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Abstract In a nested case–control study, controls are selected for each case from
the individuals who are at risk at the time at which the case occurs. We say that the
controls are matched on study time. To adjust for possible confounding, it is common
to match on other variables as well. The standard analysis of nested case–control data
is based on a partial likelihood which compares the covariates of each case to those of
its matched controls. It has been suggested that one may break the matching of nested
case–control data and analyse them as case–cohort data using an inverse probability
weighted (IPW) pseudo likelihood. Further, when some covariates are available for
all individuals in the cohort, multiple imputation (MI) makes it possible to use all
available data in the cohort. In the paper we review the standard method and the IPW
and MI approaches, and compare their performance using simulations that cover a
range of scenarios, including one and two endpoints.
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1 Introduction

Cox regression is commonly used to assess the influence of risk factors and other
covariates on mortality or morbidity. Estimation in Cox’s model is based on a partial
likelihood, which at each observed death or disease occurrence compares the covariate
values of the individual who experienced the event of interest to those of all individ-
uals at risk. Thus Cox regression requires collection of covariate information for all
individuals in the cohort, including when only a small fraction of the individuals expe-
rience the event of interest. This may be very expensive in large cohorts. Further, when
covariate measurements are based on biological material stored in biobanks, it will
imply a waste of valuable material that one may want to save for future studies.

Cohort sampling designs, where covariate information is collected for all indi-
viduals who experience the event of interest (“cases”), but only for a sample of the
individuals who do not experience the event (“controls”) then offer useful alternatives
that may save valuable biological material and drastically reduce the workload of data
collection and error checking. Further, as most of the statistical information is con-
tained in the cases, such studies may still be sufficient to give reliable answers to the
questions of interest.

There are two main types of cohort sampling designs: nested case–control studies
and case–cohort studies; see e.g. Keogh and Cox (2014, Chaps. 7, 8) for a review.
The two types of cohort sampling designs differ in the way controls are selected. In
a nested case–control study, controls are selected for each case from the individuals
at risk at the time at which the case occurs. In the parlance of classical case–control
studies (e.g. Breslow 1996), one says that the controls are matched on study time. To
adjust for possible confounding, it is common tomatch on other variables as well. This
is achieved by selecting controls with the same values of the confounding variables as
the case. Nested case–control data are traditionally analysed using a partial likelihood
similar to the one for the full cohort. In a case–cohort study one does not match
the controls to the cases. Instead a subcohort is selected from the full cohort, and the
individuals in the subcohort are used as controls at all event times when they are at risk.

If one wants to apply a cohort sampling design, a choice between a nested case–
control and a case–cohort study has to be made. The choice between the two designs
depends on a number of issues, and it has to be made on a case by case basis; see e.g.
Borgan and Samuelsen (2013, Sect. 17.5) for a discussion of the considerations one
should make to arrive at a useful design for a given study. In particular, if one wants to
use an assembled cohort to study more than one endpoint (e.g. more than one disease)
the case–cohort designmay be preferable, since then onemay use the individuals in the
subcohort as controls for all endpoints. But in situations where a careful matching on
confounders is needed to avoid bias, the nested case–control designmay be preferable.

It has been suggested that one may break the matching in a nested case–control
study and treat the nested case–control data as if they were case–cohort data with a
non-standard sampling scheme for the subcohort (e.g. Samuelsen 1997; Chen 2001).
The data may then be analysed using an inverse probability weighted (IPW) pseudo
likelihood. By doing so, one may overcome the limitations of a traditional analysis of
nested case–control data, in particular that controls cannot be reused across studies of
different endpoints. However, one also runs the risk of introducing bias in the analysis.
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Nested case–control studies 519

For a traditional analysis of nested case–control data or when using an IPW pseudo
likelihood, only data for the cases and the sampled controls are used in the analysis.
In many situations some covariates will be known for all cohort members, but this
information is disregarded in the partial likelihood and the IPW pseudo likelihood.
More recently, methods have been suggested that make use of all the information in
the cohort. One then considers estimation for nested case–control data as a missing
data problem, where the covariates only known for the cases and the controls are
missing by design for the remaining individuals in the cohort. Estimation may then
be performed using the EM algorithm for the full cohort likelihood (Scheike and Juul
2004) or, which is computationally less demanding, by usingmultiple imputation (MI)
(Keogh and White 2013). It should be noted that the full likelihood approach and MI
break the matching between the cases and the controls.

It is the purpose of this paper to compare the performance of the IPW pseudo likeli-
hood andMIwith the traditional partial likelihood analysis of nested case–control data,
considering studies of both one and two endpoints. By investigating a number of differ-
ent simulation scenarios, we will clarify when it may be beneficial to break the match-
ing in nested case–control data andwhenproblemsmayoccur if thematching is broken.
Further we will investigate the gain one may obtain by using the MI approach for the
full cohort, and point out the pitfalls that have to be avoidedwhen this approach is used.

The paper is organised as follows. In Sect. 2 we focus on a single endpoint and
outline the traditional analysis of nested case–control data using a partial likelihood.
The alternative analysis which breaks thematching and uses an IPWpseudo likelihood
is discussed in Sect. 3, and in Sect. 4 we consider analyses which make use of all
available data for the full cohort. We extend the methods to the situation with two
endpoints in Sect. 5. In Sect. 6 the different methods of analysis for nested case–
control data are compared using simulation studies covering a range of scenarios,
including one and two endpoints. The paper finishes with a discussion in Sect. 7.

2 Nested case–control studies with one endpoint

We will first consider the situation where there is only one endpoint of interest. This
may correspond to the onset of a specific disease or death from a given cause. The
situation with more than one endpoint is considered in Sect. 5. We begin by outlining
the analysis of full cohort data and then extend to nested case–control data.

2.1 Cohort data

We consider a cohortC = {1, . . . , n} of n independent individuals. For each individual
i ∈ C we have two vectors of covariates. The vector xi = (xi1, . . . , xip)

′ contains the
covariates of main interest and other variables that we will adjust for in the analysis,
while zi = (zi1, . . . , ziq)′ is a vector of additional confounding variables that we will
match on when selecting the controls (cf. Sect. 2.2). We assume that the hazard rate
hi (t) for the time of the event of interest for the i th individual depends on both xi and
zi and that it takes the form
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520 Ø. Borgan, R. Keogh

hi (t) = h0(t) exp(β
′xi + γ ′zi ). (1)

Due to censoring, we do not observe the event times. For each individual i ∈ C
we only observe (Ti , Di ), where Ti is the minimum of the event time and a censoring
time, and Di = 1 if Ti equals the event time and Di = 0 otherwise. We assume that
censoring is independent (e.g. Kalbfleisch and Prentice 2002, Sects. 1.3, 6.2), which
in particular implies that censoring may depend on the covariates xi and zi .

The risk set R(t) = {i | Ti ≥ t} is the collection of all individuals who are under
observation just before time t . For ease of notation we writeRi for the risk set at time
Ti , i.e. Ri = R(Ti ), and introduce E = {i | Di = 1} for the set of all cases. The
vectors of regression coefficients in (1) are estimated by the values of β and γ that
maximize Cox’s partial likelihood

Lco(β, γ ) =
∏

i∈E

exp(β ′xi + γ ′zi )∑
j∈Ri

exp(β ′x j + γ ′z j )
. (2)

It is well known that themaximum partial likelihood estimators ̂β and γ̂ are approx-
imately multivariate normally distributed around the true values of the parameter
vectors with a covariance matrix that may be estimated by the inverse information
(Andersen and Gill 1982).

