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Abstract There are few readily-implemented tests for goodness-of-fit for the Cox
proportional hazards model with time-varying covariates. Through simulations, we
assess the power of tests by Cox (J R Stat Soc B (Methodol) 34(2):187–220, 1972),
Grambsch and Therneau (Biometrika 81(3):515–526, 1994), and Lin et al. (Biometrics
62:803–812, 2006). Results show that power is highly variable depending on the time
to violation of proportional hazards, the magnitude of the change in hazard ratio, and
the direction of the change. Because these characteristics are unknown outside of
simulation studies, none of the tests examined is expected to have high power in real
applications. While all of these tests are theoretically interesting, they appear to be of
limited practical value.

Keywords Survival analysis · Lack of fit · Time-dependent covariates

1 Introduction

The proportional hazards (PH) regression model proposed by Cox (1972) is commonly
used to analyze survival data in a variety of fields. The primary focus of the PH model is
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typically to estimate hazard ratios (HRs) that compare the hazard of event occurrence
between groups defined by predictor variables.

Let a subject’s observed time be denoted as T . T represents the minimum of the
subject’s event time and the subject’s censoring time. The initial Cox PH model relates
the hazard of event occurrence to constant covariates through the hazard function
λ(t |Z)

λ(t |Z) = λ0(t)e
β ′Z,

where λ0(t) is an unspecified baseline hazard function, eβ ′Z is the exponentiated linear
predictor and Z is a vector of fixed covariates. The covariates are fixed in the sense
that their values do not change over the time period of observation. The PH model has
been extended to accommodate covariates which change over time, known as time-
dependent or time-varying covariates (TVCs). TVCs are useful for modeling the effect
of covariates for which values change over time and for which a current value is more
important than the baseline value. Such covariates need to be collected or assessed
longitudinally over the duration of a study (Therneau and Grambsch 2000).

Formally, let j=1,…,p index p covariates. Then Z(t) = (
Z1(t), . . . , Z p(t)

)′ is the
(p × 1) vector of covariates for a subject at time t . For any covariate Z j measured
only at baseline, Z j (t) = Z j and it is assumed that the baseline value is representative
for the entire time period of observation. The PH model with TVCs is challenging
from a number of perspectives. It requires consideration of missing covariate values,
whether the TVC is internal or external to the failure mechanism, careful selection
of the functional form of continuous covariates and consideration of the conceptual
implications (Altman and de Stavola 1994; Andersen 1992; Kalbfleisch and Prentice
2002; Fisher and Lin 1999). However, expanding the PH model to include TVCs is
simple in terms of notation. In the following we consider a model with one fixed binary
covariate Z1 and one binary TVC Z2. In this case

λ(t |Z(t)) = λ0(t)e
β1 Z1+β2 Z2(t).

The HR for the binary TVC is a single number, but the interpretation of eβ2 is not
independent of time. At time t , the hazard of an event for a patient who has Z2(t) = 1
is eβ2 times the hazard of a patient who has Z2(t) = 0. Although Z2(t) can change
over time, the HR is constant conditional on time t (Hosmer et al. 2008, Sect. 7.3)

A crucial assumption of the PH model is that the effect of a covariate does not
change over time (Cox 1972). In other words, β are assumed to be constant for all t .
This assumption applies even in the case of time-dependent covariates; though values
may change, the effect of the covariate is assumed to be constant.

Formal testing of the PH assumption is often used in conjunction with graphical
methods. One such example is plotting Schoenfeld residuals from the model (Schoen-
feld 1980) or examining log-log survival plots. Many tests for PH have been proposed
but few are suitable for use with TVCs, and even fewer are readily implemented.
This paper considers the relative performance of the following tests, all of which
are conceptually compatible with TVCs and available in standard statistical software
packages or relatively easy to program.
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1. Cox (1972) suggests adding a TVC to the model in the form of the product of
the variable of interest and a function of time g(t), and comparing the original
and alternative models using a likelihood ratio test. The functions g(t) = t and
g(t) = ln(t) are popular choices.

2. Grambsch and Therneau (1994) propose a formal test analagous to plotting a
function of time versus scaled Schoenfeld residuals and comparing the slope of a
regression line to zero. Some choices for the function of time g(t) are t, ln(t), the
rank of the event times, and the Kaplan–Meier (KM) product-limit estimator.

