
Lifetime Data Anal (2015) 21:579–593
DOI 10.1007/s10985-015-9335-y

Does Cox analysis of a randomized survival study yield
a causal treatment effect?

Odd O. Aalen1 · Richard J. Cook2 ·
Kjetil Røysland1

Received: 1 September 2014 / Accepted: 16 June 2015 / Published online: 24 June 2015
© Springer Science+Business Media New York 2015

Abstract Statisticalmethods for survival analysis play a central role in the assessment
of treatment effects in randomized clinical trials in cardiovascular disease, cancer, and
many other fields. The most common approach to analysis involves fitting a Cox
regression model including a treatment indicator, and basing inference on the large
sample properties of the regression coefficient estimator. Despite the fact that treatment
assignment is randomized, the hazard ratio is not a quantity which admits a causal
interpretation in the case of unmodelled heterogeneity. This problem arises because
the risk sets beyond the first event time are comprised of the subset of individuals who
have not previously failed. The balance in the distribution of potential confounders
between treatment arms is lost by this implicit conditioning, whether or not censoring
is present. Thus while the Cox model may be used as a basis for valid tests of the
null hypotheses of no treatment effect if robust variance estimates are used, modeling
frameworks more compatible with causal reasoning may be preferrable in general for
estimation.
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1 Introduction

Kaplan-Meier estimation (Kaplan and Meier 1958) and Cox regression models (Cox
1972) play a central role in the assessment of treatment effects in randomized clinical
trials of cardiovascular disease, cancer and many other medical fields. When interest
lies in delaying the time to an undesirable event, both methods naturally accommodate
right censoring. The Cox regressionmodel, however, is particularly appealing because
it yields a simple summary of the treatment effect in terms of the hazard ratio, which
can be interpreted as a type of relative risk. The semiparametric nature of the model,
the ability to stratify in multi-center trials, and the connection with the log-rank test
have also contributed to its widespread use.

Randomization is usually viewed as the ideal approach for eliminating the effects
of confounding variables to ensure causal inferences can be drawn. In randomized
clinical trials with a survival outcome, it is customary to express treatment effects
by estimates of the hazard ratio often without adjusting for even known prognostic
variables.When viewing Cox regression from a causal point of view, omission of these
terms creates problems which do not seem to be widely appreciated in some fields.

First we would like to point out that several limitations of the Cox model are well
known. The selection effects well documented in frailty theory (e.g. Aalen et al. 2008),
constitute one example to be mentioned below. A related issue is the fact that Cox
models which condition on different sets of covariates cannot simultaneously be valid
(Ford et al. 1995). Our intent is to focus on the limitations of the Cox model from
a causal point of view, some of which have been pointed out in the epidemiological
literature (Greenland 1996; Hernán 2010; Hernán et al. 2004; Hernán and Robins
2015, Sect. 8.3). Our paper is partly a review of these ideas, but we discuss this in a
broader setting and wish to present the issues to a biostatistical audience concerned
with survival analysis.

The basic notion may be explained intuitively as follows: for a randomized study
of survival times the first contribution to the Cox partial likelihood is based on a
randomized comparison, but subsequent partial likelihood contributions are based
on biased comparisons. This bias arises when there are known or unknown factors
influencing survival which are not controlled for in the analysis; we believe this is
almost always the case.

Our aims are to further clarify these issues through a simplemathematical argument
and to provide further discussion, including the relationship to frailty theory. Cox
regression is used routinely in clinical trials for the analysis of time to event response.
We suggest that analysts applying these methods take it for granted that the hazard
ratio gives a valid representation of the causal effect. It is therefore important to realize
the limitations of this analysis. We focus here on settings where the goal is to assess
the effect of treatment versus a control intervention on the time to an event in the
context of a randomized clinical trial.

The theory of counting processes plays a fundamental role in survival and event
history analysis. The probabilistic structure of counting processes is defined in terms of
intensity processes. If N (t) is the process counting events over time (e.g. occurrences
of undesirable clinical events), then the intensity process is:
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λ (t;H(t)) = lim
Δ→0

1

Δ
P (N (t + Δ) − N (t) = 1|H(t)) (1)

where H(t) is the history of the event process observed up to time t ; we assume that
the information from the past grows as t increases. In words, the intensity process
gives the probability of an event occurring in a small time interval [t, t +Δ) given the
past history observed to an instant before t . A precise mathematical treatment requires
tools from martingale theory (Aalen et al. 2008).