2.2 Nested case–control data

We assume that the vectors zi of confounding variables in (1) are observed for the
full cohort. Further, in Sects. 2–6, we assume that zi can only take a finite number
of different values z(1), . . . , z(k). This implies that numeric confounders have to be
categorized; in particular when matching on age in the simulations (Sect. 6) we will
match on age in whole years. In the final Sect. 7 we discuss briefly how onemaymatch
directly on a numeric confounder.

Now the cohort may be divided into k strata according to the values of the zi .
Further, if an individual i in stratum s experiences the event of interest at time Ti ,
one selects at random m controls by simple random sampling from the remaining
individuals at risk in stratum s. The set consisting of the case i and the m controls
is called a sampled risk set and is denoted R̃i , and the nested case–control sample
consists of the collection of all sampled risk sets. The covariates xi are ascertained
for the individuals in the case–control sample, but are not needed for the remaining
individuals in the cohort. Note that the selection of controls is done independently at
the different event times. Thus subjects may serve as controls for multiple cases, and
a case may serve as control for other cases that experienced the event when the case
was at risk.

For nested case–control data one cannot estimate the effects of the variables zi used
in the matching of controls to cases. However, the vector of regression coefficients β

for the covariates xi may be estimated by ̂β, the value of β maximizing the partial
likelihood
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Nested case–control studies 521

L ncc(β) =
∏

i∈E

exp(β ′xi )∑
j∈R̃i

exp(β ′x j )
, (3)

cf. Oakes (1981) and Borgan et al. (1995). The estimator β̂ is approximately multi-
variate normally distributed around the true value of β with a covariance matrix that
may be estimated by the inverse information obtained from (3).

Note that the partial likelihood (3) remains unchanged if the cohort model (1) is
replaced by a stratified Cox model, where the hazard for an individual i in stratum s
takes the form

hi (t) = h0s(t) exp(β
′xi ). (4)

This shows that by matching, we obtain valid inference for β under quite weak
assumptions on the effects of the confounding variables zi .

The traditional analysis of nested case–control data outlined in this section can be
implemented easily using standard software, for example using the coxph function
in R with stratification by the sampled risk set identifiers.

3 Breaking the matching and inverse probability weighting

In the partial likelihood (3), a case and its controls are included only at the event time
of the case. If we break the matching the covariate information for the cases and the
controls may be used at all times when they are at risk. One may then estimate the
regression coefficients in (1) by maximizing an inverse probability weighted (IPW)
pseudo likelihood of the form

L ipw(β, γ ) =
∏

i∈E

exp(β ′xi + γ ′zi ) wi∑
j∈Si

exp(β ′x j + γ ′z j ) w j
. (5)

Here Si is the set consisting of all cases and controls in the nested case–control
sample who are at risk at time Ti . The weights are w j = 1/p j , where the p j are
appropriate inclusion probabilities. The weight for a given individual is the same at
all time points at which the individual is at risk.

The inclusion probabilities are p j = 1 for cases, while for controls (who do not
later become a case) they may be estimated in different ways. Following Samuelsen
(1997) and Støer and Samuelsen (2013), we may for control individual j use the
Kaplan–Meier type estimate

p j = 1 −
∏(

1 − m

ni − 1

)
, (6)

where the product is over all event times Ti when individual j is a possible matched
control, and ni is the number at risk at time Ti who satisfy the matching criteria. Thus,
if individual i is in stratum s, then ni is the number at risk in this stratum at time Ti .
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Another possibility is to estimate the inclusion probabilities by logistic regression
(Saarela et al. 2008; Støer and Samuelsen 2013). One then restricts attention to the
non-cases and assumes a logistic regression model for the sampling indicators O j ;
j ∈ C \E . The sampling indicators are 1 for sampled controls (who do not later become
a case) and 0 for non-sampled individuals. The follow-up times and the matching
variables are used as covariates in the logistic regression model, i.e.

p j = P(O j = 1 |Tj , D j = 0, z j ) = exp(α0 + α1Tj + α ′
2z j )

1 + exp(α0 + α1Tj + α ′
2z j )

. (7)

As a modification, we may use a generalized additive model where the linear term
ξ1Tj in (7) is replaced by a smooth function f (Tj ) of the follow-up times (Samuelsen
et al. 2007; Støer and Samuelsen 2013).

The pseudo likelihood (5) does not possess likelihood properties, so we cannot esti-
mate the covariance matrix by the inverse information. However, the robust sandwich
estimator has shown to be adequate in most situations (Samuelsen et al. 2007; Saarela
et al. 2008; Støer and Samuelsen 2012) and will be used in our simulations (Sect. 6).

The inverse probability weighting method described in this section can be imple-
mented using the R package multipleNCC (Støer and Samuelsen 2014).

4 Using the full cohort

In the previous sections we have described how data from a nested case–control study
may be analysed under the standard approach using the partial likelihood (3) or by
breaking the matching and using a weighted pseudo likelihood analysis (5). For both
methods, only data for the cases and the sampled controls are used in the analysis,
though the confounding variables zi are used in the sampling of controls and to obtain
the weights p j under the logistic regression approach. However, in many situations
some of the covariates of main interest will be known for all cohort members, but this
information is not used by the methods described in Sects. 2.2 and 3.

In this section we describe two approaches tomake use of all data that is available in
the full cohort. To this end we assume that the covariate vectors xi may by partitioned
as xi = (x(cc) ′

i , x(all) ′
i )′, where x(all)

i is observed for all individuals in the cohort while

x(cc)
i is only observed for the individuals in the nested case–control sample. Thus, if

we denote by O the set of cases and controls, the available data are (Ti , Di , x
(all)
i , zi )

for i ∈ C , while we additionally observe x(cc)
i for i ∈ O .

4.1 A full likelihood approach

In a nested case–control study, information on x(cc)
i is missing by design for i ∈

C \O . Provided that (Ti , Di , xi , zi ); i ∈ C ; are independent, the full cohort likelihood
(conditional on x(all)

i and zi ) is the product of contributions from the nested case–
control sample O and from the remainder of the cohort C \O and takes the form
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L full ∝
∏

i∈O
p (ti , di | xi , zi ) dG(x(cc)

i | x(all)
i , zi ) (8)

×
∏

i∈C \O

∫

Xcc

p (ti , di | xi , zi ) dG(x(cc)
i | x(all)

i , zi )

(Scheike and Juul 2004; Saarela et al. 2008). Here p (ti , di | xi , zi ) is the conditional
density of (Ti , Di ) given xi , zi , and G(x(cc)

i | x(all)
i , zi ) is the conditional distribution of

x(cc)
i given x(all)

i and zi . Further the integral in (8) is over the spaceXcc of all possible

values of the covariate vectors x(cc)
i .

To achieve a full maximum likelihood solution, we need to specify the conditional
distributions in (8). The conditional distribution of (Ti , Di ) given xi , zi will depend
both on the distribution of the event times and the distribution of the censoring times.
However, if the censoring distribution does not depend on x(cc)

i , it may be disregarded
when considering the likelihood. If we then assume the Cox model (1) for the event
times and partition the vector of regression coefficients for xi = (x(cc) ′

i , x(all) ′
i )′ as

β = (β ′
cc,β

′
all)

′, the conditional density of (Ti , Di ) given xi , zi may be given as

p (ti , di | xi , zi ) =
[

h0(ti ) exp
(
β ′
ccx

(cc)
i + β ′

allx
(all)
i + γ ′zi

)]di

× exp

{
− exp

(
β ′
ccx

(cc)
i +β ′

allx
(all)
i +γ ′zi

) ∫ ti

0
h0(u)du

}
. (9)

We also need to specify the conditional distribution of x(cc)
i given x(all)

i and zi (cf.
Sect. 4.2), or wemay adopt a non-parametric approach and assume that the conditional
distribution has point masses at the observed covariate values (Scheike and Juul 2004).
When maximizing the likelihood, it is assumed that the cumulative baseline hazard
H0(t) is a step function with jumps at the observed event times. So in (9), h0(ti ) is
replaced by ΔH0(ti ) and

∫ ti
0 h0(u)du is replaced by

∑
ΔH0(t j ), where the sum is

over all event times t j not larger than ti .
There does not appear to exist any ready-made software for implementing the full

likelihood approach, and we will not consider the full likelihood approach in our
simulations (Sect. 6).

