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Abstract When an existing risk prediction model is not sufficiently predictive, addi-
tional variables are sought for inclusion in the model. This paper addresses study
designs to evaluate the improvement in prediction performance that is gained by adding
a new predictor to a risk prediction model. We consider studies that measure the new
predictor in a case–control subset of the study cohort, a practice that is common in
biomarker research. We ask if matching controls to cases in regards to baseline predic-
tors improves efficiency. A variety of measures of prediction performance are studied.
We find through simulation studies that matching improves the efficiency with which
most measures are estimated, but can reduce efficiency for some. Efficiency gains are
less when more controls per case are included in the study. A method that models the
distribution of the new predictor in controls appears to improve estimation efficiency
considerably.

Keywords Classification · Diagnosis · Medical decision making · Receiver
operating characteristic curve

1 Introduction

Medical decisions are often based on an individual’s calculated risk of having or devel-
oping a condition. For example, decisions to prescribe long-term cholesterol lowering
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statin therapy are often made with use of the Framingham risk of a cardiovascular
event (Truett et al. 1967; Kannel et al. 1976; Gordon and Kannel 1982; Anderson
et al. 1991) that uses as input information the individual’s sex, age, blood pressure,
total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein choles-
terol, smoking behavior and diabetes status. The Breast Cancer Risk Assessment Tool
(BCRAT) is used to calculate 10 year risk of breast cancer for individuals, using infor-
mation on age, personal medical history (number of previous breast biopsies and the
presence of atypical hyperplasia in any previous breast biopsy specimen), reproductive
history (age at the start of menstruation and age at the first live birth of a child) and
family history of breast cancer. If a woman’s risk exceeds an age-specific threshold,
she may be recommended for hormone therapy that reduces the risk at least in some
women. Risk prediction models can also be used to determine if a person’s risk is low
enough to forgo certain unpleasant or costly medical interventions (Gail et al. 1989,
1999).

Our ability to predict risk with currently available clinical predictors is often very
poor. For example the BCRAT model has a very modest capacity to discriminate
women who develop breast cancer within 10 years from those who do not. The area
under the age-specific receiver operating characteristic curve is approximately 0.56
(Mealiffe et al. 2010). Therefore new predictors are sought for their capacity to improve
upon its prediction performance. Recent advances in and wider availability of mole-
cular and imaging biotechnologies offer the potential for new powerful predictors.
Recent studies have examined the use of data on genetic polymorphisms and breast
density to improve the performance of BCRAT.

This paper concerns study designs to estimate the improvement in prediction per-
formance that is gained by adding a new predictor Y to a set of baseline predictors
X , to predict the risk of an outcome D (D = 1 for a bad outcome and D = 0 for
a good outcome). When resources are limited and Y is difficult to ascertain, it may
not be feasible to measure it on all subjects in a study cohort. Consider, for exam-
ple, if the new predictor is a biomarker measured on biological samples obtained and
stored while women were healthy at enrollment in the Women’s Health Initiative. The
preciousness of such biological samples dictates that they be used with maximum
efficiency. Typically therefore a case–control study design is employed wherein Y is
measured on a random subset of cases (denoted by D = 1) and a selected subset of
controls (D = 0).

Our specific interest concerns whether or not the controls on whom Y is measured
should be selected to frequency match the cases with regard to the baseline predictors
X . Matching is in fact routinely done in practice in order to avoid observing asso-
ciations between Y and D that are solely due to associations of X with both Y and
D. However, the effect of this practice on estimation of performance improvement is
not fully understood. We have raised concerns about matching with regards to bias,
emphasizing that naïve analyses typically employed are misleading, as they underes-
timate performance (Pepe et al. 2012). The effect of matching on the estimation of
incremental value with regards to efficiency has not been examined. Nevertheless, the
practice is entrenched in the field of biomarker research. Here, we propose a two-stage
estimator that accounts for matching to produce unbiased estimates. Using this esti-
mator, we look to address the question of whether matching can improve the efficiency
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of estimating the increment in performance. This is an important question given that
matching also necessitates a somewhat more complicated analysis algorithm than is
required for an unmatched study. We ask whether there is a large enough (or any)
efficiency gain that justifies the common practice of matching and a more complicated
analysis.

