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Abstract We consider methods for the analysis of discrete-time recurrent event data,
when interest is mainly in prediction. The Aalen additive model provides an extremely
simple and effective method for the determination of covariate effects for this type of
data, especially in the presence of time-varying effects and time varying covariates,
including dynamic summaries of prior event history. The method is weakened for pre-
dictive purposes by the presence of negative estimates. The obvious alternative of a
standard logistic regression analysis at each time point can have problems of stability
when event frequency is low and maximum likelihood estimation is used. The Firth
penalised likelihood approach is stable but in removing bias in regression coefficients
it introduces bias into predicted event probabilities. We propose an alterative modi-
fied penalised likelihood, intermediate between Firth and no penalty, as a pragmatic
compromise between stability and bias. Illustration on two data sets is provided.
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1 Introduction

Assume that n individuals are observed at times t = 1, 2, . . . , τ , at each of which there
is a binary event indicator Yit , an at-risk indicator Rit and a p-dimensional predictable
covariate vector xit , which includes an intercept and may include dynamic covariates
as considered by Aalen et al. (2004) and Fosen et al. (2006). The objective of interest
in this work is the derivation of predictive event probabilities.

A variety of methods for dealing with longitudinal binary data of this form are
available (Diggle et al. 2002). If τ is large however, it is sometimes convenient to
borrow and adapt ideas developed for continuous time event history data. This was
the approach taken by Borgan et al. (2007) in an analysis of data obtained as part of a
programme of health education and sanitation improvements carried out in Salvador,
Brazil. In their data set, daily records of diarrhoea were kept for 926 children over 455
days inwhatwas termedPhase II of a larger programme, the event being the occurrence
of diarrhoea (prevalence) or the start of an episode of diarrhoea (incidence). Analysis
of similar data collected later in Phase III of the programme formed the original
motivation for the work described in this paper, with emphasis now on prediction of
events rather than modelling and estimation of covariate effects. We shall describe the
data and our analyses in Sect. 6.

Henderson and Keiding (2005a, b) discussed prediction of single-event survival
times and showed that accurate prediction should not be expected for even well-
fitting statistical models with highly significant covariates. For recurrent event data
there is perhaps hope for higher predictive power, at least dynamically, in the sense of
learning about the subject under study as knowledge of their individual event frequency
accrues.We are not aware of this having had close attention in the event-time literature,
although there has been related work on the use of longitudinal biomarker information
in dynamic/landmark prediction of single-event residual lifetimes (eg. Henderson et al.
2002; Proust-Lima and Taylor 2009; van Houwelingen and Putter 2011).

For this work we are interested in one-step-ahead prediction of events. Let Ft be
the history or filtration generated by all covariates, observation patterns and event
histories up to and including time t . Then define

πi t = πi t (Ft−1) = P
(
Yit = 1

∣
∣Ft−1

)

together with a parametric model πi t (β). Our purpose is to consider modelling and
estimation strategies aimed at minimising the loss between observation and predictive
probability, measured through some loss function L(Y, π). We will concentrate on
models incorporating a time-varying linear predictor

αi t = αi t (β) = βt0 + βt1xit1 + · · · + βtpxitp

with separate estimation at each time t and no smoothing of the coefficients {βt j } over
time. Borgan et al. (2007) used the Aalen additive model

πi t = Ritαi t (1)
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with least-squares estimation, an approach that is popular in the continuous-time event
history literature (Martinussen and Scheike 2006).With binary data in mind, a perhaps
more obvious approach would be based on logistic models

πi t = Rit
eαi t

1 + eαi t
= Ritexpit(αi t ). (2)

Either maximum likelihood or penalised maximum likelihood estimation as proposed
by Firth (1993), Heinze and Schemper (2002) and Heinze (2006) can be used for esti-
mation. In the following section we discuss the relative advantages and disadvantages
of these methods as we see them. In Sect. 3 we argue for a very simple modification
of the penalised likelihood approach. This modification is considered in detail for a
simple special case in Sect. 4, before its use is illustrated in two applications in the next
two sections. In Sect. 5 we consider data on timing of morphine requests for patients
recovering from surgery, and in Sect. 6 we turn to the Phase III diarrhoea data referred
to earlier.