4.2 Multiple imputation

As noted in the preceding section, in a nested case–control study, information on x(cc)
i

is missing by design for i ∈ C \O . Another approach to analysis which makes use of
the data available in the full cohort is to treat this as a missing data problem and to use
MI (Rubin 1987) to impute the values of x(cc)

i which aremissing for individuals outside
the nested case–control sample.MI is now awidely used approach to handlingmissing
data and is familiar to many researchers; see e.g. Carpenter and Kenward (2013) for
a review. Its application to the use of full cohort data in nested case–control studies
was described by Keogh and White (2013).
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The key idea in using MI for missing data is that the missing values are imputed by
drawing random values from the joint distribution of the partially observed variables
conditional on all fully observed variables, including the outcome. To account for the
uncertainty in the imputed values a number M > 1 of imputed values are obtained for
each missing data point, creating M complete imputed data sets. The resulting data
sets are analysed separately but identically and the resulting estimates are combined
using Rubin’s Rules (Rubin 1987). MI results in asymptotically unbiased estimates
and correct standard errors provided the imputation model is correctly specified. An
alternative to specifying a joint model is to instead specify a separate univariate model
for each partially observed variable conditional on all other variables; this is called the
full conditional specification (Van Buuren 2007). This last approach is simpler than
using a joint model, especially when there are several partially missing variables of
different types, e.g. binary and numeric.

To describe how MI is implemented for nested case–control data, we begin by
considering the situation in which there is only one partially observed covariate, x (cc)

i ,
assumed to be numeric. White and Royston (2009, Appendix A2) show that if the
conditional distribution of x (cc)

i given x(all)
i and zi is normal with a mean that is

linear in x(all)
i and zi , and if censoring does not depend on x (cc)

i , then the conditional

distribution of x (cc)
i given x(all)

i , zi and the outcome (di , ti ), may be approximated

by a linear regression model for x (cc)
i with x(all)

i , zi , di , and the cumulative baseline
hazard H0(ti ) as covariates. Moreover, for computational purposes, one may replace
the cumulative baseline hazard by the Nelson–Aalen estimate Ĥ(ti ). This motivates
the imputation model

x (cc)
i = θ0 + θ ′

1x
(all)
i + θ ′

2zi + θ3di + θ4 Ĥ(ti ) + εi , (10)

where the εi are normally distributed with mean 0 and constant variance σ 2
ε . After

fitting (10) for the individuals in the nested case–control sample, the next step is to
take a draw of each of the model parameters from their posterior (estimated) joint
distribution. To explain this procedure further, we let θ̂ = (θ̂0, θ̂1, θ̂2, θ̂3, θ̂4) denote
the estimated regression coefficients from (10) with variance–covariance matrix V,
and let σ̂ 2

ε denote the estimated residual variance. Draws σ ∗
ε are obtained using σ ∗

ε =
σ̂ε

√
(n − J )/g, where J is the length of the vector θ̂ and g is a draw from a chi-

squared distribution with n − J degrees of freedom. Values θ∗ are then obtained using
θ∗ = θ̂ + σ ∗

ε σ̂−1
ε uV1/2, where u is a vector of random draws from a standard normal

distribution and V1/2 denotes the Cholesky decomposition of V (White et al. 2011).
We let θ∗(m) and σ

2∗(m)
ε denote the mth set of parameter draws obtained using this

procedure. The imputed values for the mth imputed data set are obtained using

x (cc)(m)
i = θ

∗(m)
0 + θ

∗(m)′
1 x(all)

i + θ
∗(m)′
2 zi + θ

∗(m)
3 di + θ

∗(m)
4 Ĥ(ti ) + ε∗

i , (11)

where ε∗
i is a randomdraw froma normal distributionwithmean 0 and varianceσ

2∗(m)
ε .

This is repeated M times to obtain M imputed data sets. For amissing binary covariate,
the linear regression imputationmodel in (10) is replaced by a logistic regressionmodel
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and the procedure for obtaining parameter draws is adjusted accordingly (White et al.
2011). The use of parameter values drawn from their posterior distribution, as opposed
to using the imputation model parameter estimates themselves in each imputation, is
necessary to create so-called ‘proper’ imputations (Rubin 1987). If this is not done
then the estimated variances of the combined estimates of the parameters of interest
(see below) will be an underestimate (e.g. Carpenter and Kenward 2013, pp. 63–64).

In the mth imputed data set (m = 1, . . . , M) a full cohort analysis is performed

using the partial likelihood (2). The resulting parameter estimates are denoted β̂
(m)

and γ̂ (m). According to Rubin’s Rules the combined estimates β̂ and γ̂ are given

by the average of β̂
(m)

and γ̂ (m) over the M imputed data sets and their variance
is estimated by W + (1 + 1/M)B, where W and B are the within- and between-
imputation components of variance.

TheMI procedure outlined above can be extended to account for a vector of partially
missing covariates x(cc)

i .We let x(cc)
i(− j) denote x

(cc)
i with the j th element removed. Then,

for a numeric covariate, the imputation model for element j of x(cc)
i , corresponding

to (10), is

x (cc)
i j = θ0 j + θ ′

1 jx
(all)
i + θ ′

2 jx
(cc)
i(− j) + θ ′

3 jzi + θ4 j di + θ5 j Ĥ(ti ) + εi j . (12)

In the multivariable situation, an iterative procedure is used to obtain imputed values
for x(cc)

i = (x (cc)
i1 , . . . , x (cc)

i p )′; see White et al. (2011) for an overview. Starting with

x (cc)
i1 , the imputation model (12) is fitted in those with complete data and draws of the
parameters in model (12) are taken from their posterior distribution. Missing values
of x (cc)

i1 are then imputed using the model. This procedure is repeated for each partial

missing variable x (cc)
i2 , . . . , x (cc)

i p in turn, using the imputed values of x (cc)
i1 , . . . , x (cc)

i, j−1

when fitting the model for x (cc)
i j . The whole procedure is then repeated a number of

times until convergence of the parameter estimates, following which a final draw of
the parameters is taken from their posterior and a final set of imputed values obtained
for each x (cc)

i j . This forms the first imputed data set. The iterative procedure is repeated
to obtain M imputed data sets.

In the derivation of the imputation model (10), it is assumed that censoring does
not depend on the partially missing covariate x (cc)

i . When this is the case, one may
consider censoring as a competing risk and adopt the approach for two end-points
described in Sect. 5.4.

TheMI approach described in this section can be implemented for example using the
mice package in R (Van Buuren and Groothuis-Oudshoorn 2011) or the mi package
in Stata.

5 Nested case–control studies with more than one endpoint

In some situations onewould like to use an assembled cohort to study two ormore end-
points (e.g. more than one disease). In a classical nested case–control study (Sect. 2.2),
the controls are matched to their cases, so new controls have to be selected for each
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endpoint. However, by breaking the matching one may use the controls selected for
one endpoint as controls also for another endpoint.

For simplicity, wewill consider the situationwith two endpoints and assume that the
occurrence of one endpoint precludes the occurrence of the other. The situation may
then be described by a competing risksmodel with two causes of failure corresponding
to the two endpoints of interest. We will here outline how the results in Sects. 2, 3,
and 4 may be modified to cover the situation with two endpoints.