The intensity process is based on the concept of prediction in that it involves the
exploitation of information unfolding over time in order tomodel the instantaneous risk
of an event. The utility of intensity-based modeling is clear in settings where interest
lies in understanding dynamic features of a complex event process and associated risk
factors. An important question in the setting of a clinical trial, however, is whether the
event intensity can also be given a structural, or causal interpretation. Generally, of
course, one cannot expect a structural interpretation due to unmeasured confounders
or other issues.

Pearl (2009) gives a careful discussion of the requirements for a model to admit
causal inferences and introduces the important tool of the do-operator. In the present
context a causal statement can be made with respect to a particular intervention E if

λ (t |H(t), e) = λ (t |H(t), do(e)) (2)

where do(e) means that the value of E is set to e by an external manipulation. The
intervention E may correspond to changing an element in the history of the process,
and the intensity process clearly does not tell you what the result of that would be
unless (2) is fulfilled.

In the analysis presented here, the concepts of collider effect and controlled direct
effect also play a central role, and we shall follow the ideas of Pearl (2009) here as
well. In a process setting one has to show some care in applying these ideas (Aalen
et al. 2014).

2 Randomized comparison of treatments in survival analysis

2.1 Confounding among survivors

The risk of an event may vary considerably between individuals under study due to
known and unknown factors. Examples of known factors might be the duration and
stage of the disease at the time of recruitment, smoking status, and so on.Other features
such as dietary history, level of physical activity, and environmental exposures aremore
difficult to measure and are typically not recorded. Genetic and epigenetic features are
likely to have strong effects.We consider and represent these various influential factors
collectively in a variable Z . Note that this variable is not routinely considered to have
a confounding effect per se in a clinical trial with randomization, since randomization
ensures Z ⊥⊥ X at the timeof treatment assignment.Randomizationdoes not, however,
eliminate the effect of this variable on the outcome and as a consequence does not
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ensure the same independence among individuals surviving to any time t > 0, i.e. we
do not necessarily have Z ⊥⊥ X |T > t .

To expand on this, we assume that the hazard rate for an individual in a population
of interest is given as h(t, X, Z). Here X is a treatment indicator and Z is the variable
that contains individual specfic quantities that influence survival. If the treatment
assignment is randomized at t = 0, X and Z are stochastically independent at that
time. For simplicity, we shall assume here that X and Z are discrete, but a similar
argument would of course hold for continuous variables. The joint distribution of X
and Z for survivors to time t is given by:

P(Z = z, X = x |T ≥ t) = P(Z = z, X = x, T ≥ t)

P(T ≥ t)

= P(T ≥ t |Z = z, X = x)P(Z = z, X = x)

P(T ≥ t)

=
exp

(
− ∫ t

0 h(s, x, z)ds
)
P(Z = z)P(X = x)

P(T ≥ t)
. (3)

This expression can only be factored with respect to the two covariates for all t if
h(t, x, z) is additive in the following sense:

h(t, x, z) = a(t, x) + b(t, z) (4)

If this is not the case, then it is apparent from (3) that X and Z are not independent
among the survivors (i.e. given T ≥ t).

Note that the hazard of the Cox model does not satisfy the additivity assumption in
Eq. (4). This is also the case for a marginal Cox model containing only the covariate
X : if the joint hazard in X and Z satisfies (4) then the marginal model for X would
retain an additive component and would not be of the Cox form.

The lack of independence between X and Z among the survivors to time t has
an important implication for the Cox model since the partial likelihood is built up
by considering contributions which condition on survival to increasingly large times.
Despite randomization at t = 0, the contributions to the Cox partial likelihood fol-
lowing the first failure will not be in a randomized setting. This makes it unclear what
the hazard ratio computed for a randomized survival study really means. Note, that
this has nothing to do with the fit of the Cox model. The model may fit perfectly in
the marginal case with X as the only covariate, but the present problem remains.

The effect we are discussing depends on the probability of surviving; as shown in
(3). If the event in question is rare, then the effect will be small.

