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Abstract The presence of immune elements (generating a fraction of cure) in survival
data is common. These cases are usuallymodeled by the standardmixturemodel. Here,
we use an alternative approach based on defective distributions. Defective distributions
are characterized by having density functions that integrate to values less than 1, when
the domain of their parameters is different from the usual one. We use the Marshall–
Olkin class of distributions to generalize two existing defective distributions, therefore
generating two new defective distributions. We illustrate the distributions using three
real data sets.

Keywords Cure fraction · Defective models · Gompertz distribution · Inverse
Gaussian distribution · Marshall–Olkin family · Survival analysis

1 Introduction

In survival data, the goal is to model the time until the occurrence of an event of
interest. In the general theory, it is assumed that an element is always susceptible to
a certain event of interest that will eventually occur. However, such an assumption
is often invalid because many databases have what we call immune elements. For
immune elements, the event will never occur because they are not susceptible to the
event of interest.
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Thus, the study of the proportion of this population, or rather, the cure fraction,
became one of the major subfields of survival analysis. To solve such problems (Berk-
son and Gage 1952), based on the work of (Boag 1949), a standard mixture model
was proposed. The survival function is adjusted to

S(t) = p + (1 − p)S0(t)

such that S0(t) is a proper survival function. In this way, S(t) converges to p as the
time goes by. Berkson and Gage (1952) analyzed a stomach cancer data set using the
standard mixture model. Since then many other data sets have been analyzed using the
standard mixture model. The most common choices for S0(t) have been the Weibull,
log-logistic and lognormal distributions. Recently, different distributions have been
proposed for this purpose, see Yakovlev and Tsodikov (1996), Chen et al. (1999) and
Ibrahim et al. (2005).

However, here we use an alternative methodology based on defective models, a
concept introduced by Balka et al. (2009). In these models it is possible to estimate
a cure rate with the use of a naturally improper distribution. Instead of estimating
the proportion p directly as a mixture model, we use a distribution by changing the
domain of its parameters. It becomes a model with long-term duration. The integral
of the density function does not result in 1, but in a value p ∈ (0, 1). This is because
the parameters of the distribution are no longer in their original domains. The cumu-
lative distribution function no longer approaches to 1, but to p and, therefore, the
survival function approaches to 1 − p. Models that have this characteristic are called
defective.

Obviously, the defective distribution is not proper. When used as a model for cure
fraction, the proportion of the population that is immune is obtained by calculating the
limit of the survival function with the estimated parameters. In the literature, there are
two known distributions that can be used for this purpose: the inverse Gaussian and
Gompertz distributions. The Gompertz distribution has two parameters, both positive.
For negative values of the shape parameter, the distribution becomes defective. Hay-
bittle (1959) fitted the Gompertz distribution to a breast cancer data set. Cantor and
Shuster (1992) fitted a modified version of the same distribution to a pediatric cancer
data set. Gieser et al. (1998) extended the distribution to include covariates.

The inverse Gaussian distribution is another distribution which can take a defective
form. The inverse Gaussian distribution was derived by Schrödinger (1915) by calcu-
lating the probability of the first time passage of a one-dimensional Brownian process
(also called Wiener process). A deeper study was made by Tweedie (1945). It is also
where the name inverse Gaussian arose (Balka et al. 2009).

Application of survival models in terms of stochastic processes can be found in
Whitmore et al. (1998), Lee and Whitmore (2004) and Lee and Whitmore (2006).
Aalen and Gjessing (2001) suggested that more attention be given to these type of
models. Whitmore (1979) used the inverse Gaussian distribution in its defective form.
More concise studies from the point of view of survival analysis were presented in
Balka et al. (2009) and Balka et al. (2011). Several scenarios involving the inverse
Gaussian distribution as a cure fraction model were presented. Balka et al. (2011)
presented real data applications with classical and Bayesian inferences.
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The great advantage of the defective models compared to the standard mixture
model is that the former have one less parameter to be estimated in the likelihood
function, which can be quite relevant in terms of estimation, especially when the
chosen models already have various parameters.