2 Motivation

TheAalen additivemodelling approach based on (1) has a large number of advantages.
Parameters βt can be estimated quickly and easily at each t using least squares:

β̂t =
(
XT
t Xt

)−1
XT
t Yt ,

in the obvious vector/matrix form (and with dependence on {Rit } supressed). Provided
XT
t Xt is not singular, β̂t always exists evenwhen events are rare. If there are no events at

time t then π̂i t is automatically zero, which is the nonparametric maximum likelihood
estimator. Inference based on the cumulative coefficients

B̂ j t =
t∑

u=1

β̂ ju

is supported by powerful underpinning martingale theory, closed-form variance esti-
mators are available and a martingale central limit theorem can usually be deployed.
Inspection of plots of B̂ j (t) against t provides an extremely quick and effective tool
to characterise covariate effects, especially if they change over time. A disadvantage
of course is that π̂i t is not structurally bounded, and estimates bigger than one or less
than zero can occur. When interest is in covariate effects this has no pragmatic conse-
quence, and in our opinion the additive model is extremely effective when modelling
event time data. For prediction however the picture is different, especially when events
are rare, in which case π̂i t can often be negative and hence of at best limited use.

The logistic model (2) automatically bounds the estimates, at the cost of no closed-
form estimation and the loss of the martingale machinery and simple interpretation
of cumulative coefficients. Nonetheless, maximum likelihood estimation is straight-
forward and plots of β̂ j t against t are usually informative, provided some post-hoc
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smoothing is applied. On the other hand, when events are rare and
∑

i Yit is low,
there can often be separation or quasi-separation (Albert and Anderson 1984), leading
in principle to infinite parameter estimates and in practice non-convergence of iter-
ative optimisation algorithms. Worryingly, and as pointed out by Heinze (2006), it
can happen that likelihood convergence criteria are met and routines falsely indicate
convergence. An illustration of this when the glm routine in R is used for estimation
is presented in the Appendix. Obviously a careful analyis of a single data set would
reveal separation problems, usually through highly extreme estimates and associated
huge standard errors. In our case however we recall that we will repeat the logistic
regression procedure for each t from 1 to τ , and if τ is large it is not feasible to pay
close attention to each individual analysis. In the example of Sect. 5 for instance,
τ =2,351.

A simple solution to separation problems was proposed in influential work of
Heinze and Schemper (2002) and Heinze (2006). They advocated use of a modi-
fied score technique originally developed by Firth (1993) as a general approach to
remove first-order bias in parametric problems. Firth showed that for exponential
families with canonical parameterization, his method was equivalent to penalising the
likelihood with a Jeffreys prior. Heinze and Schmemper pointed out that the same
penalised likelihood technique is effective in overcoming separation problems in
logistic regression. Thus, in our context, at each t , instead of maximising the log-
likelihood �(βt ), Heinze and Schemper (2002) propose maximisation of the penalised
log-likelihood

�∗(βt ) = �(βt ) + 1

2
log

∣∣I (βt )
∣∣ (3)

where I (βt ) is the information. As n increases the penalty term becomes negligible
in comparison with �(βt ), and the method reduces to standard logistic regression.
Separation is not then an issue of course: it is a concern in the main for modest sample
size n and relatively low event frequency. In these circumstances the method works
well in stabilising regression coefficients and outperforms an alternative exact logistic
regression approach (eg. Mehta and Patel 1995), with or without stratification and
conditioning (Heinze 2006; Heinz and Puhr 2010), The procedure is fairly easy to
apply and software is available for routine use. A price for predictive purposes is that
in using a bias-correction technique for regression parameter estimates, the penalised
likelihood approach introduces bias for predicted event probabilities. This will be
illustrated in the next two sections.