Matching is known to improve efficiency for estimating the odds ratio for Y in
a risk model that includes X (Breslow and Day 1980). However, the odds ratio,
P(D=1|X,Y=y+1)/P(D=0|X,Y=y+1)

P(D=1|X,Y=y)/P(D=0|X,Y=y)
, does not characterize prediction performance or

improvement in prediction performance gained by including Y in the risk model over
and above use of X alone. The distribution of (X, Y ) in the population is an addi-
tional component that enters into the calculation of prediction performance. Janes and
Pepe (2009) showed that matching on X is also optimal for estimating the covariate
adjusted ROC curve, which is a measure of prediction performance. However, Janes
and Pepe (2008) show that the covariate adjusted ROC curve that characterizes the
ROC performance of Y within populations where X is fixed, does not quantify the
improvement in the ROC curve gained by including Y in the risk model. It is cur-
rently unknown if matching leads to gains in efficiency for estimating performance
improvement.

There are many metrics available for gauging improvement in prediction perfor-
mance, and there is much confusion in the field about which metrics are most wor-
thy for reporting. In Sect. 2, we review the most popular measures, providing some
novel insights about their interpretations and inter-relationships. We provide ratio-
nale for the measures we selected to study here. In Sect. 3, we describe how these
measures can be estimated from matched and unmatched studies. Simulation studies
that were performed to evaluate the properties of the estimators and the efficien-
cies of matched designs are described in Sect. 4 using a simulated dataset and a
real dataset concerning the prediction of renal artery stenosis. In Sect. 5, we pro-
pose a bootstrap approach for inference and demonstrate its validity through sim-
ulation studies. In Sect. 6, we illustrate our methodology in the context of renal
artery stenosis. We close with some recommendations and suggestions for further
research.

2 Measures of improvement in prediction performance

We first consider the most popular measures used to quantify improvement in predic-
tion performance. Table 1 presents definitions for these measures. In this section, we
review the measures in more detail.

2.1 Notation

Recall our use of D for the outcome variable, D = 1 denoting a case with a bad
outcome and D = 0 denoting a control with a good outcome. We use X for predictors
in the baseline risk function, risk(X) = P(D = 1|X), Y for the novel predictors to
be added and we write risk(X, Y ) = P(D = 1|X, Y ). All measures of prediction
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performance involve the distributions of risk(X) and risk(X, Y ) in cases and controls.
We write these distributions as:

F D
X (r) = P(risk(X) ≤ r |D = 1)

F D̄
X (r) = P(risk(X) ≤ r |D = 0)

F D
X,Y (r) = P(risk(X, Y ) ≤ r |D = 1)

F D̄
X,Y (r) = P(risk(X, Y ) ≤ r |D = 0)

The joint distributions of (risk(X), risk(X, Y )) in cases and controls will be denoted
by F D(r, r ′) and F D̄(r, r ′) respectively.

2.2 Proportions at high risk and net benefit

In some settings a threshold exists for high risk classification and patients designated
as ‘high risk’ receive an intervention. For example, patients whose 10-year risk of a
cardiovascular event exceeds 20 % are recommended for cholesterol lowering therapy
(Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in
Adults 2001). A risk model performs well, in the sense of treating people who would
have an event in the absence of therapy, i.e. the cases, if a large proportion of those
subjects are placed in the high risk category by the model, i.e. if HRD(r) ≡ P[risk >

r |D = 1] is large. Conversely, one must consider to what extent subjects that would not
have an event in the absence of intervention, i.e. the controls, are inappropriately given
intervention. A good model will place few of the controls in the high risk category,
i.e. HRD̄(r) ≡ P[risk > r |D = 0] is small. The changes in HRD(r) and HRD̄(r)

that are gained by adding Y to the risk model are therefore key entities for quantifying
improvement in model performance for decision making when a therapeutic threshold
for risk exists:

�HRD(r) ≡ P[risk(X, Y ) > r |D = 1] − P[risk(X) > r |D = 1]
�HRD̄(r) ≡ P[risk(X) > r |D = 0] − P[risk(X, Y ) > r |D = 0].

These measures are also called changes in the true and false positive rates. Note that
our goal is to increase HRD(r) and reduce HRD̄(r) by adding Y to the baseline risk
model. Therefore positive values of �HRD and �HRD̄ are desirable.