The aim of this paper is to propose two new defective distributions based on the
Marshall–Olkin family of distributions (Marshall and Olkin 1997). This family is
obtained by adding an extra parameter to a known distribution. Suppose S(t) is a
known survival function. Then, the extended survival function by the Marshall–Olkin
family, S∗(t), is

S∗(t) = r S(t)

1 − (1 − r)S(t)

for r > 0 and t ∈ R. Simple algebraic manipulations determine the density function
of the extended distribution:

f ∗(t) = r f (t)

[1 − (1 − r)S(t)]2
. (1)

The Marshall–Olkin extension for particular choices of S(t) has been investigated by
several authors, see Alice and Jose (2003), Alice and Jose (2005), Jose and Krishna
(2011) and Cordeiro and Lemonte (2013). Barreto-Souza et al. (2013) investigated
mathematical properties of the Marshall–Olkin family.

The main purpose of this paper is to propose two new defective distributions,
extending the Gompertz and inverse Gaussian distributions through the Marshall–
Olkin family. The details of these extensions includingmaximum likelihood estimation
and the fact that S∗ is defective if S is defective are shown in Sect. 2. Section 3 is
a simulation study to assess the performance of the maximum likelihood estimators.
Section 4 illustrates the proposed distributions using three real data sets.

2 Methodology

The Gompertz distribution is used for modeling survival data in various areas of
knowledge (Gieser et al. 1998), especially where there is a suspicion of exponential
hazard. The Gompertz density function is

f (t) = beat e− b
a (e

at−1) (2)

for a > 0, b > 0 and t > 0. In this parameterization, a is the shape parameter and b
is the location parameter. The survival function is

S(t) = e− b
a (e

at−1). (3)

The defective Gompertz distribution is the distribution that allows for negative
values for the parameter a. The proportion of immunity in the population is calculated
as the limit of the survival function when a < 0:

p = lim
t→∞ S(t) = lim

t→∞ e− b
a (e

at−1) = e
b
a ∈ (0, 1).
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Once the parameter values are estimated, one can easily compute the fraction of cure
p. Figure 1 illustrates various scenarios for the density, survival and hazard functions
of the Gompertz distribution.

The inverseGaussian distribution arises as the first passage time of aWiener process
(Balka et al. 2009). Lee and Whitmore (2006) noted its potential as models for cure
rate. Its density function is

f (t) = 1
√
2bπ t3

exp

{
− 1

2bt
(1 − at)2

}
(4)

for a > 0, b > 0 and t > 0. The inverse Gaussian distribution has survival function
given by

S(t) = 1 −
[
Φ

(−1 + at√
bt

)
+ e2a/bΦ

(−1 − at√
bt

)]
, (5)

where Φ(·) denotes the cumulative distribution function of a standard normal random
variable.

The inverse Gaussian distribution can be defective when a < 0. The fraction of
cure, or the survival function limit, is

p = lim
t→∞ S(t) = lim

t→∞ 1 −
[
Φ

(−1 + at√
bt

)
+ e2a/bΦ

(−1 − at√
bt

)]

= 1 − e2a/b ∈ (0, 1).

We estimate the cure fraction using the estimated parameters a and b. Figure 2
illustrates various scenarios for the density, survival and hazard functions of the inverse
Gaussian distribution.

The great advantage of these distributions is that the proportion of cured is always
estimated using a model with one parameter less than the standard mixture model,
which brings plenty of benefits in terms of estimation.

We have been able to find only these two distributions (Gompertz and inverse
Gaussian) that can be adapted to being defective. This does not mean there are not
others. In order to construct other distributions of this kind, we propose the use of the
Marshall–Olkin class (Marshall and Olkin 1997) to generalize a given distribution by
adding an extra parameter.

The main result of this paper is that if a given distribution is defective, then its
extension under the Marshall–Olkin family will be defective as well.

Theorem 1 If S(t) is defective then S∗(t) is also defective.

Proof Suppose the limit of S(t) is equal to p0 ∈ (0, 1). Then

lim
t→∞ S∗(t) = lim

t→∞
r S(t)

1 − (1 − r)S(t)
= rp0

1 − (1 − r)p0
= rp0

rp0 + 1 − p0
. (6)

Since 1− p0 is positive, it is easy to see that the last expression in (6) takes a value in
(0, 1). The proof is complete. ��
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We propose now two new defective distributions: the Marshall–Olkin Gompertz
and Marshall–Olkin inverse Gaussian distributions.

