both cancer relapse and subsequent death in order to count
the concordances and discordances of all possible pairs. Based on this subgroup,
we estimated the cross ratio within 10 bins and the corresponding bivariate survival
function aswell. As shown in Fig. 1, the estimated cross ratio increaseswith an increase
in the estimated bivariate survival function,which suggests that a positive stable copula
is appropriate for the underlying dependent structure between breast cancer relapse
and death.

Note that the exploratory diagnosis is based on a subset of the sample with both
non-terminal and terminal events observed, thus its effectiveness needs to be further
evaluated. We realize that it is not feasible to estimate the cross ratio without the infor-
mation on the joint survival function. Nevertheless, the exploratory diagnosis provides
a tool for approximating the pattern of the dependent structure. Even though there are
potential biases from using the subsample, it can still help us to distinguish the positive
stable copula from the Clayton copula, where the latter assumes a constant correlation
and has been used in many semi-competing risks data studies. Additional simulation
studies have been conducted to show that the diagnostic method can sufficiently detect
the association pattern, and are included in Sect. 5.

4 Inference on association parameter and marginal distribution

Without loss of generality, we develop simultaneous inference of the association para-
meter and marginal distribution of the non-terminal event under the positive stable
copula, which is chosen by the visual diagnostic display of the ESBCR data. The
inference procedure can be easily applied to other copulas. Under the positive stable
copula, the bivariate survival function is
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S(t1, t2) = Pr(T1 > t1, T2 > t2) = exp
( − [{− log S1(t1)} 1

α + {− log S2(t2)} 1
α
]α)

.

(2)
Given the observed data, the likelihood function is

L(α, S1, S2) =
n∏

i=1

f (Xi ,Yi )
δ1i δ2i ×

{∂S(Xi ,Yi )

∂Xi

}δ1i (1−δ2i )

×
{∂S(Xi ,Yi )

∂Yi

}(1−δ1i )δ2i × S(Xi ,Yi )
(1−δ1i )(1−δ2i ).

The corresponding log-likelihood function can be expressed as

l(α, S1, S2)=
n∑

i=1

−δ1i log S1(Xi )−δ2i log S2(Yi ) + (α−1 − 1)
[
δ1i log{− log S1(Xi )}

+ δ2i log{− log S2(Yi )}
] − [{− log S1(Xi )} 1

α + {− log S2(Yi )} 1
α
]α

+{α(δ1i + δ2i − δ1iδ2i ) − δ1i − δ2i } log
[{− log S1(Xi )} 1

α

+{− log S2(Yi )} 1
α
]

+ δ1iδ2i log
([{− log S1(Xi )} 1

α + {− log S2(Yi )} 1
α
]α − 1 + α−1

)
. (3)

Maximizing a pseudo-likelihood by replacing S1 and S2 in (3) with their consistent
estimators provides a consistent estimator of α (Shih and Louis 1995). To this end,
one may employ the Kaplan–Meier estimators of S1 and S2. However, with semi-
competing risks data, the Kaplan–Meier estimator of S1 does not generally converge
to S1 as n → ∞, although S2 can be consistently estimated by the Kaplan–Meier
estimator. In fact, a consistent estimator of S1 may not exist without an estimator of
the association parameter α. Hereafter, we formulate an alternative pseudo-likelihood
function of α using the unique feature of semi-competing risks data.

Under the copula model, the marginal survival function of Z = min(T1, T2) is

SZ (t) = Pr(T1 > t, T2 > t) = exp
(

− [{− log S1(t)} 1
α + {− log S2(t)} 1

α
]α)

. (4)

Using Eq. (4), the marginal survival function of T1 can be expressed as

S1(t) = g{S2(t), SZ (t), α} = exp
(

− [{− log SZ (t)} 1
α − {− log S2(t)} 1

α
]α)

, (5)

where g(u, v, α) = exp
[−{

(− log v)
1
α −(− log u)

1
α

}α]
. With this, the log-likelihood

function of α becomes

lg(α, S2, SZ ) = l{α, g(S2, SZ , α), S2}. (6)

Note that S2 and SZ can be consistently estimated by the Kaplan–Meier estimators Ŝ2
and ŜZ , respectively, because T2 and Z are subject to independent censoring only by
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C . Let Uα(α, S2, SZ ) be the score function of α, which is the derivative of (6) with
respect to α. Then, estimator α̂ is the solution to the estimating equation

Uα(α, Ŝ2, ŜZ ) = ∂lg(α, Ŝ2, ŜZ )

∂α
=

∑

i

∂lg0 {α, Ŝ2(Yi ), ŜZ (Zi )}
∂α

= 0. (7)

We prove that α̂ is consistent and asymptotically normally distributed under the fol-
lowing regularity conditions, C1 and C2.