There is a net expected benefit (B) associated with designating a case as high risk
and a net expected cost (C) associated with designating a control as high risk. It
has been noted that a rational choice of risk threshold is r = C/(C + B) (Pauker
and Kassierer 1980; Vickers and Elkin 2006) and that the expected population net
benefit associated with use of a risk model and threshold r to assign treatment is
NB(r) = {ρHRD(r)− (1 −ρ) r

(1−r)
HRD̄(r)}B where ρ is the population prevalence,

P(D = 1). Baker (2009) suggests standardizing NB(r) by the maximum possible
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benefit, ρB, achieved when all cases and no controls are designated as high risk.
This standardized measure B(r) ≡ HRD(r) − (1−ρ)

ρ
r

(1−r)
HRD̄(r), the proportion of

maximum benefit, can also be viewed as the true positive rate HRD(r) discounted
(appropriately) for the false positive rate HRD̄(r). The change in B(r) that is achieved
by adding Y to the risk model is an appropriate summary of its components �HRD(r)

and �HRD̄(r):

�B(r) = �HRD(r) + 1 − ρ

ρ

r

1 − r
�HRD̄(r).

In some settings all subjects receive treatment by default and use of a prediction
model is to identify low risk subjects that can forego treatment. Parameters analogous
to �HRD(r), �HRD̄(r) and �B(r) can be defined but we do not focus on those
here.

2.3 Performance measures related to fixed points on the ROC curve

When risk thresholds or costs and benefits are not available, other approaches to
summarizing prediction performance have been proposed. Points on the ROC curve
or on its inverse are commonly used in practice because of their use in evaluating
diagnostic tests and classifiers. We define

�ROC
(

pD̄) = ROC(X,Y )

(
pD̄)− ROCX

(
pD̄)

where ROC(pD̄) is the proportion of cases with risks above the threshold r(pD̄) that
allows the fraction pD̄ of controls to be classified as high risk. Analogously,

�ROC−1(pD) = ROC−1
X

(
pD)− ROC−1

(X,Y )

(
pD)

where ROC−1(pD) is the proportion of controls with risks above the threshold r(pD)

that is exceeded by the fraction pD of cases.
Interestingly, the ROC points are closely related to measures proposed by Pfeiffer

and Gail (2011) for quantifying prediction performance. They argue for choosing a
high risk threshold r(pD) so that a specified proportion of cases (pD) are designated as
high risk and define the proportion needed to follow, PNF(pD) = P[risk > r(pD)],
as a performance metric. In words, PNF(pD) is the proportion of the population
designated as high risk in order that pD of the cases are classified as high risk. A
little algebra shows that PNF(pD) = ρpD + (1 − ρ)ROC−1(pD). The reduction in
the proportion of the population needed to follow in order to identify pD of the cases
(�PNF) that is gained by adding Y to the model is

�PNF
(

pD) = (1 − ρ)�ROC−1(pD).
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We choose to study �ROC−1(pD) here as it does not depend on the prevalence.
Pfeiffer and Gail (2011) also define a performance metric that is the proportion of
cases followed, PCF(p), when a fixed proportion p of the population is designated as
highest risk. This measure relates directly to the ROC:

PCF(p) = ROC
(

pD̄)

where pD̄ is the point on the x-axis of the ROC plot such that p = ρROC(pD̄)+ (1−
ρ)pD̄ . We study �ROC(pD̄) rather than �PCF(p) here because of its widespread use
and its independence from the prevalence.

2.4 Global performance measures that do not specify a risk threshold

The above measures require explicit or implicit choices for risk thresholds. Measures
that average over all risk thresholds in some sense are popular in part because they
avoid the need to choose a risk threshold. The change in the area under the ROC curve
by adding Y to the model, denoted �AUC, is the most commonly used measure in
practice. The AUC is often written as

AUC = P(riski > risk j |Di = 1, D j = 0)

and

�AUC = AUC(X,Y ) − AUCX .

A more recently proposed measure, called the integrated discrimination improvement
(IDI) index, is the change in the difference in mean risks between cases and controls:

IDI = �MRD = MRD(X,Y ) − MRDX

where

MRD = E(risk|D = 1) − E(risk|D = 0).

Both the AUC and the MRD are measures of distance between the case and control
distributions of modeled risks. Another measure of distance between distributions is
the above average risk difference:
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AARD = P(risk > ρ|D = 1) − P(risk > ρ|D = 0),

the name deriving from the fact that E(risk) = ρ regardless of the risk model. We
study the AARD because it is related to several other measures of prediction perfor-
mance. We note in particular that AARD = B(ρ). Youden’s index is a measure of
diagnostic performance for binary tests and we write YI(r) = HRD(r)−HRD̄(r). We
note that AARD = YI(ρ). Moreover, theory from Gu and Pepe (2009a) implies that
YI(ρ) = max(ROC(ρ) − ρ) = max(YI(r)). Therefore, AARD = max(YI(r)). This
is also known as the Kolmogorov–Smirnov measure of distance between the case and
control risk distributions. Finally, Gu and Pepe (2009a) also showed that this statistic
is equal to the standardized total gain statistic (Bura and Gastwirth 2001), a measure
derived from the population distribution of risk. The measure of improvement in pre-
diction performance that we consider is the difference in measures calculated with
risk(X, Y ) compared with when calculated with risk(X):

�AARD = AARD(X,Y ) − AARDX .