2.2 An illustrative calculation

Suppose X and Z are binary 0−1 variables with P(Z = 1) = π and
where X is assigned by balanced randomized with P(X = 1) = 0.5. Under
a Weibull proportional hazards model we define H0(t) = (h0t)κ and con-
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sider the survivor functions P(T ≥ t |X, Z) = exp(−H0(t) exp(β1X + β2Z)),
P(T ≥ t |X) = EZ {exp(−H0(t) exp(β1X + β2Z))}, and P(T ≥ t) =
EX [EZ {exp(−H0(t) exp(β1X + β2Z))}]. We set h0 = 1 and κ = 1 and consider
β1 = log 0.5 to correspond to a strong treatment effect and β2 = log 4 to reflect a
highly influential risk factor. We consider the pth percentile Qp, of the marginal sur-
vival distribution, satisfying 1− p = P(T > Qp), with p = 0, 0.10, 0.25, 0.50, 0.75
and 0.90. In Fig. 1 we display P(Z = 1|X, T ≥ Qp) from study entry for the case of
common risk factor (π = 0.50). There is a striking imbalance in the risk factor evident
in the second and third quartiles of T . Evidence of treatment effect from individuals
at risk at this time is therefore heavily influenced by this risk factor. The light grey
line reflects the log odds ratio characterizing the association between Z and X given
T > Qp, clearly conveying the evolving dependence between treatment and the risk
factor.

The Weibull proportional hazards model is the only parametric model which can
be reformulated as a location-scale model (Cox and Oakes 1984). We can therefore
write it equivalently as

Y = γ0 + γ1X + γ2Z + τW

where Y = log T , τ = κ−1 is a dispersion parameter, and W ⊥⊥ (X, Z) has a
standard extreme value error distribution; note also that γ j = −τβ j , j = 1, 2 and
γ0 = − log h0. While we may think of this model as operating in the population of
interest, when the treatment assignment is randomized in a clinical trial, we aim to
estimate features of the distribution of T |X . The effect of interest is contained in the
systematic part of the model for Y |X ,

E(Y |X) = γ0 + γ1X + γ2E(Z |X) + τ E(W |X) = γ ∗
0 + γ1X.

As a consequence, the effect of treatment in the location scale formulation, or its
alternative utilization in terms of an accelerated failure time model (Wei 1992), does
yield a causal measure of treatment effect. The collapsibilities of this model and the
causal interpretation have lead to thewidespread use of accelerated failure timemodels
in causal inference (e.g. Robins 1992). Consistent estimation of γ1 based on the model
for T |X will require correct specification of the error distribution, but estimation of
the coefficients in the location scale formulation is quite robust to misspecification of
the error distribution (Gould and Lawless 1988; Lawless 2003, Sect. 6.3.4) and fitting
semiparametric versions of thismodel can provide robust estimation under some forms
of censoring.

We consider a brief simulation study to illustrate the utility of the location-scale
model in this setting. We consider π = 0.10 and 0.50 where X is determined by
randomization; so P(X = 1) = 0.5 and X ⊥⊥ Z . An administrative censoring time
C† was set such that P(T > C†) = 0.10 and an exponential random censoring time
accommodated early withdrawal with rate ρ selected to give a net censoring rate of
30 or 50 % respectively. Analyses were carried out based on Cox regression and a
semiparametric accelerated failure time model using the method of Brown and Wang
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Table 1 Empirical properties of estimators obtainedbyfittingmarginalCox and semiparametric accelerated
failure time models for T |X when the correct model is a Weibull proportional hazards/accelerated failure
time model for T |X, Z ; P(Z = 1) = π , 10 % administrative censoring and CEN% reflects net censoring
incorporating random withdrawal, 500 individuals per dataset; nsim = 2000

π CEN% Cox model AFT model

EBIAS ESE RSE ECP% EBIAS ESE RSE ECP%

0.1 30 0.043 0.111 0.109 92.2 0.003 0.135 0.131 94.5

50 0.048 0.129 0.130 92.6 0.004 0.161 0.157 94.3

0.5 30 0.147 0.108 0.108 72.9 0.001 0.146 0.142 93.8

50 0.120 0.131 0.129 84.3 0.002 0.169 0.163 93.8

EBIAS is mean estimate minus β1 (Cox) and γ1 (AFT) respectively, ESE is the empirical standard error,
RSE is the mean robust standard error, and ECP% is the empirical coverage probability

(2005): point estimates and robust variance estimateswere recorded for each simulated
sample.