3. Lin et al. (2006) propose a score test for PH comparing the standard PH model to a
model containing an arbitrary smooth function of time. This test has one advantage
over the tests discussed above: the function of time in the alternative hypothesis
does not have to be defined, so departures from the PH assumption where the test
could be expected to have adequate power are less limited. The test statistic is a
function of the Schoenfeld residuals and observed information matrix under the
null model.

For each test, a significant p-value implies that the variable of interest interacts with
time and does not have a constant effect over the entire period of observation, i.e., the
PH assumption is violated.

In the following, we assess the performance of these goodness-of-fit tests in terms of
power under a number of different settings where the PH assumption is violated. In the
next section, the settings for the simulations are described, followed by a summary of
the simulation results (Sect. 3). Section 4 contains a data example using the well known
Stanford Heart transplant data set. In the final section the results and in particular the
limitations of the tests are discussed. Code for calculating the Lin et al. (2006) test in
Stata is provided in the Appendix (Sect. 6).

2 Simulation methods

Our simulations focus on a simple case: a binary fixed covariate, a binary TVC that
does not switch off after switching on, and a one-time jump in hazard occurring a
specified amount of time after the TVC switches on. An example of such a binary
TVC in the Stanford Heart Transplant data (Clark et al. 1971; Crowley and Hu 1977)
is receiving a heart transplant after having been on a waiting list for some time. For
the simulations, different settings are generated for time to change in the TVC, time to
jump in hazard (violation of PH assumption), the effect size of the violation of PH, and
the direction of the violation. Simulations are performed using Stata 10.1. Programs
are validated by comparing results from simulations run in SAS and Stata with 100
replicates.

We generated time-to-failure data using an extension of the piecewise exponential
method (Zhou 2001; Leemis et al. 1990). Let Y2 be the failure time, and Y1 the time
when the TVC switches on. Let t0 be the time after Y1 where the jump in the HR
occurs and the PH assumption is violated. Let Z1 be a fixed covariate with coefficient
β1, and let Z2(t) be a TVC with coefficient β2 prior to Y1 + t0 and coefficient β3 after
Y1 + t0. Zhou (2001) applied an arbitrary monotone increasing transformation g(·) to
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a piecewise exponential variable W with two intervals and showed that g(W ) follows
a Cox PH model with a binary TVC and baseline hazard d

dt g−1(t).
The addition of another interval facilitated the change in hazard occurring at time

Y1 + t0. Thus we generated a piecewise exponential random variable T with the
following rate:

λ =

⎧
⎪⎨

⎪⎩

r0 = eβ1 Z1 if Y2 < Y1,

r1(t) = eβ1 Z1+β2 Z2(t) if Y1 ≤ Y2 < t0 + Y1,

r2(t) = eβ1 Z1+β3 Z2(t) if t0 + Y1 ≤ Y2,

where the probability density function of T is fT (t) = λe−λt . The function g(t) is
chosen such that g(t) = t , so T follows the Cox PH model with baseline hazard 1.
Subjects who failed before experiencing a change in the value of Z2(t) had Y2 < Y1.
Subjects who failed after Z2(t) switched on but before the jump in hazard had Y1 ≤
Y2 < t0 + Y1. Subjects who failed after Z2(t) switched on and after PH was violated
had Y2 ≥ t0 + Y1.

To create the piecewise exponential random variable T (the observed time), we
generated the random switching time as Y1 ∼ Exp(1) and the random failure time
Y2 ∼ Exp(1) independently for each of n subjects. We randomly generated values for
the fixed covariate Z1 such that 50 % had a value of one and 50 % had a value of zero
and set Z2(t) = 1 for approximately 50 % of subjects. As an initial step we generated
the observed time T as