2.5 Risk reclassification performance measures

Reclassification measures of performance compare risk(X, Y ) with risk(X) within
individuals and summarize across subjects. The most popular measure is the net reclas-
sification improvement (NRI) index (Pencina et al. 2008). We focus on the continuous
NRI (Pencina et al. 2011), written NRI(>0):

NRI(> 0) ≡ P(risk(X, Y ) > risk(X)|D = 1) − P(risk(X, Y ) < risk(X)|D = 1)

+P(risk(X, Y ) < risk(X)|D = 0) − P(risk(X, Y ) > risk(X)|D = 0)

= 2{P(risk(X, Y ) > risk(X)|D = 1) − P(risk(X, Y ) > risk(X)|D = 0)}

It is interesting to consider the NRI(>0) statistic when the baseline model contains
no covariates, i.e. when all subjects are assigned risk = ρ. In this setting it is related
to measures mentioned previously:

NRI = 2
{

HRD(ρ) − HRD̄(ρ)
}

= 2AARD(ρ) = 2YI(ρ) = 2B(ρ).

Originally the NRI was proposed for categories of risk and was defined as the net
proportion of cases that moved to a higher risk category plus the net proportion of
controls that moved to a lower risk category. When there are two categories, above or
below the risk threshold r , the NRI= �HRD(r) + �HRD̄(r) = �YI(r). Similar to
�B(r), it is a weighted summary of improvements in true and false positive rates but
unfortunately it uses inappropriate weights.

Another risk reclassification measure is the IDI, also defined as:

IDI = E{risk(X, Y ) − risk(X)|D = 1} + E{risk(X) − risk(X, Y )|D = 0}.
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Interestingly, because of the linearity, this measure of individual changes in risk due
to adding Y to the model can also be interpreted as a difference of two population
performance measures. That is, as noted earlier

�MRD = MRD(X,Y ) − MRDX = IDI.

3 Estimation from matched and unmatched designs

We now consider how the measures defined above can be estimated from a cohort
study within which a case–control study of a new predictor is nested.

3.1 Data

We assume that data on the outcome and baseline covariates are available on a simple
random sample of N independent identically distributed observations: (Dk, Xk), k =
1 . . . , N . We select a simple random sample of nD cases from the cohort to ascertain
Y : Yi , i = 1, . . . , nD . The controls on whom Y is ascertained {Y j , j = 1, . . . , nD̄}
may be obtained as a simple random sample in an unmatched design. Alternatively, in
a matched design, a categorical variable W is defined as a function of X, W = W (X),
and the number of controls within each level of W is chosen to equal a constant K
times the number of cases with that value for W .

As shown in Table 1, all performance improvement measures are defined as
functions of the risk distributions (notation in Sect. 2.1). We estimate risk(X) and
risk(X, Y ) first, then estimate their distributions in cases and controls and substi-
tute the estimated distributions into expressions for the performance improvement
measures.

3.2 Estimating risk functions

For the baseline model, we fit a regression model to the cohort data {(Dk, Xk), k =
1, . . . , N } and calculate predicted risks, r̂isk(X), for each individual in the cohort. For
the expanded model, risk(X, Y ), we consider two approaches.
Case-control with adjustment We fit a model to data from the case–control subset,
yielding fitted values r̂isk

cc
(X, Y ), and then adjust the intercept to the prevalence in

the cohort

logit r̂isk
ad j

(X, Y ) = logit r̂isk
cc

(X, Y ) − logit
(nD

n

)
+ logit

(
ND

N

)
,

where n = nD +nD̄ and ND is the number of cases in the cohort. This is a well-known
and standard approach to estimation of absolute risk for epidemiologic case–control
studies (Breslow 1996). It draws upon the results of Prentice and Pyke (1979), which
suggested that a prospective logistic model can be fit to retrospective data from a case–
control study with a slight modification that adds an offset term to the logistic model.
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The approach maximizes the pseudo- (or conditional-) likelihood that an observation
in the case–control sample is a case or a control (Breslow and Cain 1988; Fears and
Brown 1986).