5.1 Cohort and nested case–control data

For the i th individual in the cohort we assume that the hazard for the eth endpoint is
given by a Cox model of the form

hei (t) = he0(t) exp(β
′
e xi + γ ′

e zi ), (13)

where βe = (βe1, . . . , βep)
′ and γ e = (γe1, . . . , γeq)′ are vectors of regression coeffi-

cients for endpoint e; e = 1, 2. For individual i we now observe (Ti , D1i , D2i ), where
Ti is an event time for one of the two endpoints or a censoring time. Further Dei = 1
if Ti equals the event time for the eth endpoint and Dei = 0 otherwise; e = 1, 2. We
write Ee = {i | Dei = 1} for the set of cases for endpoint e.

For cohort data we may then estimate the regression coefficients βe and γ e for
the eth endpoint by maximizing a partial likelihood of the form (2), but with the
product restricted to i ∈ Ee. For nested case–control data, the controls are selected
as described in Sect. 2.2. However, since the controls are matched to the cases, there
will be a separate set of controls for each of the two endpoints. Here we may estimate
βe by maximizing a partial likelihood of the form (3), where again the product is for
i ∈ Ee.

5.2 Inverse probability weighting

If we break the matching, all controls may be used for both endpoints. The regression
coefficients βe and γ e for the eth endpoint may then be estimated by maximizing a
pseudo likelihood of the form (5), where the product is over i ∈ Ee and Si is the
set consisting of the cases and controls for both endpoints who are at risk at time Ti .
Further, we now estimate the inclusion probabilities p j using the controls for both
endpoints. In particular, in (6) the product is over the event times for both endpoints
when individual j is a possible matched control, while in (7) the sampling indicators
O j are 1 for sampled controls for both endpoints (who do not later become a case for
any of the two endpoints).

5.3 Maximum likelihood

When there are two endpoints the likelihood (8) should be modified by replacing
p (ti , di | xi , zi ) by p (ti , d1i , d2i | xi , zi ), the conditional density of (Ti , D1i , D2i )
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given xi , zi . Further, assuming theCoxmodel (13) for the hazards of the two endpoints,
the conditional density of (Ti , D1i , D2i ) given xi , zi may be given as

p (ti , d1i , d2i | xi , zi )=
2∏

e=1

{ [
he0(ti ) exp

(
β ′

e,ccx
(cc)
i +β ′

e,allx
(all)
i + γ ′

ezi

)]dei

×exp
(
− exp

(
β ′

e,ccx
(cc)
i +β ′

e,allx
(all)
i +γ ′

ezi
)∫ ti

0
he0(u)du

)}
.

(14)

As for one endpoint (Sect. 4.1), we need to specify the conditional distribution
of x(cc)

i given x(all)
i and zi or adopt a non-parametric approach where the conditional

distribution has point masses at the observed covariate values. Also when maximizing
the likelihood, we assume that the cumulative baseline hazards He0(t) of the two
endpoints are step functions with jumps at the observed event times. So in (14), he0(ti )
is replaced by ΔHe0(ti ) and

∫ ti
0 he0(u)du is replaced by

∑
ΔHe0(t j ), where the sum

is over all event times for endpoint e with t j not larger than ti .

5.4 Multiple imputation

By following the workings of White and Royston (2009, Appendix A) it is straight-
forward to extend the imputation model in (10) to two (or more) endpoints. For a
univariate partially observed numeric covariate x (cc)

i , the imputation model in (10) is
modified as follows

x (cc)
i = θ0 + θ ′

1x
(all)
i + θ ′

2zi + θ ′
3di + θ ′

4Ĥ(ti ) + εi . (15)

Here di = (d1i , d2i )
′ is a vector of event type indicators for the i th individual and

Ĥ(ti ) = (Ĥ1(ti ), Ĥ2(ti ))′ is a vector of Nelson–Aalen estimates of the cumulative
hazards for the two endpoints. The generalisation to the situation of a vector of partially
observed covariates, x(cc)

i , is by using a similar extension to imputation model (12).

6 Simulation study

In a standard analysis of nested case–control data using the partial likelihood (3), the
controls are matched to the cases. As noted at the end of Sect. 2.2 the matching implies
that the standard analysis gives valid inference for β under quite weak assumptions
on the effects of the confounding variables. In an IPW and MI analysis, the controls
are no longer matched to the cases, i.e. the matching is broken. In this section we will
use simulations to investigate (i) problems that may occur if one breaks the matching,
and (ii) benefits one may obtain by breaking the matching.

We focus on a single numeric partially observed covariate x (cc) and begin by con-
sidering a ‘basic’ situation with one endpoint of interest (Sect. 6.1). We then extend
this to incorporate a number of special issues which may affect the results, including
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the presence of batch effects in the measurements of the partially observed covari-
ate (Sect. 6.2), interaction terms between the partially observed covariate and other
covariates in the model for the hazard (Sect. 6.3), mis-specification of the form of
the covariates in the hazard model, and issues which may affect the MI approach
(Sect. 6.4). Finally, we consider the situation with two endpoints (Sect. 6.5).

For all situations (described in detail below) we assume an underlying cohort of
10,000 individuals recruited at three equal sized centres. The individuals are between
50 and 70 years at recruitment and they are followed until an event of interest occurs,
until closure of the study after 15 years, or until censoring before that time. For all the
scenarios, we assume that 2% of the individuals experience the event of interest, 10%
drop-out before the end of the study, and 20% are censored by a competing event.
(With two endpoints, 2% of the individuals experience the first endpoint and 1% the
second endpoint.)

From a simulated cohort with 10,000 individuals, we select a nested case–control
sample with 1 or 3 controls per case, additionally matched on age and centre. For
each simulated cohort we then estimate the regression coefficients using the methods
of Sects. 2.1, 2.2, 3, and 4.2 (or the corresponding methods of Sect. 5 for two end-
points) and report summaries based on 1,000 simulated cohorts. For the IPW method
we compute estimates using the inclusion probabilities (6) and (7), as well as the
modification of (7) using a generalized additive model. However, as there were only
minor differences between the three IPW methods, we in the tables below only give
results for the logistic inclusion probabilities (7). The results for MI are based on
M = 10 imputed data sets.

6.1 Basic simulation

Description of the simulation. We assume that there are two covariates of main inter-
est: one “expensive” covariate x (cc) that is only observed for the cases and the controls,
and one “cheap” covariate x (all) that is observed for all individuals in the cohort. We
also consider two additional confounding variables: the age of an individual and the
centre where the individual is recruited. Throughout we assume that age at recruitment
is uniformly distributed on the integers 50, 51, . . . , 69, and that individuals are uni-
formly distributed over the three centres. The information on age and centre is given
by the covariates z = (z1, z2, z3)′, where z1 = “age−60” and z2 and z3 are indicators
for centres 2 and 3, respectively.

Conditional on age and centre, the distribution of x = (x (cc), x (all))′ is bivariate
normal with mean (ξ1z1+ξ2z2+ξ3z3, 0)′, standard deviations 1, and correlation 0.70.
For the parameters of the conditional mean we chose the values ξ1 = 0.05, ξ2 = 0.50,
and ξ3 = −0.50 corresponding to a variation in x (cc) of one standard deviation due to
age and one standard deviation due to centre.

Given the covariates, an event time Te, measured from the time of recruitment, is
generated from a proportional hazards model

h(t | x, z) = h0(t) exp
(
β ′x + γ ′z

)
, (16)
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where β = (βcc, βall)
′, γ = (γ1, γ2, γ3)

′, and the baseline hazard h0(t) takes a
Weibull form with shape parameter a. The event time may be censored due to drop-
out, censoring by a competing risk, or closure of the study. More specifically the
censoring time Tc is given as Tc = min(Tc1, Tc2, 15), where the (potential) time of
drop-out Tc1 is exponentially distributed with rate λ c and the (potential) time Tc2 of
censoring by a competing risk is generated from a proportional hazards model with
x (cc) and z1 = “age − 60” as covariates:

hc(t | x, z) = hc0(t) exp
(
δ 1x (cc) + δ 2z1

)
. (17)

The baseline hazard hc0(t) is of the Weibull form with shape parameter ac. The
observed event time is then given by T = min(Te, Tc) while the event indicator is
specified as D = I {Te < Tc}.