T =

⎧
⎪⎨

⎪⎩

Y1
r0

if Y2 < Y1,

Y1 + Y2−Y1
r1(t)

if Y1 ≤ Y2 < t0r1(t) + Y1,

Y1 + t0 + Y2−Y1−t0r1(t)
r2(t)

if Y2 ≥ t0r1(t) + Y1

assuming all subjects failed on-study and created an event indicator. As a second step
we created separate censoring times by multiplying the maximum follow-up time and
random numbers from a Uniform(0, 1) distribution. To apply censoring we generated
another random number from the Uniform(0, 1) distribution for each subject, sorted
subjects by the random number, and applied censoring times to the specified proportion
of subjects by replacing T with the separately generated censoring times and updating
the event indicator accordingly. As a third step we applied administrative censoring
for subjects where the observed time T is beyond the maximum follow-up time. Here
administrative censoring is defined as right censoring of subjects due to the fact that a
study ends based on administrative reasons (e.g. end of funding period) and subjects
are no longer followed.

For the test proposed by Grambsch and Therneau (1994) the following functions
g(t) were used: t, ln(t), rank, and KM survival estimate. P-values for the tests pro-
posed by Cox (1972) were obtained by fitting models with and without the interaction
terms and performing likelihood ratio tests. The interaction terms were defined by
TVC × ln(t) and TVC × t . See Sect. 6 (Appendix) for a Stata Mata function to
perform the test proposed by Lin et al. (2006).
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Table 1 Simulation settings

β2 0.1 0.25 0.5 1 1.5 1.75 2 2.5 3

−0.1 −0.25 −0.5 −1 −1.5 −1.75 −2 −2.5 −3

eβ2 (HR) 1.1 1.3 1.7 2.7 4.5 5.8 7.4 12.2 20.1

0.90 0.78 0.61 0.37 0.22 0.17 0.14 0.08 0.05

β3 β2 0 2β2 −β2

t0 (years) ∼ Unif(0, 3 − Y1) 0.05 0.15 0.25 0.5 0.75 1

t0 (months) 0.6 1.8 3 6 9 12

n 100 500

Censoring 0% 15% 25%

To estimate power, the PH assumption was violated in one of three ways: the TVC
effect disappeared, doubled, or reversed at time Y1 + t0. Time between change in TVC
and jump in HR was varied for all three scenarios. We used a fixed value for t0 as
well as randomly generated values of t0 from a Uniform(0, 3 − Y1) distribution. The
impact of sample size and uniform censoring on power were investigated as well.

See Table 1 for simulation settings for the disappearing effect case (β3 = 0). Note
that we considered a wide range of pre-jump TVC effects, including HRs as extreme
as 20. Increasing (β3 = 2β2) and reversing (β3 = −β2) effect cases included the same
values of β2 and t0, but n and censoring were fixed at 500 and 0 %, respectively. Note, if
the coefficient β2 is negative, an increasing effect means that β3 is double in magnitude
compared to β2, but remains negative and thus represents a stronger negative effect.
Finally, the null hypothesis of constant effect was investigated to assess test size with
n fixed at 500. For all simulations, the TVC switched on for 50 % of subjects and
maximum follow-up time was set at 3 years.

3 Simulation results

Figure 1 summarizes power by various pre-jump TVC coefficients for increasing
(β3 = 2β2), disappearing (β3 = 0), and reversing (β3 = −β2) effect scenarios with
random time to violation of PH, n = 500, and 0 % censoring. For all scenarios, power
was lowest for pre-jump β2 near zero (HR=1). In the increasing effect scenario, the
power of all tests was 60 % or below for negative values of β2, and below 15 % for
positive values of β2. In the disappearing effect scenario, all tests had high power for
extreme values of β2, but power was below 70 % for moderate HRs (between 0.4 and
2.7, −1 ≤ β2 ≤ 1). Cox’s interaction with t and ln(t), the Grambsch-Therneau test
with g(t) = t , and the Lin–Zhang–Davidian had the highest power. In the reversing
effect scenario, all tests had over 70 % power for β2 ≥ 1.5 and β2 ≤ −1.5. The
Grambsch–Therneau test with g(t) = ln(t) had the lowest power in the reversing
effect scenario.