First, we recap the discussion so far. We are interested for predictive purposes
in fitting binary regression models at a potentially large number of timepoints τ , in
circumstances where the event probability might be relatively low. The Aalen additive
approach is pragmatic and successful for covariate effect analysis but weakened for
predictive purpose by the presence of negative estimates. Standard logistic regression
models can be unstable with few events and modest sample sizes. The Firth penalised
approach is stable but in removing bias in regression coefficients it introduces bias
into predicted event probabilities.

123



546 E. Elgmati et al.

3 Logistic regression with modified penalised likelihood estimation

Our proposal is to use a logistic model with a modified penalised likelihood estimation
approach, intermediate between the full Jeffreys penalty and no penalty at all. In
exploring this suggestion, for the next two sections we will drop the subscript t and
at-risk indicator and consider single samples of binary data.

We shall begin with a short historical diversion, which will involve a temporary
change in notation and assumptions. Assume for now that there can be repeated design
points, ie n j observations at covariate value x j , resulting in Y j ∼ B(n j , π j ) events.
The logistic model began to be seen as an alternative to probit regression in the late
1940s and early 1950s, advocated in particular by Berkson (eg. Berkson 1953 and
references therein). Computational challenges meant that maximum likelihood was
not generally feasible and hence there was close attention to alternative estimation
procedures. One proposal was to look for a transformation of Y j whose expectation is
linear in x j so that weighted least squares could be used. Anscome (1956) proposed
the transformation

Z j = log

(
Y j + 1

2

n j − Y j + 1
2

)

and explained that the addition of 1/2 to numerator and denominator meant that Z j

was very nearly unbiased for log
(
π j/(1 − π j )

) = βx j . Cox (1970), quotingAnscome
(1956) and also Haldane (1956), amplified the argument. Dropping the subscript j and
starting with the “empirical logistic transform”

Zλ = log

(
Y + λ

n − Y + λ

)
, (4)

Cox let U = (Y − nπ)/
√
n, so E(U ) = 0 and Var(U ) = π(1 − π). Then

Zλ − log

(
π

1 − π

)
= log

{
1 + U

π
√
n

+ λ

πn

}
− log

{
1 − U

(1 − π)
√
n

+ λ

(1 − π)n

}

= U

π(1 − π)
√
n

+ λ(1 − 2π)

π(1 − π)n
− (1 − 2π)U 2

2π2(1 − π)2n
+ o

(
1

n

)

and

E[Zλ] − log

(
π

1 − π

)
= (1 − 2π)(λ − 1

2 )

π(1 − π)n
+ o

(
1

n

)
. (5)

Setting λ = 1
2 removes the first order bias term, as claimed by Anscome (1956).

With characteristic prescience, Cox wrote “It is interesting, but not essential for the
argument, that we can nullify the term in 1/n in [our (5)] by a single choice of [our
λ], independent of [our π ]”, thus pre-empting, for this special case, the more general
argument of Firth.

As an illustration of his bias correction technique, Firth (1993) also used the
single binomial observation model. The target parameter is β = log{π(1 − π)},
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the information is proportional to π(1 − π) and the penalised log-likelihood is
simply

�∗(β) = Y logπ + (n − Y ) log(1 − π) + 1

2
log{π(1 − π)}. (6)

Maximisation of �∗(β∗) leads to

β∗ = log

(
Y + 1

2

n − Y + 1
2

)

,

which is precisely the Anscome empirical logistic transformation.
If, instead, we choose to maximise the alternatively penalised log-likelihood,

�∗(β) = Y logπ + (n − Y ) log(1 − π) + λ log{π(1 − π)}, (7)

then

β∗ = log

(
Y + λ

n − Y + λ

)
(8)

is obtained, ie the starting point (4) for the Cox (1970) derivation. By varying λ from
0 to 1/2 we can move between standard logistic regresssion (almost unbiased for π

but biased for β, undefined for Y = 0 or Y = n) to the Firth-corrected version (almost
unbiased for β but biased for π , well-defined at Y = 0 and Y = n).

We now return to the general case and state our proposal. When interest is in pre-
diction using a logistic model but events are rare, then a modified penalised likelihood
model might be advocated: estimate by maximisation of

�∗(β) = �(β) + λ log
∣
∣I (β)

∣
∣. (9)

for a given λ. Typically we would take λ to be between 0 and 0.5.