However this approach does not account for matching. Pencina et al. (2011) pre-
sented a similar approach that used intercept adjustment to estimate NRI(>0) in the
context of simple case-control studies.
Two-stage Two-stage methods acknowledge that selection of subjects for whom Y is
measured, i.e. the second stage of sampling, may depend on their values of (D, X)

found in the first stage. In particular, they account for matching. We generalize the
intercept adjustment idea presented above to account for matching on X . This requires
using the cohort to adjust the odds ratio associated with X . The odds ratio associated
with Y is correctly estimated using standard logistic regression applied to the case–
control dataset. We use the corresponding fitted values but adjust them using fitted
values from the baseline model fit to the cohort and to the case–control datasets.
Specifically, if we let r̂isk

cohort
(X) and r̂isk

cc
(X) denote the fitted values for the

baseline models, then the two-stage estimator of the absolute risk is:

logit r̂isk
2−stage

(X, Y ) = logit r̂isk
cc

(X, Y ) − logit r̂isk
cc

(X) + logit r̂isk
cohort

(X)

Using ‘cohort’ and ‘cc’ to denote sampling in the cohort or in the case–control subset,
rationale for r̂isk

2−stage
(X, Y ) derives from the facts that

logit P(D = 1|X, Y, cohort) = logit P(D = 1|X, cohort) + log DLRX (Y )

and

logit P(D = 1|X, Y, cc) = logit P(D = 1|X, cc) + log DLRX (Y )

where the covariate-specific diagnostic likelihood ratio

DLRX (Y ) = P(Y |X, D = 1)/P(Y |X, D = 0)

is the same in the (matched or unmatched) case–control and cohort populations. The
equations are a simple application of Bayes’ theorem (Gu and Pepe 2009b). Substi-
tuting the expression for log DLRX (Y ) derived from the case–control equation into
that for the cohort equation gives the expression above for logit r̂isk

2−stage
(X, Y ).

3.3 Estimating distributions of risk

To estimate the risk distributions, we draw upon previously proposed methods for the
estimation of risk distributions in simple case–control studies (Gu and Pepe 2009b;
Huang et al. 2007; Huang and Pepe 2009). Here, we propose methodology for estima-
tion with matched nested case–control data, which has not been previously considered.
We estimate the baseline risk distributions, F D

X and F D̄
X , using the empirical distribu-

tions of r̂isk(X) in the cohort data. Since the cases in the case–control set are drawn as
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a simple random sample from the cases in the cohort, we use the empirical distribution
of r̂isk(X, Y ) in the cases as the estimator of F D

X,Y . For estimation of the distribution of
r̂isk(X, Y ) in the controls, we propose nonparametric and semiparametric approaches.

Nonparametric estimation In unmatched case–controls studies we can also use the
empirical distribution of r̂isk(X, Y ) among the controls to estimate F D̄

X,Y . However in
matched designs the controls are not a simple random sample and the distribution of
r̂isk(X, Y ) must be reweighted to reflect the distribution in the population. Specifically,
letting c = 1, . . . , C represent the distinct levels of the matching variable we can write

F D̄
X,Y (r) = P{risk(X, Y ) ≤ r |D = 0}

=
C∑

c=1

P{risk(X, Y ) ≤ r |D = 0, W = c}P(W = c|D = 0). (1)

A nonparametric estimator substitutes the observed proportions in the cohort for
P(W = c|D = 0) and the observed empirical stratum specific distributions of
r̂isk(X, Y ) for P{risk(X, Y )|D = 0, W = c}. We also consider a semiparametric esti-
mator that substitutes semiparametric stratum specific estimates for P{risk(X, Y ) ≤
r |D = 0, W = c}.
Semiparametric estimation Observe that

P{risk(X, Y ) ≤ r |D =0, W =c}= E{P(risk(X, Y ) ≤ r |D =0, X)|D =0, W =c}.
(2)

A semiparametric location-scale model for the distribution of Y conditional on (D =
0, X) is written

Y = μD̄(X) + σ D̄(X)ε

where the distribution of ε is unspecified, ε ∼ F0, and μD̄(X), and σ D̄(X) are
parametric functions of X (Heagerty and Pepe 1999). After fitting the regression
functions μD̄(X) and σ D̄(X), the empirical distribution of the residuals ε̂ j =
(Y j − μ̂D̄(X j ))/σ̂

D̄(X j ), j = 1, ..., nD , yields an estimator F̂0. The semiparametric
estimate of the distribution of Y is then

P̂(Y ≤ y|D = 0, X) = P̂

{
Y − μ̂D̄(X)

σ̂ D̄(X)
≤ y − μ̂D̄(X)