2.1 The Marshall–Olkin Gompertz distribution

Using (1) with density function in (2) and survival function in (3), we obtain the
Marshall–Olkin Gompertz density function

f (t) =
b · r · exp

(
b − b exp(at)

a
+ at

)

[
r − (r − 1) exp

(
b − b exp(at)

a

)]2 (7)

for a > 0, b > 0, r > 0 and t > 0. The corresponding survival function is

S(t) =
r exp

[
−b

a
(exp(at) − 1)

]

1 − (1 − r) exp

[
−b

a
(exp(at) − 1)

] . (8)

Figure 3 illustrates various scenarios for the density, survival and hazard functions
of theMarshall–OlkinGompertz distribution.As in theGompertz distribution, ifa < 0
then the Marshall–Olkin Gompertz distribution is defective. Its cure fraction is

lim
t→∞ S(t) = lim

t→∞ 1 − 1

re
b(eat−1)

a − r + 1

= rp0
1 − (1 − r)p0

= rp0
rp0 + 1 − p0

= p,

where p0 is the cure fraction of the defective Gompertz distribution.

2.2 The Marshall–Olkin inverse Gaussian distribution

Using (1) with density and survival functions of the inverse Gaussian distribution
given by (4) and (5), respectively, we obtain the density function of the Marshall–
Olkin inverse Gaussian distribution as

f (t) =
r exp

(
− (at − 1)2

2bt

)

√
2π

√
bt3

[
(r − 1)Φ

(
at − 1√

bt

)
+ (r − 1)e

2a
b Φ

(
−at + 1√

bt

)
− r

]2 (9)

for a > 0, b > 0 and r > 0. The corresponding survival function is

S(t) =
r

[
1 − Φ

(
−1 + at√

bt

)
− e2a/bΦ

(
−1 − at√

bt

)]

1 − (1 − r)

[
1 − Φ

(
−1 + at√

bt

)
− e2a/bΦ

(
−1 − at√

bt

)] . (10)
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Figure 4 illustrates various scenarios for the density, survival and hazard functions of
the Marshall–Olkin inverse Gaussian distribution. As in the inverse Gaussian distribu-
tion, if a < 0 then the Marshall–Olkin inverse Gaussian distribution is also defective.
Its cure fraction is

lim
t→∞ S(t) = rp0

rp0 + 1 − p0
= p,

where p0 is the cure fraction of the defective inverse Gaussian distribution.

2.3 Inference

Consider a data set D = (t, δ), where t = (t1, . . . , tn)T are the observed failure times
and δ = (δ1, . . . , δn)

T are the censored failure times. The δi is equal to 1 if a failure
is observed and 0 otherwise.

Suppose that the data are independently and identically distributed and come from
a distribution with density and survival functions specified by f (·, θ) and S (·, θ),
respectively, where θ = (

θ1, . . . , θq
)T denotes a vector of parameters. The likelihood

function of θ can be written as (see Klein and Moeschberger 2003)

L (θ ,D) ∝
n∏

i=1

[
f (ti , θ)δi S (ti , θ)1−δi

]
.

The corresponding log-likelihood function is

log L (θ,D) = const +
n∑

i=1

δi log f (ti , θ) +
n∑

i=1

(1 − δi ) log S (ti , θ) .

For the Marshall–Olkin Gompertz distribution given by (7) and (8),

log L (θ,D) = const +
n∑

i=1

δi

[
log

(
br exp

(
b − b exp(at)

a
+ at

))]

−
n∑

i=1

δi

[

log

([
r − (r − 1) exp

(
b − b exp(at)

a

)]2)]

+
n∑

i=1

(1 − δi )

[
log

(
r exp

[
−b

a
(exp(at) − 1)

])]

−
n∑

i=1

(1 − δi )

[
log

(
1 − (1 − r) exp

[
−b

a
(exp(at) − 1)

])]
. (11)
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For the Marshall–Olkin inverse Gaussian distribution given by (9) and (10),

log L (θ ,D) = const +
n∑

i=1

δi log

(
r exp

(
− (at − 1)2

2bt

))

−
n∑

i=1

δi log

(√
bt3

[
(r − 1)Φ

(
at − 1√

bt

)

+(r − 1)e
2a
b Φ

(
−at + 1√

bt

)
− r

]2)

+
n∑

i=1

(1 − δi ) log

(
r

[
Φ

(
at − 1√

bt

)
+ e

2a
b Φ

(
−at + 1√

bt

)
− 1

])

−
n∑

i=1

(1 − δi ) log

(
−(r − 1)Φ

(
at − 1√

bt

)

+(r − 1)e
2a
b

(
Φ

(
at + 1√

bt

)
+ 1

)
− 1

)
. (12)

The log likelihoods, (11) and (12), can be maximized numerically to obtain the
maximum likelihood estimates. There are various routines available for numerical
maximization. We used the routine optim in the R software (R Core Team 2014).
Numerical calculations not reported here showed that the surfaces of (11) and (12)
were smooth. The routine optim was able to locate the maximum for a wide range
of starting values. The solution for the maximum was unique for all starting values.
In the simulations and real data applications presented in Sects. 3 and 4, the routine
optim converged all the time, giving unique maximum likelihood estimates. In all
cases considered, optim did not take more than five seconds for convergence.