3.1 Bias in regression parameter β

Suppose β is the parameter interest. Let U (β) be the score and I (β) be the observed
information. Let the first-order bias of themaximum likelihood estimator β̂ be b(β)/n.

Firth (1993) considered a modified estimating equation of the form

U∗(β) = U (β) + A(β),

where A(β) is O(1) as sample size n increases. Firth showed that the bias of the
estimator solving U∗(β) = 0 is

b(β)

n
+ i−1(β)α(β) + O

(
n−3/2

)
(10)

where i(β) is the expected information and α(β) is the null expectation of A(β). He
also showed that if β is the canonical parameter in an exponential family model, then
choosing A(β) such that
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α(β) = 1

2

∂ log
∣
∣i(β)

∣
∣

∂β

removes the first-order bias term. Hence from (10)

b(β) = −n

2
i−1(β)

∂ log
∣
∣i(β)

∣
∣

∂β
. (11)

If we set

U∗(β) = U (β) + λ
∂ log

∣
∣i(β)

∣
∣

∂β
,

then we can estimate by solvingU∗(β) = 0 using a simple adjustment to the Newton–
Raphson estimation procedure for the Firth penalty, as described by Heinze and
Schemper (2002). The new modified estimator β∗ has from (10) and (11) bias

(
λ − 1

2

)
i−1(β)

∂ log
∣∣i(β)

∣∣

∂β
+ O(n−3/2). (12)

In the logistic case with

πi = πi (β) = expit(βxi ),

the observed information

I (β) =
∑

i

πi (1 − πi )xi x
T
i

does not depend on responses {Yi } and is hence equivalent to the expected information,
conditional on covariates.

3.2 Bias in predictive probability π

Now let π0(β) be the estimated event probability of a new observation with covariate
x0. In order to study the bias of π0(β

∗) we write

β∗ = β + Bn

where Bn is a sample-dependent random variable with mean μn + O(n−3/2) and
variance 	n + O(n−3/2), where

μn =
(

λ − 1

2

)
i−1(β)

∂ log
∣∣i(β)

∣∣

∂β
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is the leading bias term in (12) and

	n = i(β)−1

is the leading order term in the (robust) variance of β∗. Then recalling that we are
interested in small eβ∗x0 , we can take the expansion

eβ∗x0

1 + eβ∗x0 =
∞∑

k=1

(−1)k+1ekβ
∗x0 . (13)

Since β∗ differs from the MLE by terms that are O(n−1), we proceed by assum-
ing that β∗ is Normally distributed and hence that the expectation of (13) can be
approximated by the finite sum

E
[
π0(β

∗)
] �

K∑

k=1

(−1)k+1 exp
{
k(β + μn)x0 + k2xT0 	nx0/2

}
. (14)

Our experience from simulations and the exact calculations of the following section,
is that good approximations are obtained if K is two or more. For example, Table 1
provides estimates for three new observations when there is a single standard Normal
covariate and a sample of size n = 100 is used for estimation of β. Given that λ is
positive, there is overestimation as expected, which becomes worse as λ approaches
0.5. The theoretical values of expected π∗

0 (β∗) from (14) match the empirical means
from 3,000 simulated samples very closely for K = 2 and K = 3 but are too high at
K = 1.

4 Two groups

Examination of the simple two-group situation is informative as exact calculation
is possible. We will once more change notation temporarily. Let Y0 be the number
of events amongst n0 subjects in group zero with x = 0, and Y1 and n1 be the
corresponding values for group one with x = 1. The event probabilities are π0 and
π1, parametrised in a logistic model as

π0 = expit(β0) π1 = expit(β0 + β1).