Figure 2 summarizes power by pre-jump TVC coefficient for differing values of t0
in the disappearing effect scenario with n = 500, and 0 % censoring. For the smallest
time to violation of PH, power is very low for all tests when β2 < 0 and increases with
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Fig. 1 Power in the scenarios of disappearing, increasing, and reversing effect, with random t0

Fig. 2 Power in the scenarios of disappearing effect, by t0
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β2 when β2 > 0. At t0 of 6 months all tests show the same pattern for positive β2 with
power peaking for β2 between 1 and 1.75. For t0 of 1 year, power is highest when β2
is most negative. For negative β2, when t0 is lowest a large change in effect size for
the TVC results in more powerful tests. Some tests, including Cox’s interaction with
time, the Grambsch–Therneau test with g(t) = t , and the Lin–Zhang–Davidian test,
had over 70 % power for log hazard ratios between 1 and 1.75 for t0 of 6 months. The
remaining tests have much lower power. When t0 is 1 year, none of the tests perform
well for positive β2. However, when β2 is negative, power increases as t0 increases,
and is highest for smallest values of β2. All tests have over 70 % power at some point
for β2 < 0 and t0 of 6 months or greater. Overall, power is below 70 % for moderate
HRs between 0.4 and 2.7 (−1 ≤ β2 ≤ 1). Results from simulations investigating
power for an increasing or decreasing effect had similar pattern, but power was in
general lower for an increasing effect size (results not shown).

Higher censoring and smaller sample size resulted in lower power, as expected, but
did not change the relationship between β2 and power. Additionally, we assessed test
sizes at the values of β2 considered in previous simulations with 1,000 repetitions,
n = 500 and 0, 15, and 25 % uniform censoring. Neither censoring nor β2 appeared
to affect size. In particular, our assessment of the size of the Lin–Zhang–Davidian test
did not differ from their results.

4 Example: stanford heart transplant program

4.1 Study background and interpretation

The Stanford heart transplant program began in 1967 and received considerable atten-
tion in the years that followed. The Stanford Hospital accepted end-stage heart disease
patients who could not be helped by conventional medical and surgical interventions.
Patients were required to have poor prognosis without a transplant and no other con-
ditions which might impede post-transplant recovery. Participants moved to the San
Francisco area and received the best possible therapy while waiting for a donor heart.
During the waiting period, participants were monitored for improvement that would
make a transplant unnecessary. After transplantation, patients received post-operative
care and were followed as long as possible. (Clark et al. 1971)

Crowley and Hu (1977) used PH regression to estimate the effect of heart transplan-
tation on survival for patients who were accepted into the program betwen November
1967 and March 1974. This public dataset contains date of program acceptance, trans-
plant, and last follow-up, along with other patient information such as age and surgical
history. Crowley and Hu fit a variety of Cox models based on survival time in days.
Transplant status was included as a TVC, along with other covariates for adjustment
purposes. The ultimate conclusion was that heart transplantation was beneficial, par-
ticularly for younger patients.

Aitkin et al. (1983) presented exploratory analyses describing the survival of partic-
ipants in the Stanford program. Because there was little reason to expect that the effect
of transplant status would remain constant over time, they modeled post-transplant sur-
vival using a variety of parametric and semi-parametric methods. Using a piecewise
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exponential model they estimated a post-transplant increase in hazard for 60 days fol-
lowed by a decline in hazard. A similar pattern was estimated using a Weibull model,
though the post-transplant hazard was found to increase for 90 days. Though the esti-
mated hazards were imprecise, there was some evidence for nonproportionality of the
effect of transplant status in these data. The long-term effect of heart transplantation
was found to be a reduction in risk of death.

According to Kalbfleisch and Prentice (2002), selection bias may have resulted in
an overstatement of the beneficial effect of transplantation on survival in the analysis
by Crowley and Hu (1977). Though the causal interpretation of the HR associated
with transplantation is certainly questionable, these data are ideal for our purposes
and will be analyzed to illustrate the tests for goodness-of-fit described in Sect. 1.

4.2 Goodness-of-fit analysis

We focused the model adjusting for age at transplant presented by Crowley and Hu:

λ(t |Z(t)) = λ0(t)e
β1 Z1(t)+β2 Z2(t),

where Z1(t) is age at transplant and Z2(t) is transplant status. The PH model was fit
using Stata 10 with Breslow’s method for ties (Breslow 1974). The tests for the PH
assumption proposed by Cox (1972), Grambsch and Therneau (1994), and Lin et al.
(2006) were applied as described in Sect. 2.