σ̂ D̄(X)

∣∣∣∣D = 0, X

}

= P̂

{

ε̂ ≤ y − μ̂D̄(X)

σ̂ D̄(X)

∣∣
∣∣D = 0, X

}

= F̂0

{
y − μ̂D̄(X)

σ̂ D̄(X)

}

, (3)
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which in turn yields P̂{risk(X, Y ) ≤ r |D = 0, X}. For example, if we use a logistic
model for risk(X, Y ) and write logit r̂isk(X, Y ) = θ̂0 + θ̂1 X + θ̂2Y where θ̂2 > 0,
then

P̂{risk(X, Y ) ≤ r |D = 0, X} = P̂
{
logit r̂isk(X, Y ) ≤ logit(r)|D = 0, X

}

= P̂
{
θ̂0 + θ̂1 X + θ̂2Y ≤ logit(r)|D = 0, X

}

= P̂

{
Y ≤ logit(r) − θ̂0 − θ̂1 X

θ̂2

∣∣∣∣D = 0, X

}

= F̂0

⎧
⎨

⎩

logit(r)−θ̂0−θ̂1 X
θ̂2

− μ̂D̄(X)

σ̂ D̄(X)

⎫
⎬

⎭
,

by substituting into (3). In turn, we estimate (2) as

P̂{risk(X, Y ) ≤ r |D =0, W =c}=
∑N

j=1 P̂{risk(X j , Y ) ≤ r |D j =0, X j } I {W (X j )=c, D j =0}
N c

D̄

where N c
D̄

is the number of controls in the cohort with matching covariate value

W = c. This estimator is then substituted into (1) to get F̂ D̄
X,Y (r). As noted above, a

nonparametric estimator substitutes the observed proportions in the cohort for P(W =
c|D = 0), so that P̂(W = c|D = 0) = N c

D̄
ND̄

. The semiparametric estimator then
simplifies to

F̂ D̄
X,Y (r)= P̂{risk(X, Y ) ≤ r |D =0}=

∑N
j=1 P̂{risk(X j , Y ) ≤ r |D j =0, X j } I {D j =0}

ND̄

for both matched and unmatched studies.
Both nonparametric and semiparametric estimators of F D̄

X,Y are accompanied by a

nonparametric estimator of F D
X,Y .

3.4 Estimates of performance improvement measures

In Table 1, we presented the definitions of all performance improvement mea-
sures being studied here. Observe that estimates of �HRD(r),�HRD̄(r),�B(r) and
�AARD(r) follow directly from the estimators described above for the cumulative dis-
tributions of risk(X) and risk(X, Y ) in cases and in controls. Note that since �HRD(r)

relies only on F D
X,Y , what we refer to as nonparametric and semiparametric estimates

of �HRD(r) are in fact the same empirical estimate.
The pointwise ROC measures are also calculated directly, after noting that

ROC(pD̄) = 1 − F D(r(pD̄)) where r(pD̄) is such that 1 − F D̄(r(pD̄)) = pD̄

and ROC−1(pD) = 1− F D̄(r(pD)) where r(pD) is such that 1− F D(r(pD)) = pD .
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For �AUC, we use the usual empirical estimator with cohort data for the baseline
value AUCX , while we use

̂AUC(X,Y ) = 1

nD

nD∑

i=1

F̂ D̄
X,Y

{
r̂isk(Xi , Yi )

}
,

where the summation is over cases, for the enhanced model. Note that this is equal to
the usual empirical estimator in an unmatched study but that it also yields an estimate
of P{risk(X j , Y j ) ≤ risk(Xi , Yi )|Di = 1, D j = 0} in the matched design setting.

The baseline MRD is calculated empirically from the cohort values of r̂isk(X) while
the enhanced model MRD is calculated as

MRD(X,Y ) = 1

nD

nD∑

i=1

r̂isk(Xi , Yi ) −
C∑

c=1

Ê
{
r̂isk(X, Y )|D = 0, W = c

}

P(W = c|D = 0).