Confidence intervals for the parameters were based on asymptotic normality. If θ̂

denotes the maximum likelihood estimator of θ then it is well known that the distribu-
tion of θ̂ −θ can be approximated by a q-variate normal distribution (where q denotes
the length of the vector θ as defined above) with zero means and covariance matrix
I
(̂
θ
)
, where I (θ) denotes the observed information matrix defined by

I (θ) = −

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂2 log L

∂θ21

∂2 log L

∂θ1∂θ2
· · · ∂2 log L

∂θ1∂θq

∂2 log L

∂θ2∂θ1

∂2 log L

∂θ22
· · · ∂2 log L

∂θ2∂θq
...

...
. . .

...

∂2 log L

∂θq∂θ1

∂2 log L

∂θq∂θ2
· · · ∂2 log L

∂θ2q

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

So, an approximate 100(1 − α) percent confidence interval for θi is(
θ̂i − zα/2

√
I ii , θ̂i + zα/2

√
I ii

)
, where I ii denotes the i th diagonal element of the
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inverse of I and za denotes the 100(1 − a) percentile of a standard normal random
variable.

We have supposed the usual asymptotes of the maximum likelihood estimates hold.
However, defective distributions like the mixture model are not proper distributions.
The checking of regularity conditions for the asymptotes by analytical means is not
easy. Such conditions have not been checked even for the standard mixture model. We
suggest analytical checking of the regularity conditions as a possible future work.

In the next section, we perform an extensive simulation study partly to check the
asymptotes of themaximum likelihood estimates. Simulations have been used inmany
papers to assess the behavior of maximum likelihood estimates, especially when an
analytical investigation is intractable.

3 Simulation study

Here, we perform three simulation experiments. The first one is to assess the perfor-
mance of the maximum likelihood estimates with respect to sample size. The second
one is a comparison of defective and mixture models in terms of AIC and cure rate
estimates when the data were generated from a defective model. The third one is
the same as the second one, but the data were generated from a mixture model. All
computations were performed in R Core Team (2014).

Consider that the time of occurrence of an event of interest has cumulative distribu-
tion function F(t). Suppose we want to simulate a random sample of size n containing
real times, censored times and a cure fraction of p. An algorithm to generate data from
the defective model is:

1. Determine the desired parameter values, as well as the value of the cure fraction
p;

2. Generate Mi ∼ Bernoulli (1 − p);
3. If Mi = 0 set t ′i = ∞. If Mi = 1 take t ′i as the root of F(t) = u, where u ∼

uniform (0, 1 − p);
4. Generate u′

i ∼ uniform(0,max (ti )), considering only the finite ti ;
5. Calculate ti = min

(
t ′i , u′

i

)
. If ti < u′

i set δi = 1, otherwise set δi = 0.

In this first experiment, we simulated one thousand random samples each of
size n = 20, 40, . . . , 1000. The random samples were taken to come from (i) the
Marshall–Olkin Gompertz distribution with (a, b, r, p) = (−3, 4, 2, 0.4172); (ii) the
Marshall–Olkin inverse Gaussian distribution with (a, b, r, p) = (−2, 10, 2, 0.4958).
We computed the maximum likelihood estimates, â, b̂, r̂ and p̂, and their standard
errors for each sample. These were used to compute the bias, the mean squared error,
the coverage probability and the coverage length of â, b̂, r̂ and p̂ for each n.