C1 The standard regularity conditions for the maximum likelihood estimator hold.
C2 The functionsWα{α, S2(t2), SZ (z)}, Vα{α, S2(t2), SZ (z)}, Vα,1{α, S2(t2), SZ (z)},

andVα,2{α, S2(t2), SZ (z)} are continuous andbounded for (z, t2) ∈ A = [0, t02] ×
[0, z0], where

Wα(α, u, v) = ∂lg0 (α, u, v)

∂α
, Vα(α, u, v) = ∂2lg0 (α, u, v)

∂α2 ,

Vα,1(α, u, v) = ∂2lg0 (α, u, v)

∂α∂u
, Vα,2(α, u, v) = ∂2lg0 (α, u, v)

∂α∂v
,

t02 = sup{t : Pr(T2 > t,C > t) > 0}, z0 = sup{t : Pr(Z > t,C > t) > 0}, and
we write (u, v) for (S2, SZ ).

Theorem 1 summarizes these asymptotic properties.

Theorem 1 The estimator α̂ is a consistent estimator of the true value α0, and as
n → ∞, n1/2(α̂ − α0) converges weakly to a normal distribution with a mean of zero
and variance ρ2 = (ρ2

1 + ρ2
2 )/ρ

4
1 .

The specification ofA is required to ensure that Ŝ2(t2) is consistent for S2(t2) with
t2 ∈ [0, t02] and ŜZ (z) for SZ (z) with z ∈ [0, z0]. The proof of Theorem 1 is similar
to that of Theorem 2 from Shih and Louis (1995). The formulas for ρ2

1 and ρ2
2 are

specified as

ρ2
1 = E{−Vα(α0, S2, SZ )} =

∫

A
−Vα{α0, S2(t2), SZ (z)}d Jα0(t2, z, δ2, δz),

ρ2
2 = E

[{I1(Y1, δ21, α0) + I2(Z1, δz1, α0)}2
]

=
∫

A
{I1(t2, δ2, α0) + I2(z, δz, α0)}2d Jα0(t2, z, δ2, δz),

where Jα0 is the joint distribution of (Yi , δ2i ) and (Zi , δzi ). For i = 1, . . . , n, I1 and
I2 are defined by

I1(T2i , δ2i , α0) =
∫

A
Vα,1{α0, S2(t2), SZ (z)}I 01 (Yi , δ2i )(t2)d Jα0(t2, z, δ2, δz),

I2(Zi , δzi , α0) =
∫

A
Vα,2{α0, S2(t2), SZ (z)}I 02 (Zi , δzi )(z)d Jα0(t2, z, δ2, δz),

123



464 R. Zhou et al.

where

I 01 (Yi , δ2i )(t2) = −S2(t2)

{ ∫ t2

0

dN2i (u)

p(T2 ≥ u,C ≥ u)
−

∫ t2

0

I (Yi ≥ u)d
2(u)

p(T2 ≥ u,C ≥ u)

}
,

I 02 (Zi , δzi )(z) = −SZ (z)

{∫ z

0

dNzi (u)

p(Z ≥ u,C ≥ u)
−

∫ z

0

I (Zi ≥ u)d
z(u)

p(Z ≥ u,C ≥ u)

}
,

N2i (u)= I (Yi ≤ u, δ2i =1), Nzi (u)= I (Zi ≤ u, δzi = 1), i = 1, 2, . . . , n,

and 
2(u) and 
z(u) are the cumulative hazard functions for T2 and Z , respectively.
A variance estimator of α̂ may be obtained as ρ̂2 = (ρ̂2

1 + ρ̂2
2 )/ρ̂

4
1 , by replacing Jα0

by its empirical distribution function Jn , and replacing S2, SZ , and α0 by Ŝ2, ŜZ , and
α̂, respectively, in ρ2

1 and ρ2
2 . The consistency of Jn , Ŝ2, ŜZ and α̂ implies that ρ̂2

is a consistent estimator of ρ2. Given the established weak convergence under the
regularity conditions, a simple bootstrap resampling procedure is valid for estimating
the asymptotic variance of α̂.

For the marginal survival function S1, a natural estimator is obtained as Ŝ1 =
g{Ŝ2, ŜZ , α̂}, where Ŝ2 and ŜZ are the Kaplan–Meier estimators for S2 and SZ , respec-
tively, and α̂ is the solution to Eq. (7). We have that Ŝ2(t) and ŜZ (t) are strongly
consistent with S2(t) and SZ (t), uniformly for t ∈ [0, τ ] (Flemming and Harrington
2005). Since function g has bounded derivatives, a continuous mapping theorem gives
the uniform convergence of Ŝ1 to S1. The asymptotic properties of Ŝ1 are summarized
in Theorem 2, and the proof is provided in the Appendix.