With κ = 1, the regression coefficient in the accelerated failure time model is
simply the negative of the coefficient in the Cox model and the empirical biases and
coverage probabilities are evaluated relative to the respective true values (Table 1).

The bias evident in the estimation of β1 from the Cox model arises because it is
not collapsible and is sensitive to the distribution of the prognostic factor as well as
the censoring distribution; this is the case with misspecified Cox models generally,
for which the large sample properties of associated estimators are now well known
(Struthers and Kalbfleisch 1986). Hypothesis tests directed at detecting treatment
effects are valid in such settings, however, provided robust variance estimates are used
(Lin and Wei 1989). The empirical biases in the estimators of the coefficients in the
accelerated failure time model are negligible in all cases and so are insensitive to the
distribution of the covariate and censoring rates, and there is generally close agreement
between the empirical and mean robust standard errors.

3 Interpretation in a causal inference setting

The concept of a collider is used to clarify the effects of selection bias in causal
reasoning. A collider is present in a directed acyclic graph (DAG) if two arrows meet
at a node. When conditioning on a collider the effects may “pass through” the collider,
and since it does not exert a causal effect, a bias may be induced in the estimate of the
effect of the intervention. See Pearl (2009) for a general introduction to these matters.

Consider two times, t and t+ΔwhereΔ > 0, and let St and St+Δ indicate survival
up to these times respectively. A model for the causal structure of this situation is
shown in the directed acyclic graph of Fig. 2.

If we consider the comparison of treatments with respect to St or St+Δ separately,
then a random allocation will ensure a valid assessment of the causal effect. For
instance, when considering the effect of X on St+Δ, the noncausal path, via Z , is
closed as long as we do not condition on St . The node St is a collider and closes the
path via Z as long as it is not conditioned upon.
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Z(Variable influencing survival)

St(Survived up to t) St+Δ (Survived up to t + Δ)

X(Treatment)

Fig. 2 A directed acyclic graph of X , Z and St and St+Δ

If, however, we consider the probability of surviving up to time t + Δ, conditional
on survival up to time t , then the situation is changed. This change arises because we
condition on a collider St , which activates the noncausal path X → St ←− Z →
St+Δ. If Z is (in whole or partially) unknown, this path cannot be closed. This implies
that we generally have X �⊥⊥ Z | T > t , so the compositions of the groups of
treated and non-treated survivors at time t differ systematically, even if the treatment
was randomly assigned at t = 0. This is a problem if we wish to assign meaning
to differences of the respective hazard rates at time t since the hazards at time t are
sensitive to previous survival in the two groups.

It is not automatically the case that conditioning on colliders breaks the random-
ization, and to clarify the conditions for this, our argument has to be supplied with
a calculation as is done in Sect. 2.1. If the additivity condition in Eq. (4) is fulfilled,
then we do indeed have X ⊥⊥ Z | T > t , so the randomization will not be broken by
restricting to survivors at t .

In order to assess short-term treatment effects, not as sensitive to such systematically
diverging group compositions, we imagine a hypothetical variant of our initial trial.
Whenever an individual dies before t , we replace him by an identical individual that
is still alive, and do not record the death that occurred before t . Then we compare the
risk of deaths during (t, t + Δ] for the treated vs. the non-treated individuals. This
would provide a comparison of short-term treatment effects at time t , not sensitive to
selection effects due to previous deaths, since the groups are identical to those that
where formed by randomization at baseline.