Figures 5 and 6 show the plots of the mean squared errors, the biases, the coverage
probabilities and the coverage lengths of

(
â, b̂, r̂ , p̂

)
versus n for simulated data from

the Marshall–Olkin Gompertz and Marshall–Olkin inverse Gaussian distributions.
We can observe the following from the figures: (i) the mean squared errors for

all parameters generally decrease to zero with increasing n; (ii) the mean squared
errors for all parameters appear reasonably close to zero for all n ≥ 600; (iii) the
mean squared errors appear smallest for the parameter, p; (iv) the mean squared
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errors appear largest for the parameters, b and r ; (v) the biases for all parameters
generally approach zero with increasing n; (vi) the biases for all parameters appear
reasonably close to zero for all n ≥ 600; (vii) the biases appear generally negative for
the parameter, a; (viii) the biases appear generally positive for the parameter, r ; (ix)
the biases appear smallest for the parameter, p; (x) the coverage probabilities for all
parameters generally approach the nominal level with increasing n; (xi) the coverage
probabilities for all parameters appear reasonably close to the nominal level for all
n ≥ 800; (xii) the coverage probabilities appear furthest from the nominal level for
the parameter, r ; (xiii) the coverage lengths for all parameters generally decrease with
increasing n; (xiv) the coverage lengths appear smallest for the parameter, p; (xv) the
coverage lengths appear largest for the parameters, b and r .

These observations are for the Marshall–Olkin Gompertz distribution with
(a, b, r, p) = (−3, 4, 2, 0.4172) and for the Marshall–Olkin inverse Gaussian distri-
bution with (a, b, r, p) = (−2, 10, 2, 0.4958). But many of the observations were the
same when the simulations were repeated for a wide range other values of (a, b, r, p)
for both the Marshall–Olkin Gompertz and Marshall–Olkin inverse Gaussian distrib-
utions.

We also noted that the decrease in coverage lengths with increasing n was slow.
Indeed, some of the coverage lengths in Figs. 5 and 6 do appear large even for a sample
of size 200. Some of the confidence intervals reported in Sect. 4 appear large too. This
suggests a very large sample size may be needed in order to have reliable interval
estimates. It is comforting however two of the three real data sets considered in Sect.
4 have sizes over one thousand.

The second experiment is to compare the performance of the defective models
versus their respective mixture models when the data were generated from defec-
tive models. The Marshall–Olkin Gompertz and Marshall–Olkin inverse Gaussian
defective distributions were simulated using (a, b, r, p) = (−3, 4, 2, 0.4172) and
(a, b, r, p) = (−2, 10, 2, 0.4958), respectively. They were compared to the corre-
sponding mixture versions. Figures 7 and 8 (left) provide a comparison in terms of

Fig. 7 In the left, the plotted line represents the difference between the AIC values obtained under the
Marshall–Olkin Gompertz mixture and defective models, when the data were generated from a defective
model. In the right, the corresponding estimates of p
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Fig. 8 In the left, the plotted line represents the difference between the AIC values obtained under the
Marshall–Olkin inverse Gaussian mixture and defective models, when the data were generated from a
defective model. In the right, the corresponding estimates of p

the AIC. The black line represents the difference between the AIC of the mixture
model and that of the defective model. The difference is positive for all samples sizes,
meaning that the AIC of the defective model is always smaller. On average, the AIC
of the defective model is 1.7704 smaller than the AIC of the mixture model for the
Marshall–Olkin Gompertz distribution. On average, the AIC of the defective model
is 1.0865 smaller for the Marshall–Olkin inverse Gaussian distribution.

Figures 7 and 8 (right) compare the cure rate estimates for mixture and defective
models. We have not compared other parameters since they do not directly relate to
the proposed distributions. The estimates of p under both models appear good for
the Marshall–Olkin Gompertz distribution, see Fig. 7. The quadratic error sum for the
defectivemodel is 0.00130 and that for themixturemodel is 0.00049.This gives a slight
advantage for the mixture model. The estimates of p under the defective and mixture
models appear good also for theMarshall–Olkin inverseGaussian distribution, see Fig.
8. The quadratic error sum for the defective model is 0.00256 and that for the mixture
model is 0.00727. Again a small difference but now in favour of the defective model.

The third and the last experiment is to compare the performance of the defective
models versus their respectivemixturemodelswhen the datawere generated frommix-
ture models. Mixture versions of the Marshall–Olkin Gompertz and Marshall–Olkin
inverse Gaussian distributions were simulated using (a, b, r, p) = (0.2, 0.2, 0.2, 0.5)
and (a, b, r, p) = (2, 2, 0.5, 0.5), respectively. They were compared to the corre-
sponding defective versions. Figures 9 and 10 (left) compare the models in terms of
the AIC. The black line again represents the difference between the AIC of themixture
model and that of the defective model. The differences decrease as n increases for the
Marshall–Olkin Gompertz distribution and become less than zero only when n > 960,
see Fig. 9. The differences appear positive for all sample sizes for the Marshall–Olkin
inverse Gaussian distribution, see Fig. 10. On average, the AIC of the defective model
is 0.8196 smaller than the AIC of the mixture model for the Marshall–Olkin Gom-
pertz distribution. On average, the AIC of the defective model is 0.7511 smaller for
the Marshall–Olkin inverse Gaussian distribution.
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Fig. 9 In the left, the plotted line represents the difference between the AIC values obtained under the
Marshall–Olkin Gompertz mixture and defective models, when the data were generated from a mixture
model. In the right, the corresponding estimates of p