Theorem 2 The estimator Ŝ1(t) is consistent with the true survival function S1(t), and
as n → ∞, the process n1/2{Ŝ1(t)−S1(t)} converges weakly to a zero-meanGaussian
process with covariance function

[
∂g{S2(t),SZ (t),α}

∂α

]2
ρ2 + ω2(t) for t ∈ [0, τ ].

Although the asymptotic variance of Ŝ1(t) has a rather complicated form, the ordinary
bootstrapmethod provides a direct and robust way to estimate the standard error. Thus,
we adopt a nonparametric bootstrap resampling method to obtain the standard error
of the estimated survival function in practice.

5 Simulation studies

We carried out simulation studies to evaluate the finite sample performances of the
proposed estimators. We generate n pairs of (T1, T2) from the positive stable copula
with a different strength of solicitation by choosing different values of parameter α.
The marginal functions S1 and S2 are exponentials with parameter (λ1, λ2) = (1, 1)
or (2, 1). We generate the independent censoring time C from U(0, 4), giving 25%
censoring of T2. For each set of (λ1, λ2), each combination of α = 0.2, 0.4, 0.6, 0.8
and n = 250, 500, we simulate 500 datasets. To improve the stability of the estimation
procedure, we propose the following iteration algorithm.

Step 1: We set the initial estimator of the marginal survival function, Ŝ(0)
1 , by the

Kaplan–Meier estimator.
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Table 1 Simulation results of
the positive stable copula
association parameter α

Cens(T1), censoring proportion
for T1; Cens(T2), censoring
proportion for T2; SEE,
empirical standard error; SEB,
average bootstrap standard error

(λ1, λ2) n Cens(T1) Cens(T2) α α̂ SEE SEB

(1, 1) 250 60% 25% 0.2 0.229 0.048 0.051

0.4 0.422 0.041 0.048

0.6 0.609 0.053 0.064

0.8 0.809 0.064 0.065

500 60% 25% 0.2 0.215 0.019 0.031

0.4 0.411 0.028 0.033

0.6 0.605 0.037 0.042

0.8 0.804 0.041 0.045

(2, 1) 250 15% 25% 0.2 0.209 0.017 0.019

25% 0.4 0.406 0.033 0.033

32% 0.6 0.607 0.042 0.045

36% 0.8 0.805 0.052 0.051

500 15% 25% 0.2 0.204 0.012 0.012

25% 0.4 0.403 0.022 0.022

32% 0.6 0.601 0.030 0.031

36% 0.8 0.802 0.035 0.036

Step 2: We obtain the Kaplan–Meier estimator Ŝ2 of the marginal survival function
for the terminal event, and the Kaplan–Meier estimator ŜZ of SZ .

Step 3: We estimate the association parameter α based on the log-likelihood function
(3) by replacing Ŝ(0)

1 and Ŝ2, denoted as α̂(0).

Step 4: Based on Eq. (5), we obtain an updated estimator Ŝ(1)
1 by plugging in ŜZ , Ŝ2

and α̂(0).
Step 5: We can obtain an updated estimator α̂(1) using Ŝ(1)

1 , Ŝ2 and the log-likelihood
function (3).

The iteration between Steps 4 and 5 is continued until a specified criterion for conver-
gence is achieved.

A simple nonparametric bootstrap procedure is used to obtain the standard errors
for the estimators, based on 200 independent bootstrap samples. Table 1 presents
simulation results of the association parameter α in different simulation scenarios. As
expected, the empirical biases are very small and decrease as the sample size increases,
and increase with increasing censoring rates. The bootstrap standard errors agree well
with the empirical standard errors, implying that the inference procedure performs
reasonably well. Figure 2 shows the estimated marginal survival function of the non-
terminal event obtained in the simulations when (λ1, λ2) = (1, 1). The dashed curve is
the initial estimator Ŝ(0)

1 , obtained by the Kaplan–Meier estimator. Seen from the plot,
the initial estimator of S1 departs far from the true curve, suggesting that ignorance
of the informative censoring due to the terminal event may seriously overestimate the
true curve. After the iterations, the proposed estimator Ŝ1 (dotted curve) is close to the
true curve (solid curve) with indistinguishable empirical biases.