We also used simulations to assess the power of goodness-of-fit tests under con-
ditions similar to the Stanford study. The reversing effect scenario was closest to the
post-transplant increase in risk described by Aitkin, Laird and Francis (1983). Imme-
diate post-transplant log HRs between 0 and 3 were considered, and after 60 and 90
days the log HR was dropped to −2.5. We used a sample size of 100 with 25 %
censoring and 1,000 replicates.

4.3 Results and discussion

Crowley and Hu (1977) present data for 103 patients. 69 patients (67 %) received a
heart transplant, and 75 (73 %) died during follow-up. Crowley and Hu calculated
estimates of β̂1 = 0.057 and β̂2 = −2.67 for the log HRs associated with age at
transplant and transplant status. Our reanalysis of the data resulted in estimates of
β̂1 = 0.054 and β̂2 = −2.41. See Table 2 for results from the tests for PH. None of
the seven tests give evidence for a non-constant transplant effect.

See Fig. 3 for simulation results. For both values of t0, highest power was achieved
when the pre-jump TVC coefficient was between 1 and 2. Power is lower for all tests
when the jump in HR occurs after 3 months, and the difference in power between 2
and 3 months is most striking for the largest pre-jump log HRs. When the jump in
HR occurs after 60 days, power is over 70 % for 1 ≤ β2 ≤ 2.5 for all tests except
the Grambsch–Therneau test with g(t) = ln(t). When the jump in HR occurs after 90
days, power is over 70 % for 0.75 ≤ β2 ≤ 2 for Cox’s test of interaction with t and
ln(t), the Grambsch–Therneau test with g(t) = t , and the Lin–Zhang–Davidian test.
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Table 2 Tests for PH
assumption in the Stanford heart
transplant study

Test g(t) p value

Cox t 0.6113

ln(t) 0.9136

Grambsch-Therneau t 0.5236

ln(t) 0.5610

Rank 0.4438

KM 0.4362

Lin–Zhang–Davidian unspecified 0.8011

Fig. 3 Power simulations for the Stanford heart transplant study

Therefore tests for PH are actually quite powerful if post-transplant hazard of death
declined after two months, and considerably less powerful if the decline in hazard
occurred after three months. However, we do not have a precise estimate of the imme-
diate post-transplant hazard of death and thus can not give a more specific estimate of
power in the Stanford situation. If the post-transplant increase in hazard was small or
extreme, or if the decline in hazard occurred after 90 days, tests for the violation of
PH will be less powerful.

5 Discussion

In the disappearing TVC effect case, the power of tests for the PH assumption depends
on the hazard prior to the change in HR and time to HR change. The pattern in power
by difference in effect and time to effect change is intuitive. Since these data were
generated using an exponential distribution, most events are expected to occur early
on. When the HR for the TVC changes quickly, most patients experiencing a switch
in the TVC will survive to experience a jump in TVC effect. If the HR is low, we will
observe few events before the jump in effect occurs. If the HR is high, we expect to see
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many events immediately after the TVC switches on. As time between change in TVC
and jump in HR increases, patients must survive longer in order for the TVC effect
to change. Thus when the initial HR is high, subjects may not survive long enough to
experience the jump in TVC effect. When the pre-change HR is low, power increases
with time to effect change because the lower hazard causes slower accrual of events.

When the TVC effect doubles, all tests exhibit lower power regardless of how
quickly the TVC effect changes. In this case the magnitude of change in effect was
identical to that of the disappearing effect case. However, in the increasing effect case
the relationship between the groups defined by the TVC changed in magnitude but not
direction. The jump in effect simply made the HR more extreme. In the disappearing
effect case, violation of the PH assumption eliminated any difference in risk between
groups defined by the TVC. However, when the form of the violation of PH was a
reversal of the TVC effect, all tests were more powerful than in the disappearing effect
case. This was true regardless of the time to violation of PH. The reversing effect case
can be seen as a more extreme extension of the disappearing effect case: in both cases
the direction of the violation of PH was the same, but the magnitude of the change
in log HR in the reversing effect case was twice as large. The pattern in power by
pre-jump TVC log HR is similar between the two cases.