The maximum modified penalised likelihood estimates are

β∗
0 = log

(
Y0 + λ

n0 − Y0 + λ

)
β∗
1 = log

(
Y1 + λ

n1 − Y1 + λ

)
− log

(
Y0 + λ

n0 − Y0 + λ

)

and

π∗
0 = Y0 + λ

n0 + 2λ
π∗
1 = Y1 + λ

n1 + 2λ
.
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Table 1 Predictive probabilites with modified penalised likelihood estimation

x0 = (1, −1) x0 = (1, 0) x0 = (1, 1)

True π

0.029 0.047 0.076

Empirical mean π∗
0 (β∗) from 3,000 simulations

λ = 0.1 0.032 0.046 0.075

0.2 0.034 0.047 0.077

0.3 0.035 0.049 0.079

0.4 0.036 0.050 0.081

0.5 0.037 0.052 0.083

E
[
π0(β

∗)
]
from (14) with K = 1

λ = 0.1 0.035 0.048 0.083

0.2 0.037 0.050 0.085

0.3 0.038 0.052 0.088

0.4 0.040 0.054 0.091

0.5 0.041 0.056 0.094

E
[
π0(β

∗)
]
from (14) with K = 2

λ = 0.1 0.033 0.045 0.074

0.2 0.034 0.047 0.076

0.3 0.035 0.049 0.078

0.4 0.037 0.050 0.080

0.5 0.038 0.052 0.082

E
[
π0(β

∗)
]
from (14) with K = 3

λ = 0.1 0.033 0.046 0.075

0.2 0.034 0.047 0.077

0.3 0.036 0.049 0.080

0.4 0.037 0.051 0.082

0.5 0.039 0.053 0.084

Sample size n = 100, β = c(−3,−1), one standard Normal covariate

The bias and mean square error of each of π∗
0 and π∗

1 can easily be found. For
example, π∗

0 has bias

b(π∗
0 ) = λ(1 − 2π0)

n0 + 2λ

and mean square error

MSE(π∗
0 ) = n0π0(1 − π0) + λ2(1 − 2π0)

2

(n0 + 2λ)2
.
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Fig. 1 Expected values and mean square errors of regression parameters β∗ with modified penalised
likelihood estimation for the two-group case. Sample sizes n0 = n1 = 50 and event probabilitiesπ0 = 0.03
and π1 = 0.06. The horizontal dashed lines in the upper plots show the true values, and the vertical dotted
lines in the lower plots indicate the λ that gives the minimum combined mean square error of prediction

As an aside we note that if interest was only in π0 then this mean square error could
be minimised at

λopt = 2π0(1 − π0)/(1 − 2π0)
2, (15)

showing that the modified technique can outperform both standard maximum likeli-
hood and the Firth/Jeffreys penalty approach.

Properties of β∗
0 and β∗

1 need to be obtained numerically, by averaging over the
binomial distributions ofY0 andY1. Figures 1 and 2 show the expected values andmean
square errors of the modified penalised likelihood estimators β∗ and π∗ respectively,
at n0 = n1 = 50 and π0 = 0.03, π1 = 0.06. As expected, each element of the
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Fig. 2 Expected values and mean square errors of predictive probabilities π∗
λ with modified penalised

likelihood estimation for the two-group case. Sample sizes n0 = n1 = 50 and event probabilitiesπ0 = 0.03
and π1 = 0.06. The horizontal dashed lines in the upper plots show the true values, and the vertical dotted
lines in the lower plots indicate the λ that gives the minimum combined mean square error of prediction

regression parameter β∗ is almost unbiased for λ = 0.5 but quite severely biased at λ
near zero. The predictive probabilities π∗ have the opposite properties, as expected.
Both β∗ and π∗ have decreasing variance as λ increases (not shown). Combining this
with decreasing bias obviously leads to decreasingmean square error for the regression
parameter β∗. For π∗ by contrast, the bias increases with λ, leading in this example
to a local minimum in root mean square error for both probability estimates.