Here Ê{r̂isk(X, Y )|D = 0, W = c} are the stratum specific sample averages of
r̂isk(X, Y ) for controls in the case–control study for the nonparametric estimator.
For the semiparametric estimator Ê{r̂isk(X, Y )|D = 0, W = c} is calculated as the
average of

∫
r̂isk(Xi , y)d F̂0

{
y − μD̄(Xi )

σ̂ D̄(Xi )

}
= 1

nD̄

nD̄∑

j=1

r̂isk

{
Xi ,

Y j − μ̂D̄(X j )

σ̂ D̄(X j )
σ̂ D̄(Xi )

+μ̂D̄(Xi )

}

over the controls in the cohort stratum with W = c.
The NRI(>0) statistic uses the observed proportion of cases with r̂isk(X, Y ) >

r̂isk(X) in the case–control study for the event NRI component, which requires
estimation of P{risk(X, Y ) > risk(X)|D = 1}. The non-event NRI component
requires P{risk(X, Y ) < risk(X)|D = 0}, which is estimated as a weighted
average of the stratum specific observed proportions for the nonparametric estima-

tor and as 1
ND̄

∑ND̄
i=1 P̂{r̂isk(Xi , Y ) < r̂isk(Xi )|Di = 0, Xi } for the semiparametric

estimator.
Further details of the performance measure estimators obtained in each scenario

are presented in Appendix Tables 8, 9 and 10.

3.5 Summary of estimation approaches

In Table 1, we showed that all performance improvement measures are functions of
the risk distributions. Therefore, regardless of which measure is used, estimation of
performance improvement is a two-fold task that requires estimating: (1) the risk
functions risk(X) and risk(X, Y ), and (2) the distributions of the risk functions in
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cases and in controls. We then substitute the estimated distributions into expressions
for the performance improvement measures.

We estimated both risk functions parametrically using simple logistic models with
linear terms. Other more flexible forms may be used in practice. In Sect. 3.2, we pre-
sented two different modeling approaches for estimating risk(X, Y ) under the logistic
regression framework. The first method (Mad j ) is a commonly used approach which
utilizes only the data in the case–control subset and is valid only for an unmatched
design. The second method (M2−stage) is a two-stage estimator which utilizes addi-
tional data from the cohort and is valid for both matched and unmatched designs. By
comparing these two approaches to modeling the risk function, we aim to demonstrate
that matching invalidates commonly used naïve analysis. Additionally, we investigate
whether utilizing the parent cohort data for X improves the efficiency of risk function
estimation.

In Sect. 3.3, we turned our attention to the estimation of the risk distributions in
cases and in controls. We estimated the distributions of risk(X) using the empirical dis-
tributions estimated from the cohort. We also estimated the distribution of risk(X, Y )

in cases empirically. For the estimation of the risk distribution in controls, we pro-
posed nonparametric and semiparametric approaches for matched and unmatched
case–control designs. The nonparametric approach has the advantage of making
no modeling assumptions for the distribution of Y given X in controls. On the
other hand, the semiparametric approach does make modeling assumptions and bor-
rows information across strata of controls, and is therefore expected to be more
efficient. One would therefore use the nonparametric approach in situations where
there was uncertainty about how to model the distribution of Y given X in con-
trols. The semiparametric approach would be preferable in situations with sparse
controls. Using these two approaches for estimating the risk distribution, we aim
to compare the efficiency of semiparametric estimation to that of nonparametric
estimation.

Finally, using the above methods, we aim to answer the question of whether match-
ing in the nested case–control subset improves efficiency in the estimation of perfor-
mance improvement measures.

4 Simulation studies

We investigated the performances of the estimators and the merits of matched study
designs using two small simulation studies—in the first study, we generated the data
from a bivariate binormal model and in the second study, we used a real dataset.

4.1 Simulation study 1: bivariate binormal data

4.1.1 Data generation

We generated bivariate binormal cohort data of size N = 5,000 for cases (D = 1)

and controls (D = 0) with population prevalence ρ = P(D = 1) = 0.10, so that the
cohort contained ND = 500 cases and ND̄ = 4,500 controls:
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(
X
Y

)
∼ BVN

((
μX (D)

μY (D)

)
,

(
1 corr(X, Y |D)

corr(X, Y |D) 1

))

where μX (0) = μY (0) = 0 and μX (1) = μY (1) = 0.742. The corresponding AUC
values associated with X and Y alone are AUCX = AUCY = �(0.742/

√
2) = 0.7.

Data for N = 5,000 subjects were generated, so that {(Di , Xi ), i = 1, . . . N } consti-
tutes the study cohort data. A random sample of nD = 250 cases were selected from the
cohort and their Y values added to the dataset. For the unmatched design, Y values for
a random sample of nD̄ = 500 controls were also added to the dataset. For the matched
design, we generated the matching variable W using quartiles of X in the control pop-
ulation and selected 2 controls randomly for each case in each of the four W strata.