In terms of causal inference, this corresponds to what is known as the controlled
direct effect of treatment (Pearl 2009), and equals:

θx (t) = lim
Δ→0

Δ−1 · P(St+Δ = 0 | do(X = x, St = 1))

= lim
Δ→0

Δ−1 ·
∫

z
P(St+Δ = 0 | X = x, St = 1, z)P(dz),

where the last expression follows from Pearl (2009, Eq. (3.19)). The open path St ←
Z → St+Δ means that we generally have that P(St+Δ = 0 | do(x, St = 1)) �=
P(St+Δ = 0 | X = x, St = 1), so our comparison can not be carried out by a
straight-forward regression analysis among the survivors at time t . This has also been
pointed out by Hernán et al. (2004) and Hernán and Robins (2015).
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One could also take another point of view where instead of considering the con-
trolled direct effect we consider the causal effect of treatment on short term survival
conditionally on Z . By conditioning we achieve that the causal effect of treatment
shall correspond to the effect it has on an individual with a given value Z = z. Let
the hazard rates for an individual with Z = z be as follows under the control (X = 0)
and experimental treatment (X = 1) conditions respectively:

β0(t) = z α(t), β1(t) = z rα(t), (5)

Hence, with the active treatment the individual will have r times the risk that he
would have in the control group. The relationship to the previous formulation is that
the treatment X has two possible options, and that for each individual the hazard is r
times as large for one treatment option as for the other.

Note that the conditioning with respect to Z closes the collider path X → St ←−
Z → St+Δ in Fig. 2. The path X → St → St+Δ is already closed because we
condition with respect to survival at time t . Using (5) we can calculate the controlled
direct effect as follows:

θx (t) =
∫

z
lim
Δ→0

Δ−1 · P(St+Δ = 0|X = x, St = 1, z)P(dz)

=
∫

z
zr xα(t)P(dz) = E(Z)r xα(t)

Thus we get that the controlled direct effect equals θ1(t)/θ0(t) = r .
We can also calculate the other causal parameter, i.e. the one conditional on Z . To

identify this, note that λ(t |do(x), z) = λ(t |x, z) where λ(t |·) denotes the intensity of
an event given various pieces of information. Hence we have from (5):

λ(t |do(X = 1), Z)

λ(t |do(X = 0), Z)
= λ(t |X = 1, Z)

λ(t |X = 0, Z)
= Z rα(t)

Z α(t)
= r.

Hence, the causal hazard ratios defined by the controlled direct effect of treatment or
by the conditional treatment effect given Z are both equal to r in this particular setting.
This is not what is estimated by a Cox model in the presence of random variation in
Z .

4 Causality and frailty

Consider the counterfactualmodel (5) which, while similar in form to a standard frailty
model, we specify here as a basis for causal reasoning. In (5) we conceptualize the
individual hazard rates under both treatment schemes and define the causal effect of
treatment in terms of these. In practice, of course, a person will normally be assigned
to one treatment, making the other assignment counterfactual. In the counterfactual
framework this means that (5) holds for any value of Z that an individual might have.
In randomized trials, however, we do not typically adjust for covariates on the pre-
sumption that randomization has distributed them (more or less) equally between the
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treatment groups. This corresponds to basing comparisons on the population average
(marginal) survival distributions, obtained after having implicitly averaged over Z ;
the effect of treatment at the individual level is not specified.

The difficulty in assigning a causal interpretation to treatment effects can be related
to known phenomenon arising in frailty theory where it is well known that for certain
types of frailty distributions (e.g. the compound Poisson distributions with positive
probability of a zero frailty), population (marginal) hazard functions may cross over
purely as an artefact of unexplained heterogeneity in the population (Flanders and
Klein 2007; Aalen et al. 2008). Hence even when a treatment is highly effective in
lowering the hazard at the individual level, at some time the instantaneous risk at
the population level becomes higher in the treatment group than the control group.
This phenomenon arises in spite of the fact that for each value of the frailty variable
(and hence for each individual) there is a common and constant multiplicative effect
of treatment on the hazard. A test statistic reflecting the difference between treatment
groups based on hazard rates (e.g. the logrank test) would therefore increase as follow-
up increases to a certain point and then decrease. Although there is a mathematical
connection to frailty theory, the causal reasoningwe put forward here gives new insight
into the concept of frailty and the phenomena that have been studied in this setting.

To illustrate this point further, assume that Z is gamma distributed with expectation
1 (without loss of generality) and variance δ. Corresponding to the model in (5), the
population hazard rates obtained by integrating out Z are given for the two treatment
groups as follows:

μ0(t) = α(t)

1 + δA(t)
, μ1(t) = rα(t)

1 + δr A(t)
(6)

where A(t)=
∫ t
0 α(s)ds. These are standard formulas, see e.g. Aalen et al. (2008).