Events in the cohort are generated from the Coxmodel (16) withWeibull shape a =
5. The regression coefficients for the covariates of main interest are β1 = β2 = 0.50.
For the confounding variables, age has the regression coefficient γ 1 = 0.10, while the
regression coefficients for the centres are γ 2 = 0.30 for centre 2 and γ 3 = −0.30 for
centre 3 (centre 1 is the reference). For censoring by the competing risk, we assume
Weibull shape ac = 5 and regression coefficients δ1 = 0 for x (cc) and δ 2 = 0.10 for
age. Thus for the basic simulation model, censoring by the competing risk does not
depend on x (cc).

For all situations involving the basic simulation model and its extensions in
Sects. 6.2–6.4, the scale parameters of the baseline Weibull hazards in (16) and (17),
and the rate of drop out λ c are adjusted to give 2% events in the cohort, 10%drop-outs,
and 20% censoring by the competing event.

Results. The results from the basic simulation for a nested case–control sample with
1 control per case are summarised in Table 1. The corresponding results when there
are 3 controls per case are shown in Supplementary Table 1.

As we expect, the standard analysis of the nested case–control data results in almost
unbiased estimates of the parameters of interest, though the standard errors are almost
80% larger than under a full cohort analysis. The loss of efficiency of the standard
nested case–control analysis is reducedwhen the number of controls per case increases.
With 3 controls per case the standard errors for the standard analysis are about 30%
larger than for the full cohort.

When there is 1 control per case, breaking the matching in the nested case–control
data and performing an IPW analysis results in some upwards bias in the estimates
of both βcc and βall and the mean squared differences from the cohort estimates are
larger than for the standard analysis. Further the standard errors are somewhat under-
estimated, but the coverage is close to the nominal level. The bias in the estimate of
βcc is smaller, though still present, when the number of controls per case increases to
3, though the bias in βall disappears and the standard errors are unbiased. The standard
nested case–control analysis and an IPW analysis give estimates with about the same
standard errors, so the IPW analysis results in no gain in efficiency compared with the
standard analysis, despite enabling use of more controls at each event time.

123



530 Ø. Borgan, R. Keogh

Table 1 Results from the basic simulation

Estimate Model SE Emp SD MSE Cov

Results for βcc

Full cohort 0.502 0.099 0.100 – 0.946

Nested case–control: standard analysis 0.513 0.176 0.176 0.021 0.953

Nested case–control: IPW 0.534 0.177 0.187 0.025 0.940

Nested case–control: MI 0.499 0.157 0.153 0.014 0.941

Results for βall

Full cohort 0.495 0.099 0.098 – 0.955

Nested case–control: standard analysis 0.506 0.176 0.175 0.022 0.952

Nested case–control: IPW 0.532 0.177 0.187 0.026 0.935

Nested case–control: MI 0.498 0.127 0.121 0.006 0.963

The nested case–control sample has one control per case. All results are based on 1,000 simulated data
sets where the true log hazard ratios are βcc = βall = 0.50. ‘Estimate’ is the mean estimate of βcc or βall.
‘Model SE’ is the square-root of the mean estimated variance of the parameter estimates. ‘Emp SD’ is the
empirical standard deviation of the estimates. ‘MSE’ is the mean of the squared differences between the
estimates for each method and those from the full cohort. ‘Cov’ is the obtained coverage of a 95% nominal
confidence interval

The MI analysis of the nested case–control data gives unbiased estimates of βcc
and βall and correct model-based standard errors. This approach also results in smaller
standard errors and mean squared differences from the cohort estimates than the stan-
dard nested case–control analysis. As we expected, the gain in efficiency is greater for
the parameter associated with the covariate which is observed in the full cohort and
when there is only 1 control per case.

6.2 Batch effects

Description of the simulation. Next, we assume that the covariate x (cc) is a biomarker
that is determined by a biochemical analysis. Then it is quite common to analyse a
case and its control in the same batch to control for possible batch effects (Rundle et
al. 2005). In a standard analysis using the partial likelihood (3) a batch effect is taken
care of by the matching on batch (in addition to matching on the other confounding
variables z). But when the matching is broken in an IPW or MI analysis, bias may
be introduced. To investigate this, we generate cohort data as described for the basic
simulation model (Sect. 6.1), but in the data used for estimation we add a common
measurement error to x (cc) for a case and its controls. The measurement errors are
assumed to be normal with mean zero and standard deviation 0.50 or 0.25, which is a
half or a quarter of the standard deviation of the random variation in x (cc).

Results. For a nested case–control studywith 1 control per case andwithmeasurement
error standard deviation 0.50, the results from analyses when there are batch effects
in the measurements are shown in Table 2. Corresponding results when there are 3
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Table 2 Results from the basic simulation extended to include a batch effect with standard deviation 0.50
in the measurement of x(cc)

Estimate Model SE Emp SD Cov

Results for βcc

Nested case–control: standard analysis 0.513 0.176 0.176 0.953

Nested case–control: IPW 0.370 0.138 0.146 0.806

Nested case–control: MI 0.498 0.158 0.152 0.953

Results for βall

Nested case–control: standard analysis 0.506 0.176 0.175 0.952

Nested case–control: IPW 0.645 0.160 0.171 0.858

Nested case–control: MI 0.499 0.128 0.121 0.960

The nested case–control sample has one control per case. All results are based on 1,000 simulated data
sets where the true log hazard ratios are βcc = βall = 0.50. ‘Estimate’ is the mean estimate of βcc or βall.
‘Model SE’ is the square-root of the mean estimated variance of the parameter estimates. ‘Emp SD’ is the
empirical standard deviation of the estimates. ‘Cov’ is the obtained coverage of a 95% nominal confidence
interval

controls per case are shown in Supplementary Table 2. Note that in this scenario it is
not relevant to consider a full cohort analysis.

In the standard nested case–control analysis the batch effects are eliminated in the
partial likelihood and the standard analysis therefore results in unbiased estimates of
βcc and βall and correct standard errors. In fact, for the standard analysis the results of
Tables 1 and 2 are identical.

The IPW analysis gives biased estimates of βcc with the bias being towards the
null. The estimate of βall is also biased, but in the direction away from the null. Some
of the bias in the estimate of βall is alleviated when the number of controls per case is
increased to 3, though there remains a substantial bias. The standard error estimates
are also biased in a similar pattern as described for the basic simulation. The reason
for biased estimates under the IPW analysis is that the batch effects do not cancel each
other out in the pseudo likelihood (5), since the denominator in the pseudo likelihood
at a given time now includes individuals with a range of batch effects. This results
in a measurement error in the values of x (cc) used in the pseudo likelihood, which is
known to result in biased estimates of the parameters associated with x (cc) and with
the adjustment variables.

In Table 2 we assumed a reasonably large batch effect. The biases in the estimates
from the IPW analysis are clearly smaller when the batch effects are smaller; cf.
Supplementary Table 3 which show results from the situation with one control per
case and measurement error standard deviation 0.25.