In addition, we conducted simulation studies to demonstrate that the exploratory
diagnostic method using the subset of the sample with both non-terminal and terminal
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Fig. 2 Estimation of marginal survival function of the non-terminal event time in simulations. True margin
S1, the proposed estimator Ŝ1 and the naive Kaplan–Meier estimator are plotted

events could effectively discriminate the association patterns between the positive
stable copula and the Clayton copula. We generated n = 250 pairs of (T1, T2) from
the positive stable copula/Clayton copula with different strength of association (α =
0.2, 0.4/α = 3, 5, respectively). The marginal functions S1 and S2 were exponential
with parameter (λ1, λ2) = (1, 1). We generated the independent censoring time C
from U(0,4), and simulated 250 datasets. Figure 3 shows the relationship between the
estimated cross ratio curves and the estimated bivariate survival function in scenarios
for the positive stable copula (A) and for the Clayton copula (B). The solid lines are
for the true cross ratio curve. As expected, the diagnostic method could not accurately
estimate the cross ratio, but it can sufficiently detect the association pattern. The
estimated cross ratio increases with the increase in the estimated bivariate survival
function in the positive stable copula but remains approximately constant in theClayton
copula. This suggests that our diagnostic approach performs well even when using the
subsample.

6 Application to ESBCR data

As the most common malignant cancer among women in the United States, breast
cancer has received tremendous research support, and as a result is associated with an
excellent overall five-year survival rate. Themajority of cases are diagnosed at the early
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Fig. 3 Relationship between the estimated cross ratio and the estimated bivariate survival function using
the upper wedge of the simulated semi-competing risks data with the positive stable copula a and the
Clayton copula b

stage of disease, which is associated with 5-year relative survival rates ranging from
84 to 99% (Siegel et al. 2014). Many of these female patients have the greatest risk
of recurrence during the initial years after diagnosis (Brewster et al. 2007). Studying
the survival probability of breast cancer relapse will help clinicians to make better
treatment decisions and to appropriately manage the patient’s quality of life.

We applied the proposed estimation and inference procedure to the ESBCR data
to evaluate the distribution of breast cancer relapse and its association with death. In
ESBCR, a cohort of 2425 patients were identified after excluding patients for whom
follow-up information was missing (Brewster et al. 2007). The follow-up time ranged
from 0.02 to 22.5years, with a median time of 9.35years. Among the 2425 patients
in the study, 350 experienced both breast cancer relapse and death during follow-up;
212 experienced only cancer relapse and remained alive throughout follow-up; 413
died without experiencing cancer relapse; and 1450 patients did not have either event
observed. The censoring rate for breast cancer relapse was 76.8% and that for death
was 68.5%.

The estimated association parameter α̂ in the positive stable copula model was
0.578, with a bootstrap standard error of 0.018 from 200 resamples. The value of α̂

suggests that there was a moderate positive association between breast cancer relapse
and death in the ESBCR data. A further positive association measured by the cross
ratio was not constant over time, but decreased with the time to breast cancer relapse
and death. Figure 4 presents the estimated survival function Ŝ1 (solid curve) of the time
to breast cancer relapse with 95% point-wise confidence intervals (dotted curve), and
the naive Kaplan–Meier estimator (dashed curve) considering death as independent
censoring. The substantial difference between the solid and dashed curves suggests
that methods which ignore the informative censoring will provide misleading results
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Fig. 4 Estimated marginal survival functions of the time to breast cancer relapse in the ESBCR data:
Kaplan–Meier estimator and the proposed estimator Ŝ1 with 95% point-wise confidence intervals

and overestimate the survival function of breast cancer relapse. For example, the
estimated disease-free survival rate at 15years obtained by the proposed joint model
is 0.636, with 95% confidence interval (0.670, 0.705), while that obtained by the naive
Kaplan–Meier estimator is 0.711, with 95% confidence interval (0.688, 0.734).

7 Concluding remarks

In this paper, we consider semi-competing risks data for which a non-terminal event
may be dependently censored by a terminal event, but not vice versa. We propose
simultaneous inference on the marginal survival function of the non-terminal event
time and the association between the bivariate event times. To handle the informative
censoring, a key component in the modeling strategies is to select a reasonable copula
model for the dependence structure, which is implemented by an effective exploratory
diagnostic approach. Although we focus on a specific class of positive stable copu-
las suggested by the model diagnostic, the proposed estimation methods are highly
applicable to general Archimedean copula models.