Turning to predicting a new observation, we might consider the value of λ that
minimises an overall mean square error

w0E
[(

π∗
0 − π0

)2] + (1 − w0)E
[(

π∗
1 − π1

)2]
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where w0 reflects the weight to be attached to x = 0. The optimal value of λ solves a
cubic equation with coefficients depending on π0, π1, n0, n1 and w0, and no simple
expression is available, although it is easy to calculate numerically. When n0 = n1
there is a closed form, namely

2w0π0(1 − π0) + 2(1 − w0)π1(1 − π1)

w0(1 − 2π0)2 + (1 − w0)(1 − 2π1)2
. (16)

This value is indicated in Figs. 1 and 2, evaluated at w0 = 0.5. It is interesting to note
that its value is extremely close in this example to λopt calculated from (15) but with
π0 replaced by the marginal event probability, (π0 + π1)/2, namely λopt = 0.1038
from (15) compared with λ = 0.1031 from (16).

5 Application I: patient controlled analgesia

We consider event time data from n = 65 patients monitored for 2 days following
stomach surgery. The event is the self-administration of a bolus of painkiller (mor-
phine), and the timescale is minutes. There are two groups: the morphine bolus was
set at 2mg for 39 patients (group 0) and the pump then locked out automatically for
8 min; for 35 patients (group 1) the bolus was 1mg and the lockout time was 4 min.
Covariate information is available on operation type (extensive incision = 1, other =
0), gender, categorised age, weight and initial loading of painkiller. We also defined
a dynamic covariate Dit as the event rate over the previous 3 h for patient i , with
proper allowance for lockout period and with predictions not starting until 180 min
so that Dit is always well defined. Following Aalen et al. (2004), Fosen et al. (2006)
and Borgan et al. (2007), rather than using Dit directly in modelling, we replaced it
with the residual from a linear model of Dit on xi , the remaining covariates. In this
way the indirect effects of xi on Dit do not dilute the estimated direct effects of xi on
event rates.

Over the 2,880 min 2-day period, there were 529 timepoints on which no events
occured. These were taken out of the analyses, leaving τ = 2, 351 event times. Inci-
dence at these varied from 1.6 to 21.7% events, with marginal rate 3.6%. Excluding
the first 180 min, logistic regression successfully converged at just 104 time-points,
the R routine glm indicated non-convergence at 1,557 time-points, and there were 525
points where there was clear false convergence, ie the routine indicated convergence
but at least one standard error was over 1,000. A logistic modelling approach with
standard maximum likelihood is clearly not appropriate for these data.

Useful information and valid inferences can be obtained quickly and easily however
using the Aalen additive model for discrete time and with dynamic covariates, as
described byBorgan et al. (2007). Figure 3 shows the cumulative estimates B̂t obtained
from the fit. Patients in group 1,with the lower bolus size, hadmore events than those in
group 0, as expected. Operation type, gender, age and initial loading are all important
in determining event rate, but the most striking feature of Fig. 3 is the strong and
hugely significant effect of the dynamic covariate, essentially recent event rate. This
is an indicator of heterogeneity between patients, akin to a frailty effect.
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Fig. 3 PCA data. Cumulative regression coefficients B̂t for Aalen additive model fit, with approximate
95% pointwise confidence intervals

Turning to our main focus, prediction, in the following we use leave-one-out meth-
ods so that predictive probabilty estimates π∗

(i)t = P(Yit = 1
∣
∣β∗

(i),Ft−1) are based
on parameters estimated with the patient of interest excluded. Individual-specific his-
tories up to time t are incorporated in Ft−1 so that the dynamic covariate Dit can be
used for prediction. Of a total of just over 150,000 patient-time estimates π∗

(i)t , some
31% were negative when the Aalen additive model was used for estimation. Hence
we do not consider this model for predictive purposes.

The Firth and modified penalised likelihood methods always converged and always
provided what seemed to be reasonable predictive probabilities. Table 1 summarises
the results for a variety of penalty parameters λ. The table gives the Brier score (BS),
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the summed jackknife deviance residuals

JD = −
∑

t

∑

i

{
Yit logπ∗

(i)t + (1 − Yit ) log
(
1 − π∗

(i)t

)}
(17)

and the predictive total number of events

PT =
∑

t

∑

i

π∗
(i)t . (18)