Fig. 10 In the left, the plotted line represents the difference between the AIC values obtained under the
Marshall–Olkin inverse Gaussian mixture and defective models, when the data were generated from a
mixture model. In the right, the corresponding estimates of p

Figures 9 and 10 (right) compare the cure rate estimates for mixture and defective
models. The estimates of p under both models appear good for both Marshall–Olkin
Gompertz and Marshall–Olkin inverse Gaussian distributions. The quadratic error
sums for the defective and mixture models are 0.00715 and 0.00782, respectively, for
the Marshall–Olkin Gompertz distribution. The quadratic error sums for the defective
and mixture models are 0.00288 and 0.00302, respectively, for the Marshall–Olkin
inverse Gaussian distribution.

The differences found in the second and third experiments are small, but they show
clearly that the defective model is better. The results remained the same for a wide
range of other parameter choices. That is, the AIC values and the quadratic error sums
were smaller for the defective model most of the time for a wide range of parameter
choices and for the two distributions. Hence, the defective model can be considered a
viable alternative for the mixture model.
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Section 4 presents three real data applications. The sample size for the first data
set is forty four. The sample size for the second data set is over one thousand. The
sample size for the third data set is over one thousand eight hundred. Hence, the given
point as well as interval estimates for the second and third data sets can be considered
accurate enough. But those for the first data set must be treated conservatively.

4 Applications

To illustrate the distributions presentedwe are going to use three data sets. The first one
relates to a study of recurrence of leukemia in patients who were submitted to a certain
kind of transplantation. Leukemia is a type of cancer that affects the white blood cells
produced by the bone marrow and can take several forms. The data set has forty four
observations with 20.45 percent censoring (nine in total). The maximum observation
time was approximately five years. For details of this data set, see Kersey et al. (1987).

The second data set relates to the time of birth of a second child for a couple and
is based on medical records of births in Norway in 1997. The observed time is the
gap between the birth of the first child and the birth of the second child for the same
couple. The data set consists of 53543 women who had their first child between 1983
and 1997. The censoring indicates whether the woman had a second child, the event
of interest, or if she did not before the end of the study. The data set was previously
analyzed by Aalen et al. (2008). For illustrative purposes, we took a random sample
accounting for 2 percent of the data set, totalling 1071 observations with 69.74 percent
censoring (747 in total).

The third data set arises from one of the first successful trials of adjuvant chemother-
apy for colon cancer. The event of interest here is the recurrence or death for the
individual under the proposed treatment. The data set has 1858 observations and 50.58
percent censoring (938 in total). The data set is available in R Core Team (2014) in
the survival package. Details of this data set can be found in Laurie et al. (1989).

The three data sets represent three different real scenarios (see the Kaplan–Meier
curves later). They were chosen carefully to test the flexibility of the proposed distrib-
utions under different conditions. The first and third data sets are about the recurrence
of a type of cancer. For these data sets, it is fair to assume that there are individuals
who will never have the cancer again, implying a cure rate. For the second data set, the
presence of a cure rate is even more obvious: the immune elements are simply those
couples who do not plan to have a second child.

The Gompertz, the Marshall–Olkin Gompertz, the inverse Gaussian and the
Marshall–Olkin inverse Gaussian distributions were fitted to the data set via maxi-
mum likelihood. The variance of the cure fraction was estimated by using the delta
method. Software packages in the R Core Team (2014) environment were used for
optimization of functions of interest and other computations. The summary of the fit-
ted Gompertz and Marshall–Olkin Gompertz distributions is shown in Tables 1, 2 and
3. The summary of the fitted inverse Gaussian and Marshall–Olkin inverse Gaussian
distributions is shown in Tables 4, 5 and 6.