The MI approach appears to work well even in the presence of batch effects, giving
apparently unbiased estimates of both βcc and βall, plus correct standard errors. As in
the basic simulation, there are gains in efficiency to be made by using theMI approach
in place of the standard nested case–control analysis, especially in the estimation of
βall and especially when there is only 1 control per case in the nested case–control
sample. When we perform MI we fit an imputation model which has the partially
missing covariate as the outcome, as in (10). Randommeasurement error in an outcome
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variable used in a regression does not give rise to bias in the estimated regression
coefficients, hence the regression coefficients in the imputation model are consistently
estimated. There remain batch effects in the measurements for individuals for whom
x (cc) is observed. This has negligible impact here, however, because the proportion
of individuals with x (cc) observed is small. If the nested case–control sample made
up a more substantial part of the cohort then some bias in the MI estimates may be
anticipated, though this is not likely to be a common scenario.

6.3 Interaction

Description of the simulation. It is known that the MI approach described in Sect. 4.2
may give biased estimates for interactions between x (cc) and the other covariates
(Keogh and White 2013). To investigate this further, we simulate event times from a
Cox model with interaction between x (cc) and x (all). Specifically, the cohort is sim-
ulated as described in Sect. 6.1, except that in the Cox model (16) we now have
x = (x (cc), x (all), x (cc)x (all))′ and β = (βcc, βall, βint)

′ with βcc = βall = βint = 0.50.
Using MI, we handled the interaction between the partially observed covariate x (cc)

and the fully observed covariate x (all) by using the ‘passive’ approach in which x (cc)

is imputed in the usual way [i.e. using (10) and (11)] and the interaction is obtained
by multiplying the imputed value of x (cc) by x (all) .

Results. The results are shown in Table 3 for a nested case–control study with 1
control per case. Corresponding results for a study with 3 controls per case are shown
in Supplementary Table 4.

The MI approach results, as we expect, in fairly substantial bias in the estimates
of the main effect terms, βcc and βall , and the interaction term, βint, and substantial
loss of coverage both for 1 and 3 controls per case. The bias arises due to a lack
of compatibility, or ‘incongeniality’, between the imputation model for the missing
covariate and the hazardmodel for the outcome of interest (Meng 1994).When there is
1 control per case, the standard method gives large standard deviations and large mean
squareddifferences from the cohort estimates.Butwith 3 controls per case, the standard
method performs much better. The IPW results show some minor upwards bias in the
main effect estimates, though the bias is much less than that found using MI and the
interaction term is approximately unbiased. The IPW analysis gives considerable gain
in efficiency in estimation of the interaction term compared with the standard nested
case–control analysis, in particular when there is 1 control per case. There is also a gain
in efficiency in the main effect terms, though the standard errors are under-estimated
and the coverage is too low.

6.4 Further extensions to the basic simulation

To assess the sensitivity of the methods to certain assumptions, we performed a num-
ber of additional simulations, based on extensions to the basic simulation model of
Sect. 6.1:
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Table 3 Results from the basic simulation extended to include an interaction between x(cc) and x(all)

Estimate Model SE Emp SD MSE Cov

Results for βcc

Full cohort 0.508 0.113 0.115 - 0.945

Nested case–control: standard analysis 0.530 0.268 0.280 0.064 0.943

Nested case–control: IPW 0.546 0.204 0.236 0.041 0.907

Nested case–control: MI 0.421 0.186 0.226 0.034 0.861

Results for βall

Full cohort 0.510 0.119 0.121 – 0.944

Nested case–control: standard analysis 0.526 0.278 0.289 0.067 0.952

Nested case–control: IPW 0.554 0.215 0.256 0.052 0.892

Nested case–control: MI 0.741 0.194 0.163 0.068 0.792

Results for βint

Full cohort 0.498 0.048 0.050 - 0.941

Nested case–control: standard analysis 0.526 0.155 0.167 0.025 0.952

Nested case–control: IPW 0.510 0.075 0.082 0.004 0.910

Nested case–control: MI 0.327 0.083 0.078 0.032 0.428

The nested case–control sample has one control per case. All results are based on 1,000 simulated data sets
where the true log hazard ratios are βcc = βall = βint = 0.50. ‘Estimate’ is the mean estimate of βcc, βall
or βint . ‘Model SE’ is the square-root of the mean estimated variance of the parameter estimates. ‘Emp SD’
is the empirical standard deviation of the estimates. ‘MSE’ is the mean of the squared differences between
the estimates for each method and those from the full cohort. ‘Cov’ is the obtained coverage of a 95%
nominal confidence interval

(1) Mis-specified hazard model. We consider two types of mis-specification of the
hazard model (16). Firstly, we consider mis-specification of the way the con-
founders z influence the hazard. Here we assume that the basic simulation is
altered to include a squared term in the covariate z1 = “age−60”. The log hazard
ratio associated with this non-linear term was chosen to be −0.005, representing
a realistic scenario, or −0.05, representing a rather extreme scenario. Secondly,
following Scott andWild (1986, 2002), we assume that the effect of the covariate
x (cc) itself is mis-specified, and that the true hazard also includes a squared term
in x (cc) with coefficient equal to 0.15 or −0.17 (but we fit a Cox model without
the squared term). The values of the coefficients of the squared term were chosen
so that the likelihood ratio test based on the partial likelihood (3) has about 50%
power (at the 5% level) to detect the curvature. For both types of mis-specification
of the hazardmodel, the other log hazard ratio parameters are as given in Sect. 6.1.

(2) Censoring by a competing risk depending on x (cc). The MI approach for a single
endpoint (Sect. 4.2) assumes that censoring does not depend on x (cc). To inves-
tigate how sensitive MI is to this assumption, we generate data as described for
the basic simulation, but with δ 1 = 1 in the competing risk hazard model (17).

(3) Mis-specification of the conditional distribution of x (cc). The imputation model
(10) is derived by assuming that the conditional distribution of x (cc) given x (all) and
z is normal with a mean that is linear in x (all) and z (White and Royston 2009). We
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Table 4 Results from the basic simulation extended to include a squared term in x(cc) in the hazard model
with coefficient −0.17

Estimate Model SE Emp SD MSE

Results for βcc

Full cohort 0.222 0.099 0.092 –

Nested case–control: standard analysis 0.300 0.167 0.168 0.025

Nested case–control: IPW 0.229 0.159 0.163 0.017

Nested case–control: MI 0.293 0.156 0.157 0.020

Results for βall

Full cohort 0.497 0.099 0.098 –

Nested case–control: standard analysis 0.508 0.164 0.168 0.018

Nested case–control: IPW 0.528 0.166 0.177 0.020

Nested case–control: MI 0.464 0.123 0.124 0.007

The nested case–control sample has one control per case. All results are based on 1,000 simulated data sets
where the true log hazard ratios are βcc = βall = 0.50. ‘Estimate’ is the mean estimate of βcc or βall .
‘Model SE’ is the square-root of the mean estimated variance of the parameter estimates. ‘Emp SD’ is the
empirical standard deviation of the estimates. ‘MSE’ is the mean sum of the squared differences between
the estimates from each method and those from the full cohort

investigate howsensitiveMI is to this assumptionusing two scenarios: (i) either the
assumption of normality in x (cc) is violated by generating x (cc) to be log-normal
with standard deviation 1, or (ii) the assumption of a linear mean is violated by
altering the generation of x (cc) to have mean ξ1z1 + ξ2z2 + ξ3z3 + ξ4z21, where
z1 = “age − 60”. In (ii) we use parameter values ξ4 = −0.005 and ξ4 = −0.05,
and the other parameters remain unchanged.

The results from amis-specified hazardmodel are shown in Table 4, Supplementary
Tables 5, 6, 7; those from allowing the censoring by a competing risk to depend on x (cc)

in Supplementary Tables 8 and 9; and those from mis-specification of the conditional
distribution of x (cc) in Supplementary Tables 10, 11, 12.

When the hazard model is mis-specified due to ignoring a modest quadratic effect
of a confounding variable (log hazard ratio−0.005, Supplementary Table 5), there is a
small upwards bias in the estimates for the IPW approach, while there is no bias for the
other methods. For a strong quadratic effect (log hazard ratio −0.05, Supplementary
Table 6) the bias for the IPW approach becomes larger, but the other methods still give
essentially unbiased estimates.