Note, that in our terminology μ0(t) = λ(t |X = 0) and μ1(t) = λ(t |X = 1).
The ratio of the two population hazard rates is:

R(t) = μ1(t)

μ0(t)
= r ·

(
1 + δ A(t)

1 + rδ A(t)

)
. (7)

This hazard ratio converges towards 1 in contrast to the constant causal hazard ratio
r for the counterfactual model. The trend in R(t) is due to increasingly different
distributions of Z for survivors in the two groups. Figure 3 contains an illustrative plot
of the gamma density of Z among survivors at time t where each individual survival
time has a cumulative hazard of A(t) or r A(t); the conditional densities have the same
shape parameter 1/δ and scale parameters 1/δ + A(t) or 1/δ + r A(t) respectively.

In this setting we consider treatment effects that are not subject to selection due to
frailty. To sum up previous results, we have:

θ1(t)

θ0(t)
= r = λ(t |do(X = 1), Z)

λ(t |do(X = 0), Z)
= λ(t |X = 1, Z)

λ(t |X = 0, Z)

�= λ(t |X = 1)

λ(t |X = 0)
= r ·

(
1 + δ A(t)

1 + rδ A(t)

)
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Fig. 3 Two gamma distributions with shape parameter 2 and scale parameters 3 and 4 respectively, cor-
responding to the density of Z among survivors at time t with δ = 1, A(t) = 2 and with a causal effect
r = 1.5 as specified in Eq. (5)

In a randomized trial when fitting a marginal model with just the treatment as
a covariate, what one estimates in a Cox model is not this causal quantity r , but a
weighted average of R(t) (Lin and Wei 1989). This will typically be closer to 1.

Can one adjust for covariates to resolve this issue? Some have advocated that
baseline covariates should be controlled for in randomized trials (Hauck et al. 1998)
but there is considerable discussion and debate about if, when, and how this should be
carried out. The point is that the information in Z will at best only be partially known.
There will with necessity be a number of dissimilarities between individuals which
are unknown and even unobservable. This is the issue of frailty theory. So, in general
the quantity r is not really estimable even from a randomized study.

We illustrate this by a small simulation without censoring. Assume there are two
treatment groups with 1000 individuals in each group. Conditional on Z the hazard
rate is Z and 2Z in the two treatment groups. Assume that Z is gamma distributed with
scale parameter 1 and shape parameter a. In this case the individual hazard ratio is
r = 2. Using a Cox model the estimated hazard ratio is 1.04 when δ = 0.1 (extremely
skewed Z ), while it is is 1.36 when δ = 1 (exponential distribution for Z ). Hence, we
do not get the correct individual hazard rate, but something that is strongly influenced
by the general variation in risk among individuals.

Finally, in order to emphasize the importance of interventions, we examine the
issue of treatment switching, discussed briefly in Aalen et al. (2008). We shall show
how the effect of interventions after time 0 are misrepresented in the statistical model
disregarding the frailty, and that a causal understanding is necessary. For that purpose
we again use a gamma frailty model. Imagine that at some time we intervene and
switch the treatment group back to the control treatment. For instance, one might
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observe that the hazard in two groups become very similar at some time and might
wonder whether there is still a point in giving the experimental treatment. We assume
that switching the treatment has an immediate effect at the individual level, meaning
that the hazard for the treatment group, conditional on Z , changes from Z rα(t) to
Z α(t) at some time t1. Thus up to t1 the two population (marginal) hazards are given
in formula (6), but after t1 the population hazard rate for group 1 is:

μ1(t) = α(t)

1 + rδ A(t1) + δ( A(t) − A(t1))
, t > t1

The relative population hazard for t > t1 is:

μ1(t)

μ0(t)
= 1 + δ A(t)

1 + rδ A(t1) + δ( A(t) − A(t1))

= 1 + (1 − r)
δ A(t1)

1 + rδ A(t1) + δ( A(t) − A(t1))
.