Thus we conclude that the power of tests for the violation of PH in the presence
of TVCs depends on time to violation of PH, as well as magnitude and direction of
the violation of PH. The hazard prior to violation of PH is also a factor. In order for
goodness-of-fit tests to be powerful, events must be balanced around the time when the
PH assumption is violated. A small number of events on either side results in lower
power. Goodness-of-fit tests have more power when the PH assumption is violated
quickly, the pre-violation HR is high, and the change in the HR is large. Tests are also
powerful when time to PH violation, pre-violation HR, and the magnitude of violation
are moderate. In both of these scenarios, power is high only when the relationship
between groups defined by the TVC changes direction. This concept is best illustrated
by comparing the cases of increasing and disappearing effect. Finally, tests are also
powerful when the TVC HR is less than one and time to jump in the HR is high. In
this case events accrue slowly so more time before change in HR is needed to detect
a change in HR.

As time to change in the TVC effect increases in the cases of disappearing and
reversing effect, the most powerful tests appear to be Cox’s test of the interac-
tion between time and the TVC and the Lin–Zhang–Davidian test. The Grambsch–
Therneau test of the interaction between time and the TVC also performs better than
the remaining tests. The tests of interaction between the TVC and time may be most
powerful because linear interaction with time is a better approximation of a one-time
jump in hazard than interaction with ln(t). The Lin–Zhang–Davidian test does not
require specification of the form of interaction with time, eliminating the possibility
of misspecification.

The assumption of constant time to violation of PH is relevant in scenarios where
a biological mechanism is the reason for the change in the HR. In the Stanford heart
transplant study, the immediate post-transplant increase in hazard was thought to be
due to the dangerous nature of the operation (Aitkin et al. 1983). In this case all
patients underwent the same procedure and received the same pre- and post-transplant
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care, so fixed time to change in HR seems appropriate. However, in other scenarios
more variability in time to violation of PH may be anticipated. For example, con-
sider a randomized study assessing the effectiveness of pharmaceutical interventions
in delaying progression to Alzheimer’s disease (Petersen et al. 2005). Patients with
depression were excluded from enrollment, but particpants could develop depres-
sion at any time. If the investigators wished to control for depression it would be
included as a TVC. However, the relationship between depression and Alzheimer’s
disease may not be constant over time as depressed patients may go on medication
or recover without intervention, reducing the impact of depression on cognition. In
this case, time to change in the effect of depression is most likely not due to a par-
ticular mechanism so the assumption of random time to violation of PH is reason-
able.

Finally, we turn to limitations of our simulation study. We considered only a one-
time jump in hazard rather than more subtle violations of PH, such as interaction
with a continuous function of time. Additionally, the PH model accomodates more
complex TVCs, such as binary covariates which turn on and off as well as continuous
covariates. We do not plan to investigate the power of goodness-of-fit tests in these
cases because we do not anticipate that our conclusions would change in more com-
plicated scenarios. In order to fit the model, TVC values must be known at every event
time so an underlying model for change in the continuous covariate over time must be
specified or assumed. Ng’andu (1997) found little difference in power between binary
and continuous predictors when evaluating goodness-of-fit tests for the PH model
with fixed covariates, and we expect the PH model with TVCs to behave similarly.
Also, our exploration of the impact of censoring and sample size on power was brief.
However, we do not expect a wider variety of censoring and sample size choices to
alter our understanding of the relationship between power, time to violation of PH, and
pre-violation HRs. At this time we do not intend to investigate censoring and sample
size further.

The primary limitation of our simulation study is our use of the exponential distri-
bution in generating failure times. In doing so we create a constant baseline hazard
function and cause the majority of events to occur early in the study. The Weibull
and Gompertz distributions are commonly used to allow non-constant baseline hazard
functions (Bender et al. 2005). In the future we may use these distributions to generate
survival data where the majority of the events occur toward the end of the study. The
distribution of events, combined with assumptions about time to violation of PH, is
likely to influence the power of tests for goodness-of-fit so use of a different baseline
hazard function may result in different trends in power.