When the mis-specification of the hazard model is due to a quadratic effect of the
covariate of main interest x (cc), it is of little interest to compare the estimates with
the coefficient βcc = 0.50 for the linear term. What is of interest here is to see how
the estimates for the various methods compare with those from the full cohort. Both
for a negative curvature (Table 4) and a positive curvature (Supplementary Table 7),
the IPW estimates are the ones closest to the full cohort estimates, while the standard
method and MI estimation gives estimates that deviate more from those obtained for
the full cohort.
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When the censoring by a competing risk depends on x (cc) the results from the
MI analysis appear unaffected, with the estimates remaining approximately unbiased
(Supplementary Table 8). However, if the censoring by the competing risk is increased
to 50 %, MI gives an estimate of βcc that is a bit too low (Supplementary Table 9).
We allowed a rather large effect of x (cc) on the censoring, so our results suggest that
the MI approach is quite robust to departures from the assumption that the censoring
distribution does not depend on the partially missing covariates in this setting. The
IPW analysis shows some upwards bias, but this is no greater than that found under
the basic simulation.

When x (cc) is log-normal (Supplementary Table 10) the full cohort and standard
nested case–control analysis are unaffected. The point estimates from the IPWanalysis
also appear to be unaffected, though there remains some upwards bias as in other
scenarios, while the standard errors are too low, resulting in reduced coverage. The
MI analysis gives bias in both βcc (towards the null) and βall (away from the null) due
to mis-specification of the imputation model. Here the model is badly mis-specified.
A modest, and what we may consider realistic, non-linear term in age in the model
for the mean of x (cc) results in a minor downward bias in the MI estimates of βcc
and a minor upwards bias in the IPW estimates of x (all) (Supplementary Table 11).
However, a larger non-linear effect in age in the model for the mean of x (cc) results in
substantial bias in both the IPW and MI estimates, with the bias being slightly more
severe using MI (Supplementary Table 12). The larger non-linear effect for age is
likely to be unrealistic, but we show the results for illustration of what could happen
in an extreme scenario.

6.5 Two endpoints

Description of the simulation. Finally, we use simulations to investigate a scenario
with two endpoints, applying the methods described in Sect. 5. The simulation for two
endpoints follows the basic simulation for one endpoint, except that (potential) event
times for the two endpoints are generated using cause specific hazard functions of the
form (16). The observed time T for a given individual is the time of whichever occurs
first of endpoint 1, endpoint 2, censoring by a competing risk [using the hazard model
in (17)], random drop-out and the end of follow-up. The log hazard ratio parameters
in (16) are assumed to be the same for both endpoints with values as given in Sect. 6.1.
The scale parameters of the Weibull baseline hazards in (16) and (17), and the drop-
out rate λc, are chosen so that 2% of individuals in the cohort are observed to have
endpoint 1, 1% to have endpoint 2, 20% are censored by a competing risk, and 10%
drop out.

Nested case–control samples are taken for each endpoint with 1 control per
case for both endpoints or 3 controls per case for both endpoints. Both x (cc) and
x (all) are observed for individuals in the nested case–control samples, but not in
the remainder of the cohort, where only x (all) and z are observed. In the nested
case–control analyses for endpoint 1 using IPW and MI, individuals from the
nested case–control sample based on endpoint 2 contribute to the risk set at each
event time, and vice versa. In the MI analysis individuals who are not in the
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nested case–control sample also contribute to the risk sets, with imputed values for
x (cc).

Results. The results for nested case–control samples for two endpoints with 1 control
per case are summarised in Table 5. The corresponding results when there are three
controls per case are shown in Supplementary Table 13.

The IPW analysis appears to give a slight upwards bias in the estimates, as in
the basic simulations, which disappears once there are three controls per case. There
remains some slight bias in the estimated standard errors using the IPW analysis, as
seen under the basic simulation. The IPWanalysis results in a gain in efficiency relative
to the standard nested case–control analysis. Focusing on the scenario with 1 control
per case, for endpoint 1 the relative efficiencies of the IPW estimates (computed as the
ratio of the empirical variance for the standard analysis to the empirical variance for
IPW) are 1.17 for x (cc) and 1.09 for x (all). For endpoint 2 the relative efficiencies of
the IPW estimates are 1.90 for x (cc) and 1.77 for x (all). The gain in efficiency is much
greater for endpoint 2, which is the rarer endpoint, because the relative increase in the
number of controls is larger than for endpoint 1.

The MI analysis gives unbiased estimates of the log hazard ratio parameters for
both endpoints, and the increase in efficiency relative to the standard analysis is greater
than for the IPW analysis. Again focusing on the scenario with 1 control per case, for
endpoint 1 the relative efficiencies of the MI estimates are 1.53 for x (cc) and 2.14 for
x (all). For endpoint 2 the relative efficiencies of the IPW estimates are 2.39 for x (cc)

and 2.82 for x (all).
For nested case–control studies with three controls per case, the gains in efficiency

are smaller, but still not insubstantial, in particular for endpoint 2 and in particular
using the MI analysis.

6.6 Summary of simulation results

The standard analysis of nested case–control studies provided almost unbiased esti-
mates and achieved coverage close to the nominal 95% for all situations considered.
But the loss in efficiency relative to a full cohort analysis was substantial, especially
when there was only one control per case.

Our simulations show that there are ways in which we can gain efficiency in the
analysis of nested case–control data by breaking the matching between cases and
controls (IPW analysis) and by making use of all available data in the cohort (MI
analysis). In the situation of a single endpoint and with linear covariate effects in
the hazard and no interactions involving the covariates of main interest (the basic
simulation), MI gave gains in efficiency relative to the standard nested case–control
analysis, in particular for the covariate x (all) known for the full cohort and in particular
when there was one control per case. However, using an IPW analysis in this scenario
gave no benefits in terms of efficiency, and resulted in possible small bias in the
parameter estimates and their estimated standard errors.

For the situationwith two endpoints, we obtained gains in efficiency by breaking the
matching and reusing the controls for one endpoint as controls for the other endpoint,
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Table 5 Results for the situation with two endpoints

Estimate Model SE Emp SD MSE Cov

Endpoint 1: Results for β1,cc

Full cohort 0.504 0.100 0.099 – 0.946

Nested case–control: standard analysis 0.512 0.176 0.173 0.020 0.959

Nested case–control: IPW 0.528 0.154 0.160 0.015 0.942

Nested case–control: MI 0.499 0.139 0.140 0.010 0.948

Endpoint 1: Results for β1,all

Full cohort 0.495 0.100 0.097 – 0.952

Nested case–control: standard analysis 0.499 0.175 0.171 0.019 0.963

Nested case–control: IPW 0.510 0.153 0.164 0.016 0.932

Nested case–control: MI 0.497 0.119 0.117 0.004 0.950

Endpoint 2: Results for β2,cc

Full cohort 0.503 0.141 0.141 – 0.954

Nested case–control: standard analysis 0.538 0.256 0.263 0.049 0.957

Nested case–control: IPW 0.526 0.188 0.191 0.017 0.952

Nested case–control: MI 0.497 0.171 0.170 0.010 0.947

Endpoint 2: Results forβ2,all
Full cohort 0.502 0.141 0.139 – 0.956

Nested case–control: standard analysis 0.512 0.254 0.257 0.046 0.958

Nested case–control: IPW 0.519 0.188 0.193 0.017 0.949

Nested case–control: MI 0.505 0.155 0.153 0.004 0.957

The nested case–control samples for each endpoint have one control per case. All results are based on 1,000
simulated data sets where the true log hazard ratios are βe,cc = βe,all = 0.50 (e = 1, 2). ‘Estimate’ is
the mean estimate of the log hazard ratio βcc or βall. ‘Model SE’ is the square-root of the mean estimated
variance of the parameter estimates. ‘Emp SD’ is the empirical standard deviation of the estimates. ‘MSE’
is the mean of the squared differences between the estimates for each method and those from the full cohort.
‘Cov’ is the obtained coverage of a 95% nominal confidence interval

and vice versa. The gains in efficiency were found using both IPW and MI analyses
and were particularly substantial for the rare endpoint when we have one control per
case.