The Brier score is a poor measure for rare events as better scores can sometimes be
obtained from, for example, a constant prediction of even zero (eg. Ferro and Stephen-
son 2012; Jachan et al. 2009). It is included for completeness. Both the Brier score
and the preferred jackknife deviance are minimised in Table 1 at λ = 0.1 within
the set of values considered. Changes in deviance are highly significant. The predic-
tive totals can be compared with the observed post-burn-in total of 4,373 events. As
expected, the Firth method (λ = 0.5) leads to over-prediction, though it is more severe
than might have been anticipated. The over-prediction is reduced as λ is decreased
and event probability estimates become less biased. Overall it seems that the mod-
ified penalised likelihood method with λ = 0.1 finds a nice compromise for these
data between convergence problems with standard maximum likelihood and biased
probability estimates with the Firth/Jeffreys penalty.

Figure 4 shows the cumulative total observed and leave-one-out predicted numbers
of events for two subjects, onewith a high number of events and onewith a lownumber.
They were chosen as the people closest to the 90 and 10% points of the ordered total
event count data. Predictions were made using both the Firth penalty and the modified
penalty at λ = 0.1. The former method severely over-predicts events, but the latter
works well for these people.

6 Application II: infant diarrhoea

Our second application is to data on occurrence of infant diarrhoea. As part of Phase III
of the Blue Bay sanitation programme in Salvador, Brazil, daily diarroea records were
kept for n =1,127 infants over τ = 227 days between October 2003 and May 2004.
Similar data collected in Phase II of the programme were analysed in Borgan et al.
(2007). Events correspond to the 1st day of a new episode of diarrhoea, with episodes
considered to end when 3 or more days occurred without diarrhoea. We consider five
baseline covariates and one dynamic one. The baseline covariates are mothers’ age,
housing occupation density (1 if two or more people per room, 0 otherwise), presence
of nearby open sewerage, waste collection frequency (0 if frequent, 1 if less frequent)
and whether the local streets had been paved. The dynamic covariate Dit is the rate of
previous events before time t , defined as number of events divided by number of days
at risk. We took a 10-day burn-in and all summaries below exclude this period.

The marginal incidence rate was 0.8%, with daily rates varying from 0.1 to 4.6%,
excluding 8 days on which no events occur. Although the sample size is large, the
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Fig. 4 PCA data. Observed and predicted cumulative number of events for two patients

low marginal incidence rate means that separation and convergence problems occur.
When attempting to fit a logistic model to the daily data, standardmaximum likelihood
converged just 86 times, and there was false convergence (likelihood convergence but
at least one standard error above 1,000) for 123 days. The R routine glm indicated
convergence for all 209 analyses.

Figure 5 shows the cumulative regression coefficientswhen anAalen additivemodel
is fit to the data using the samemethods as used byBorgan et al. (2007) in their analysis
of data from the earlier Phase II of the Blue Bay programme. Incidence is lower for
infants with relatively oldmothers, but is higher for infants living in relatively crowded
accommodation or areas with poor garbage services. Presence of open sewerage and
unpaved roads had little effect on incidence, but again the dynamic covariate is highly
significant, with compelling evidence that infants with a history of diarrhoea are more
prone to future occurrence. Turning to prediction, 24% of the approximately 250,000
infant-days had negative predictive probabilities under this model.

Table 3 summarises predictive performance when we use Firth or modified
penalised likelihood to fit a logistic model. The observed total number of events was
1,393, and with that in mind the picture is very similar to that of Table 2. Choosing to
penalise at a value of λ = 0.1 or 0.2 is to be recommended.

7 Discussion

We have proposed a modified penalised likelihood for logistic regression when inter-
est is in prediction. Choosing weight λ around 0.1 seems to give a good trade-off
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Fig. 5 Diarrhoea data. Cumulative regression coefficients B̂t forAalen additivemodel fit, with approximate
95% pointwise confidence intervals

between separation and stability issues when events are rare, and the bias in prob-
ability estimates π that is introduced when attempting to remove first-order bias
in estimates of regression parameters β. Although our motivation in this work has
been on dynamic analysis of recurrent event data, the proposed technique might be
useful for standard single-sample analysis of binary data, and perhaps in more general
parametric modelling. A fuller careful investigation is needed.