The fitted survival curves of the proposed distributions for the leukemia data set are
shown in Fig. 11. Those for the birth data set are shown in Fig. 12. Those for the colon
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Table 1 MLEs for the fits of the Gompertz and Marshall–Olkin Gompertz distributions for the leukemia
data set

Distribution Parameter Point estimate SD Low 95% CI Upper 95% CI

Gompertz a −1.5103 0.3696 −2.4399 −0.9349

b 2.3767 0.5171 1.5517 3.6405

p 0.2073 0.0611 0.0875 0.3271

Marshall–Olkin
Gompertz

a −4.0973 0.7898 −5.9783 −2.8082

b 25.6059 9.1558 12.7051 51.6061

r 121.9638 150.2286 10.9085 1363.6302

p 0.191 0.0593 0.0748 0.3071

Table 2 MLEs for the fits of the Gompertz and Marshall–Olkin Gompertz distributions for the birth data
set

Distribution Parameter Point estimate SD Low 95% CI Upper 95% CI

Gompertz a 2.4401 0.3178 1.8172 3.063

b 1.0025 0.0865 0.8329 1.172

p – – – -

Marshall–Olkin
Gompertz

a −8.6164 0.6121 −9.9036 −7.4965

b 84.5282 11.5758 64.6298 110.5529

r 9449.995 7210.3028 2118.2085 42159.4024

p 0.3416 0.0145 0.3132 0.37

Table 3 MLEs for the fits of the Gompertz and Marshall–Olkin Gompertz distributions for the colon data
set

Distribution Parameter Point estimate SD Low 95% CI Upper 95% CI

Gompertz a −2.3372 0.1772 −2.7117 −2.0145

b 2.0014 0.1025 1.8103 2.2127

p 0.4247 0.0115 0.4022 0.4472

Marshall–Olkin
Gompertz

a −4.6989 0.3527 −5.4436 −4.0560

b 11.1570 1.7778 8.1642 15.2469

r 8.7515 2.2139 5.3304 14.3685

p 0.4732 0.0116 0.4505 0.4959

data set are shown in Fig. 13. Table 7 presents the AIC values for all four of the fitted
distributions. Figure 14 plots the Kaplan–Meier estimates of the survival function
versus the predicted values from the proposed distributions. There is a diagonal line
in each plot. The closer the points to this line the better the fit.

The Marshall–Olkin Gompertz distribution is a clear improvement over the Gom-
pertz distribution for all three data sets. The fitted survival curve for the former captures
the Kaplan–Meier curve much better, see Figs. 11, 12, 13 and 14. For all data sets, the
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Table 4 MLEs for the fit of the Marshall–Olkin inverse Gaussian distribution for the leukemia data set

Distribution Parameter Point estimate SD Low 95% CI Upper 95% CI

Inverse Gaussian a −0.0003 0.0141 −0.0279 0.0273

b 3.3612 0.7169 2.2128 5.1057

p 0.0002 0.0021 0.0000 0.0044

Marshall–Olkin
inverse Gaussian

a −1.3387 0.4147 −2.4567 −0.7294

b 1.0507 0.2182 0.6993 1.5786

r 0.0226 0.0247 0.0027 0.1918

p 0.2107 0.0615 0.0902 0.3312

Table 5 MLEs for the fit of the Marshall–Olkin inverse Gaussian distribution for the birth data set

Distribution Parameter Point estimate SD Low 95% CI Upper 95% CI

Inverse Gaussian a 2.1169 0.1277 1.8666 2.3673

b 1.5312 0.101 1.3332 1.7293

p – – – –

Marshall–Olkin
inverse Gaussian

a −1.5842 0.6094 −3.3668 −0.7454

b 1.063 0.09 0.9004 1.2549

r 0.0161 0.017 0.002 0.1274

p 0.2318 0.0129 0.2065 0.2571

Table 6 MLEs for the fit of the Marshall–Olkin inverse Gaussian distribution for the colon data set