The impact of laboratory batch effects in covariate measurements on hazard ratio
estimates is eliminated in a nested case–control study by processing samples from
cases and controls within a matched set within the same batch and using the standard
analysis. But when the measurement error is fairly large, breaking the matching and
using an IPW analysis gave severely biased estimates.

The MI approach gave unbiased estimates and substantial gains in efficiency in the
presence of a batch effect and in most other situations we have considered. But there
exist scenarios in which the imputation procedure described in Sect. 4.2 can result
in bias. In particular, for the situation with interaction between the covariates x (cc)

and x (all) the MI analysis gave severely biased estimates. However, the IPW approach
worked well for estimation of the interaction term, and gave large gains in efficiency
in estimation of the interaction parameter relative to the standard analysis.
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The standard analysis and the IPW approach are valid for censoring depending
on the partially observed covariate, and the simulations indicate that also MI is quite
robust to censoring depending on x (cc). Mis-specification of the model for how the
hazard depends on confounders results in some bias in the IPW analysis due both to
a mis-specified Cox model and mis-specification of the weights model. But when the
mis-specification of the hazard model is due to a quadratic effect of the covariate of
main interest x (cc), the IPW method gives estimates closer to the full cohort estimates
than the standard method and MI estimation. Further, strong non-linear associations
between the covariate x (cc) and confounders result in bias for IPW and MI due to mis-
specifications in the imputation and weight models, though non-linear associations of
realistic magnitude result in small bias.

We have presented IPW results from using weights estimated by logistic regression
as in (7). Estimating the weights using generalised additive models gave very similar
results to the standard logistic approach. Using the Kaplan–Meier weights (6) tended
to give greater bias than the regression-based weights.

In the paper of White and Royston (2009) on the use of imputation models such
as those in (10) and (12) it was suggested that some efficiency could be gained by
additionally including interactions between the covariates and the Nelson–Aalen esti-
mates, though simulation studies showed very similar results from the two models.
We investigated the impact of extending the imputation models in this way in our
simulation studies but also found the results from the extended models to be almost
identical to those from the simpler models used.

7 Discussion

Nested case–control studies are commonly analysed using the partial likelihood (3).
This is a “safe approach” that provides unbiased estimates and a straightforward statis-
tical analysis under quiteweak assumptions on the effects of the confounding variables.

An alternative to the standard analysis is to break the matching and use an inverse
probability weighted (IPW) pseudo likelihood. As shown in our simulations, this may
result in substantial efficiency gains when an assembled cohort is used to study more
than one endpoint. But when close matching is needed to control for a confounder
(like a batch effect), bias may be introduced by breaking the matching. Another analy-
sis option is MI, which makes use of all information available for the full cohort.
This yields improved estimates for both one and two endpoints, in particular for the
covariates available for all the individuals in the cohort.

In an IPW or a MI analysis, the controls are no longer matched to the cases. One
therefore has to control for the confounders by including them in the Cox regression.
Thus the IPW and MI analyses require more careful modelling than the standard
analysis, and one runs the risk of bias due to model mis-specification. However, our
simulations indicate that the effects of the covariates of main interest are estimated
without much bias unless the model for the effects of the confounders is badly mis-
specified.

In our simulations there was a tendency to bias in the IPW estimates, also for cor-
rectly specified models. It is possible that the weights used in IPW could be improved
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to reduce this bias, but since the weights models are in a sense ad hoc it is not clear
how this would best be done.

As illustrated in our simulations, the MI approach of Sect. 4.2 may give biased
estimates when there is interaction between the partially observed covariate and other
covariates. The bias arises due to a lack of compatibility, or ‘incongeniality’, between
the imputation model for the missing covariate and the hazard model for the outcome
of interest (Meng 1994). Bartlett et al. (2014) describe an MI approach which accom-
modates the outcomemodel using rejection sampling. A Stata package is forthcoming.
In the context of nested case–control data, Keogh and White (2013) implemented this
approach and found it to perform well.

Our simulations also showed that MI may give biased estimates if the partially
observed covariate has a strongly non-normal distribution. The imputation may then
be performed on a transformed scale and back-transformed before using the imputed
values in the partial likelihood analysis. However, the imputation approach described
in Sect. 4.2 is not suitable in this case because the non-linearity of the transformed
partially observed covariate in the hazardmodel gives rise to an inconsistency between
the imputation model and the outcome model. The problem is the same as arises for
a model with interactions and the more complex imputation procedures of Bartlett et
al. (2014) could be used to obtain unbiased estimates using MI.

We have shown how MI may improve the estimates by using all the available data
in the cohort. An alternative to MI is a full maximum likelihood (ML) approach as
described in Sects. 4.1 and 5.3. However, as no standard software is available for the
full ML approach, we have not included it in our simulations. But it would be of
interest to study the performance of the ML approach for our simulation scenarios.

For ease of presentation, we have focused on right-censored event times. But all the
methods we have considered may also be used when event times are subject to left-
truncation and right-censoring. That this is the case for cohort data and the standard
analysis of nested case–control data iswell known (e.g.Aalen et al. 2008, Sects. 4.1 and
4.3). Further the IPWpseudo likelihood allows for left-truncated data by an appropriate
modification of the inclusion probabilities (Støer and Samuelsen 2012), while for a
full maximum likelihood approach the conditional density of (Ti , Di ) given xi , zi in
(8) should be replaced by the conditional density of (Ti , Di ) given xi , zi , Ti > vi ,
where vi is the left-truncation time for the i th individual (Saarela et al. 2008). For the
MI approach wemay follow the arguments ofWhite and Royston (2009, Appendix A)
to see that left-truncation is handled by replacing the Nelson–Aalen estimate Ĥ(ti ) in
the imputation model (10) by Ĥ(ti ) − Ĥ(vi ).

When selecting the matched controls, we have used information on the at risk
status of the individuals and their values of the confounders zi (Sect. 2.2). However,
sometimes one in addition for all cohort members knows the value of a surrogate
variable of an exposure of main interest. One may then select a more efficient set of
controls by means of stratified (or counter-matched) sampling within strata defined by
the surrogate (Langholz and Borgan 1995). The surrogate variable may also be used
to obtain improved weights for the IPW method by means of calibration (Støer and
Samuelsen 2012) and to improve the imputation model (10) when using MI (Keogh
and White 2013).

123



540 Ø. Borgan, R. Keogh

We have assumed that the variables used for matching can only take a finite number
of different values. Then it is possible to select controls with exactly the same values of
the matching variables as a case. However, when matching on a numeric confounder,
it is quite common to use nearest available neighbour matching or caliper matching.
Then the matching will not be perfect and (3) will no longer be a partial likelihood.
But estimation for nested case–control data may still be performed using (3), and if
the matching is close the results will not differ much from those presented in Sect. 6.

In some situations with nested case–control data, one may want to study the effect
of a time-varying covariate, like the cumulative dose of a potential carcinogen. The
standard analysis of nested case–control data is valid for time-dependent covariates,
and so is the IPW analysis if one may obtain the full trajectories of time-dependent
covariates for cases and controls. However, multiple imputation and the full maximum
likelihood approach have not been extended to accommodate time-varying covariates
in this context.
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