When there are recurrent events, another method that can deal with separation
issues is to undertake some form of smoothing, perhaps to analyse data pooled over
a moving window of time points rather than separately at each. Missing data need
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Table 2 PCA data

λ BS JD PT

0.5 0.0334 18031.6 11106.5

0.4 0.0321 16768.4 9720.1

0.3 0.0310 15578.4 8298.3

0.2 0.0301 14585.4 6850.6

0.1 0.0298 14190.2 5387.7

0.05 0.0300 14735.6 4653.6

Predictive probability summary for logistic models with modified penalised likelihood estimation: BS =
Brier score; JD = jackknife deviance statistic (17) PT = predictive total (18)

Table 3 Diarrhoea data

λ BS JD PT

0.5 0.00783 7603.1 2081.919

0.4 0.00781 7562.0 1948.586

0.3 0.00779 7531.0 1814.107

0.2 0.00777 7515.4 1677.859

0.1 0.00776 7528.5 1540.032

0.05 0.00776 7547.4 1470.508

Predictive probability summary for logistic models with modified penalised likelihood estimation: BS =
Brier score; JD = jackknife deviance statistic (17); PT = predictive total (18)

particularly careful attention in this case, as individuals may be observed in some
but not all times in the window. Missing data can also be problematic if the purpose
is to predict events more than one time point ahead. Assessing predictive accuracy
then becomes challenging, as does inclusion of dynamic covariates and some form
or marginalisation is likely to be required. For example we might be interested in
predicting at time t the cumulative number of events over the period t +1 to t +k. Our
preferred model might assume that the probability of an event at any time can depend
on the occurrence or not of an event at the immediately preceding time. Unless k = 1
this data is not available and either we marginalise over possible values or we restrict
ourselves to dynamic covariates that exclude the k−1most recent time points. Another
issue that needs to be dealt with is when the occurrence of an event immmediately
precludes further events for a time. In the patient controlled analgesia application
for instance, the analgesia machinery automatically locked out for either 4 or 8 min
following each dose. In the diarrhoea application, a new episode of diarrhoea cannot
occur unless there have been at least two diarrhoea-free days since the last episode.
Episodes being of random length (mostly 1–5 days) brings another difficulty. This is
the focus of current work by the authors.
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Appendix: logistic regression with separation not detected in R

In the following, y is a vector of length 100, with all elements zero except the first,
which is one, and x1 is a vector of 50 zeros followed by 50 ones, representing two
equally sized groups. If we attempt to fit the logistic regression

πx = P
(
Y = 1

∣∣x
) = expit

(
β0 + β1x

)

then clearly a perfect fit is obtained at β̂0 = logit(1/50) = −3.892 and β̂1 = −∞.
Some R (version 3.1.2) output, edited to remove unnecessary material (marked by
[...], is:

> fit=glm(y˜x1,family=’binomial’)
> summary(fit)

[...]

Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.892 1.010 -3.853 0.000117 ***
x1 -17.674 4134.091 -0.004 0.996589

[...]

> unique(fit$fitted.values)
[1] 2.000000e-02 4.305023e-10
> fit$converged
[1] TRUE

Of most concern is the statement of convergence, which is true because the max-
imised likelihood has indeed converged: moving either of the coefficients away from
their current values leads to no improvement. The fitted probabilities π̂0 and π̂1 are
accurate but clearly β̂1 is unrealistic. Uncritical assessment of the results might lead
to this problem being missed.

If we use the Firth correction as implemented in Kosmidis’ bias reduction package
brglm, we obtain:

> fitbr=brglm(y˜x1,family=’binomial’)
> summary(fitbr)
[...]

Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.497 0.837 -4.177 2.95e-05 ***
x1 -1.119 1.662 -0.673 0.501

> unique(fitbr$fitted.values)
[1] 0.029411765 0.009803922
> fitbr$converged
[1] TRUE

123



560 E. Elgmati et al.

Hence the coefficients are stabilised, at the expense of higher values of π̂0 and π̂1
as expected. Heinze’ package logistf gives the same results.
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