Distribution Parameter Point estimate SD Low 95% CI Upper 95% CI

Inverse Gaussian a −1.6688 0.1568 −2.0063 −1.3881

b 7.3406 0.2901 6.7936 7.9317

p 0.3653 0.0112 0.3435 0.3872

Marshall–Olkin
inverse Gaussian

a −0.0012 0.0160 −0.0326 0.0302

b 12.3160 1.0183 10.4734 14.4827

r 2.8375 0.2190 2.4392 3.3009

p 0.0005 0.0005 −0.0005 0.0016

Marshall–Olkin Gompertz distribution estimates a by a negative value with a negative
confidence interval. The Gompertz distribution gives a negative interval for a for the
leukemia and colon data sets but estimates a by a positive value for the birth data set.
So, the birth data set is an example, where the baseline distribution does not yield
a defective model, while the Marshall–Olkin extension gives a much better fit as a
defective model. All but the Marshall–Olkin inverse Gaussian distribution appear to
estimate the cure fraction in the expected range in relation to the Kaplan–Meier curve.
The Marshall–Olkin inverse Gaussian distribution appears to underestimate the cure
fraction for the birth and colon data sets.
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Fig. 11 Survival curves for thefittedGompertz,Marshall–OlkinGompertz, inverseGaussian andMarshall–
Olkin inverse Gaussian distributions for the leukemia data set
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Fig. 12 Survival curves for thefittedGompertz,Marshall–OlkinGompertz, inverseGaussian andMarshall–
Olkin inverse Gaussian distributions for the birth data set
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Fig. 13 Survival curves for thefittedGompertz,Marshall–OlkinGompertz, inverseGaussian andMarshall–
Olkin inverse Gaussian distributions for the colon data set
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Table 7 AIC values for the fitted defective distributions compared with their respective mixture models

Distribution Leukemia Birth Colon

Defective Mixture Defective Mixture Defective Mixture

Gompertz 52.58 50.74 321.74 197.17 1518.02 1520.02

MO Gompertz 37.16 37.88 80.56 136.75 1488.64 1484.79

Inv. Gaussian 51.38 36.43 99.94 114.36 1597.47 1668.36

MO Inv. Gaussian 35.35 38.34 72.54 109.73 1529.34 1601.22

The bold numbers represent the smallest value between the defective and mixture models in a given data
set

The Marshall–Olkin inverse Gaussian distribution is a clear improvement over the
inverse Gaussian distribution for all data sets, especially for the leukemia data set.
The fitted survival curve for the former captures the Kaplan–Meier curve much better.
For the birth data set, both distributions appear to perform equally well at first, but
as time increases the tail of the inverse Gaussian distribution gets distanced from the
Kaplan–Meier curve while that of the Marshall–Olkin inverse Gaussian distribution
keeps close. For the leukemia data set, the inverse Gaussian distribution estimates a
by a very small negative value, giving a very small estimate of the cure fraction not
significantly different from zero. For the leukemia and birth data sets, the Marshall–
Olkin inverse Gaussian distribution estimates a by a negative value with a negative
confidence interval. The estimate of a for the colon data set is close to zero, leading
to a very small cure fraction.

The estimate of r for Marshall–Olkin distributions is significantly different from 1,
meaning that those distributions provide better fits. This can also be checked in Fig.
14. The Marshall–Olkin distributions have points closer to the diagonal line than the
baseline distributions.

Table 7 shows there is a big reduction in AIC values when the Marshall–Olkin
Gompertz and Gompertz distributions are compared and when the Marshall–Olkin
inverse Gaussian and inverse Gaussian distributions are compared.

For the leukemia and birth data sets, the best fitting defective model is the
Marshall–Olkin inverse Gaussian distribution, the second best fitting model is the
Marshall–Olkin Gompertz distribution, the third best fitting model is the inverse
Gaussian distribution and the worst fitting model is the Gompertz distribution. For
the colon data set, the best fitting defective model is the Marshall–Olkin Gompertz
distribution, the second best fitting model is the Gompertz distribution, the third best
fitting model is the Marshall–Olkin inverse Gaussian distribution and the worst fitting
model is the inverse Gaussian distribution.

Table 7 also compares the AIC values between the defective and mixture models
based on the Gompertz, Marshall–Olkin Gompertz, inverse Gaussian and Marshall–
Olkin inverseGaussian distributions. The bold value represents the smaller value in the
comparison. The defectivemodel performs better for the leukemia data set when based
on the Marshall–Olkin Gompertz and Marshall–Olkin inverse Gaussian distributions.
The defective model is better for the birth data set when based on all but the Gompertz
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distribution. The defective model is better for the colon data set when based on all but
the Marshall–Olkin Gompertz distribution.

5 Conclusions

We have proposed two new distributions by using an idea due to Marshall and Olkin.
These distributions can assume a defective form. In this way, the cure rate can be
estimated bymodels having one less parameter than the usual standardmixturemodels.

Three real data applications have shown that Marshall–Olkin distributions perform
muchbetter than knowndefection distributions in terms of likelihood values, proximity
to the Kaplan–Meier curve and AIC values. Further investigations are needed to verify
the potential of such distributions as cure fraction models.
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