Different to our proposed method, the illness-death model based on crude quanti-
ties provides an alternative tool for handling semi-competing risks data. For example,
Xu et al. (2010) consider the illness-death model with a shared Gamma frailty. How-
ever, the strategy of selecting an appropriate shared frailty within the illness-death
model framework for the semi-competing risks data is still under investigation. Fol-
lowing a reviewer’s suggestion, we also consider a Cox proportional hazards model
of death by including the relapse status as a time-dependent covariate to analyze the
ESBCR data. The estimated hazard ratio is 3.38 (95% CI 2.45–4.70; P value<0.001),
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which suggests that breast cancer relapse significantly increases the risk of death and
confirms our conclusion that there is a positive association between cancer relapse
and death. However, the simple Cox model analysis could not describe the trend of
the association over time. In contrast, our method provides a convenient estimation
of the association parameter between cancer relapse and death as well as an esti-
mation of the survival function of the relapse, once the joint survival function is
established.

In addition tomarginal survival functions and the association between event times, it
is of interest in many studies to determine the impact of pretreatment characteristics or
treatments on disease progression and survival. This can be addressed by incorporating
covariates and formulating their effects on the survival functions of the event times
via regression models. An interesting topic for future investigation is to extend the
current copula model framework and develop estimation methods for time-varying
effect regression models for semi-competing risks data.
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8 Appendix

Proof of Theorem 2 Asymptotic results of Ŝ1(t) are proved under the following reg-
ularity condition. Function g(u, v, α) is continuous and differentiable at u, v, and α,
respectively, and the parameter α lies in a compact set.

First, we show the consistency of Ŝ1(t). We have that Ŝ2(t) converges in proba-
bility to S2(t) uniformly for t ∈ [0, τ ], and ŜZ (t) converges in probability to SZ (t)
uniformly for t ∈ [0, τ ]. By Theorem 1, α̂ converges in probability to α0. Since the
function g(u, v, α) is a continuous function of u, v and α, g{Ŝ2(t), ŜZ (t), α̂} con-
verges in probability to g{S2(t), SZ (t), α0} uniformly for t ∈ [0, τ ]. Therefore, Ŝ1(t)
is a consistent estimator of S1(t).

Next, we illustrate the asymptotic distribution of Ŝ1(t). Applying the functional
delta method to g{Ŝ2(t), ŜZ (t), α̂} around S2(t), SZ (t) and α0, we have

n1/2
[
g{Ŝ2(t), ŜZ (t), α̂} − g{S2(t), SZ (t), α0}

]

∼= n1/2
∂g{S2(t), SZ (t), α0}

∂u
(Ŝ2 − S2)(t)

+ n1/2
∂g{S2(t), SZ (t), α0}

∂v
(ŜZ − SZ )(t)

+ n1/2
∂g{S2(t), SZ (t), α0}

∂α
(α̂ − α0). (8)

Using martingale representations for Ŝ2 and ŜZ (Gill 1980), the sum of the first and
second terms in (8) is asymptotically equivalent to
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n− 1
2

[
n∑

i=1

∂g{S2(t), SZ (t), α0}
∂u

I 01 (Yi , δ2i ) + ∂g{S2(t), SZ (t), α0}
∂v

I 02 (Zi , δzi )

]

, (9)

which is a sum of n independent and identically distributed random variables, with
I 01 (Yi , δ2i ) and I 02 (Zi , δzi ) defined as in the previous section. Also the expectation
of each term in (9) is zero. By the central limit theorem, (9) converges weakly to a
normal distribution with mean zero and variance ω2(t). By Theorem 1, n1/2(α̂ − α0)

converges weakly to a normal distribution with mean zero and variance ρ2. Therefore,
the third term in (8) is asymptotically equivalent to

n−1/2 ∂g{S2(t), SZ (t), α}
∂α

ρ

n∑

i=1

∂lg0 {α, Ŝ2(Yi ), ŜZ (Zi )}
∂α

, (10)

which is a sum of n independent and identically distributed random variables.
Moreover, we have

E

([
∂lg0 {α, Ŝ2, ŜZ }

∂α

]
{I 01 (Yi , δ2i ) + I 02 (Zi , δzi )}

)

(11)

= E

(

{I 01 (Yi , δ2i ) + I 02 (Zi , δzi )}E
[
∂lg0 {α, Ŝ2, ŜZ }

∂α
| Yi , Zi , δ2i , δzi

])

= 0,

which means that (9) and (10) are asymptotically orthogonal. Therefore, (9), (10) and
(11) imply that as n → ∞, the process n1/2{Ŝ1(t)−S1(t)} converges weakly to a zero-
mean Gaussian process for t ∈ [0, τ ]with covariance function

[
∂g{S2(t),SZ (t),α}

∂α

]2
ρ2+

ω2(t). 	
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