This should be compared to the relative population hazard for t ≤ t1, which is R(t).
So,

μ1(t)

μ0(t)
= r

1 + δ A(t)

1 + r δ A(t)
= 1 − (1 − r)

1

1 + r δ A(t)
.

for t ≤ t1.
Assuming r < 1, it follows that μ1(t)/μ0(t) is smaller than 1 before time t1 and

larger than 1 afterwards, with a jump at t1. Hence, the treatment group will suddenly
have a higher population (marginal) hazard than the control group when treatment
is discontinued, which means that the causal effect of changing treatment cannot be
discerned from the observed hazard rates prior to intervention. The result is illustrated
in Fig. 4 where t1 = 2, α(t) = 1, r = 0.5 and δ = 2. The treatment is switched
back to control when the hazard ratio is close to 1 indicating no great difference in
risk between the two groups, but the result of the intervention is a surprising and large
jump.

Causality is about understanding the effect of interventions. This example shows
that the population hazard rates do not necessarily give this causal insight, and that a
correct causal understanding is challenging.

5 Discussion

A central point of this note is that the hazard ratio in a Cox regression model is
not the natural causal quantity to consider. This has been discussed by Greenland
(1996), Hernán (2010), and Hernán et al. (2004), among others, but it does not seem
widely appreciated. In light of the structural problems present with only fixed baseline
variables, the current focus on the use of accelerated failure time models (Wei 1992),
models based on time-transformations (Cheng et al. 1995; Lin et al. 2014), and additive
hazards models (Aalen 1989) may be more appropriate.
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Fig. 4 Hazard ratio when intervention is switched back to control at time 2

In causal inference we do not presume there to be no confounding variables, but
rather that they are suitably dealt with in analysis in order tomitigate their effects. Ran-
domization achieves this goal in many settings by rendering the known and unknown
confounding variables independent of the treatment indicator. With the linear model
this is sufficient to ensure that the model including only the treatment indicator yields
an estimator consistent for the marginal causal effect and one can likewise define the
effect of interest for binary data. The Cox model features a greater structure, however,
and is not collapsible (Martinussen andVansteelandt 2013). The issue discussed here is
relevant for other methods that are based on the hazard rate. For additive hazard based
models, however, the independence of X and Z in Sect. 2.1 is naturally preserved
making it another appealing framework for causal inference like the location-scale
model (Strohmaier et al. 2014).

Paradoxically it is well-known that in clinical trials one should not carry out treat-
ment comparisons by conditioning on variables realized post-randomization which
may be responsive to treatment since they may be on the causal pathway to the
response of interest (Kalbfleisch and Prentice 2002). Treatment comparisons based on
sub-groups of individuals defined post-randomization are likewise termed improper
subgroups (Yusuf et al. 1991) and are widely known to yield invalid inferences
regarding treatment effects because of the benefit of randomization is lost in such
comparisons. While it may be less transparent, the same process of making treatment
comparisons based on subgroups of patients defined post-randomization arises in fit-
ting the Cox model. Indeed in this setting the risk sets at a given time are defined
based on survival status to that time point, a feature clearly responsive to an effective
treatment. This phenomenon is particularly important in settings where interest lies in
studying the time-varying effect of treatment (e.g. Durham et al. 1999) through use of
flexible regression functions.

Causal inference becomesmore challenging in settings involving competing risks if
cause-specific analyses are of interest. In a cancer trial, for example, interest may lie in
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assessing the treatment effect on tumour progression through a cause-specific propor-
tional hazards model. In patient populations where the mortality rates are appreciable,
the selection effects at any given time arise from the need to be tumour-free and alive,
so the imbalance in confounders arises from both event types. These challenges are
beyond the scope of this article but warrant attention.

The issues presented here relate to comments on the meaning of the hazard rate
given in Aalen et al. (2008) where it is pointed out that despite its deceptively simple
definition, clear understanding of hazard rates is often elusive. These authors provide
two interpretations to the hazard rate. The first is in terms of frailty theory (Chapter
6) and the second is by applying stochastic processes (Wiener processes and Lévy
processes; Chapters 10 and 11). There is no doubt that the hazard rate is an important
concept for explicating how the past influences the future. However, as we and others
have pointed out, differences between individuals produce selection effects over time
which can make it difficult to draw clear causal conclusions in this framework.
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