In conclusion, we expect application of goodness-of-fit tests to TVCs to be of
limited usefulness. We considered a wide range of TVC effects in our simulation
study, including HRs from 0.05 to 20, and power was over 70 % only for HRs of
2.7 and above or 0.4 and below. For the purposes of our study, HRs between 2.7 and
0.4 are relatively small; however, in real data, estimates of this magnitude would be
far more common than more extreme HRs. Though our simulations showed that tests
have adequate power in some cases, in an applied setting we would not be able to
determine if goodness-of-fit tests could be expected to have high power. Returning
to the Stanford heart transplant data analyzed by Crowley and Hu (1977), we would
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not have suspected a change in the transplant effect after 60 or 90 days without the
additional analyses of Aitkin et al. (1983). Occasionally, as in the Alzheimer’s example
(Petersen et al. 2005), we may have some idea about the characteristics of the TVC
effect, but we rarely have enough information to judge the power of goodness-of-fit
tests in practice. Thus we do not recommend using the goodness-of-fit tests examined
here to assess the PH assumption for TVCs.

6 Appendix: Implementing the Lin–Zhang–Davidian test

This Stata code creates a Mata function to implement the test for PH proposed by
Lin, Zhang, and Davidian when there are two covariates in the model, but only one
is of interest. The function should be called after the Cox PH model has been run. It
draws from a subset of the analysis dataset as defined by the indicator variable use,
which should be set to one wherever Schoenfeld residuals are nonmissing (at event
times). In addition to event times, calculations require the covariance matrix from fit
of null model (Cov) and Schoenfeld residuals from the covariate of interest saved as
sch2. The Mata function returns the test statistic as chilzd and degrees of freedom
as dflzd. The notation in the Mata function is similar to that in the paper. γ (g) is
the coefficient for the covariate of interest and β (b) is the coefficient for the other
covariate.

mata:
mata set matastrict on
mata clear
void LZD(string scalar use, string scalar t, string scalar sch2)
{
/* define vectors/matrices to be used */
real colvector times, res, H
real matrix Sigma, I, Igg, aVgg, Vbb, Ibg, Vgg, Vbg, Vgb, /*
*/ HtVgb, VbgH, HtVggH, HtVgg, M1, M2, M3, WVWt, LZDDF, LZDStat
real scalar i, j, Num, Denom

/* vectors of times, residuals, 1’s */
st_view(times, ., t, use)
st_view(res, ., sch2, use)
st_view(H, ., use, use)

/* Create matrix Sigma: Sigma_ij = t_j if i>=j, = t_i if i<j */
Sigma = diag(H)

for( i = 1; i <= rows(Sigma); i++){
for( j = 1; j <= rows(Sigma); j++){
if (i>= j) Sigma[i, j] = times[j]
else Sigma[i, j] = times[i]
}
}

/****** Numerator ********/
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Num = res’ * Sigma * res

/****** Denominator ******/
/* These are components of information matrix */
I = invsym(st_matrix(‘‘Cov’’))
Igg = I[2,2]
Vbb = I[1,1]
Ibg = I[1,2]

/* Estimated variance of Schoenfeld residuals,
from Hosmer and Lemeshow text */
Vgg = 1 / rows(H) * Igg * diag(H)
/* partial information vectors for beta and gamma */
Vbg = Ibg * H’
Vgb = Ibg * H
/* observed partial inf for beta already defined as Vbb */

/* Calculation of WVWt is broken into steps for readability.
See end of LZD paper. */
HtVgb = H’ * Vgb
VbgH = Vbg * H
HtVggH = H’ * Vgg * H
HtVgg = H’ * Vgg
M1 = ( Vbb, VbgH \ HtVgb, HtVggH)
M2 = ( Vbg \ HtVgg )
M3 = (Vgb, Vgg*H)

WVWt = Vgg - M3 * luinv(M1) * M2
Denom = trace( (WVWt * Sigma)*(WVWt * Sigma) ) / /*
*/ trace(WVWt * Sigma)
LZDDF = (trace(WVWt*Sigma) * trace(WVWt*Sigma)) / /*
*/ trace((WVWt * Sigma)*(WVWt * Sigma))
LZDStat = Num / Denom

/* return values to Stata as scalars */
st_numscalar(‘‘chilzd’’, LZDStat)
st_numscalar(‘‘dflzd’’, LZDDF)
}
end
}
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