4.1.2 Results

Using the notation M for a generic performance improvement measure, Table 2 shows
mean values for estimates derived from 5,000 simulations. Estimates calculated using
the adjusted case–control modeling approach for risk(X, Y ) are denoted by Mad j ,
while estimates calculated using the two-stage modeling approach are denoted by
M2−stage. Bias estimates are calculated by subtracting the mean values from the true
value for each measure. We see that the Mad j estimators are valid in unmatched designs,
in the sense that mean values are close to the true values. However, Mad j estimators
are biased in matched designs because they do not account for matching. Note that
the direction and size of the bias is such that performance appears to decrease rather
than increase with addition of Y to the model. In contrast the M2−stage estimators
provide estimates that are centered around the true values in matched and unmatched
designs.

The relative efficiencies of estimators are considered in Table 3 using ratios of stan-
dard deviations, with the standard deviation of the nonparametric Mad j estimator in
the unmatched studies as the reference.

In the unmatched design, we found that the nonparametric M2−stage estimator is
more efficient than Mad j for estimating �HRD(0.20),�MRD and NRI(> 0). Inter-

estingly, M2−stage performs slightly worse than Mad j for �HRD̄(0.20), but has similar
performance to Mad j for all other performance measures.

To evaluate the impact of matching on efficiency we only consider M2−stage because
Mad j estimators are biased. Comparing M2−stage in matched versus unmatched
designs, we see that matching improves precision with which performance improve-
ment is estimated for most measures. For example, with nonparametric estimation of
the ROC related measures, the standard deviations in matched studies are 80–90 %
the size of those in unmatched studies.

Interestingly, the improvement observed from matching can often be achieved in
unmatched data by using the semiparametric estimator. In fact, for many of the mea-
sures, the efficiency is improved more by modeling P(Y |X, D = 0) in an unmatched
study than by matching controls to cases in the design and using the nonparamet-
ric estimator. For example, the standard deviation of the nonparametric estimate of
�HRD̄(0.20) in matched studies is 74.0 % of the reference, while the semiparametric
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Table 3 Efficiency of M2−stage in matched and unmatched designs relative to the nonparametric Mad j
estimator from the unmatched design. Shown are the ratios of the standard deviations of estimates found in
simulation studies divided by standard deviations (Mad j -NP; unmatched), so smaller values show more effi-
ciency. NP and SP represent nonparametric and semiparametric estimation, respectively, of the distribution
of risk(X, Y ) in controls

Measure Unmatched design Matched design

M2−stage-NP (%) M2−stage-SP (%) M2−stage-NP (%) M2−stage-SP (%)

ΔHRD(0.20) 75.3 75.3 74.3 74.3

ΔHRD̄(0.20) 109.1 53.4 74.0 47.5

ΔB(0.20) 99.4 77.8 82.8 75.1

ΔROC−1(0.80) 99.8 87.0 95.7 88.5

ΔROC(0.10) 98.9 77.7 83.1 75.3

ΔAUC 100.0 84.1 86.1 84.0

ΔMRD = IDI 71.1 69.3 65.3 64.7

ΔAARD 99.5 83.4 91.2 83.7

NRI(>0) 61.6 61.3 62.5 59.3

estimate in unmatched studies has a standard deviation that is 53.4 % of the reference.
Some intuition for this result is provided by the fact that semiparametric estimation
borrows information across strata of controls. While matching enriches strata with
larger numbers of cases, it also makes those strata with fewer cases more sparse with
respect to the number of controls. Therefore, both matched and unmatched data are
prone to sparseness of controls in certain strata and nonparametric estimation suffers
in such scenarios. The semiparametric approach, however, is less affected as it borrows
information across strata.

4.2 Simulation study 2: renal artery stenosis data

4.2.1 Study description

The kidneys play several major regulatory roles in the human body, including regula-
tion of blood pressure. The renal arteries aid in the proper functioning of the kidneys
by supplying them with blood. Narrowing of the renal arteries is a condition termed
renal artery stenosis (RAS); it inhibits blood flow to the kidneys and can lead to
treatment-resistant hypertension.

The gold standard diagnostic test for RAS is an invasive and expensive procedure
called renal angiography. In order to avoid unnecessarily performing angiography
on individuals with a low likelihood of having disease, a clinical decision rule was
developed to predict RAS based on patient characteristics and thus identify high-risk
patients as candidates for the procedure (Krijnen et al. 1998).

We illustrate the proposed methodology using data from a RAS study (Janssens et
al. 2005). For 426 patients, information is available on disease diagnosis from angiog-
raphy, as well as age (10-year units), BMI, gender, recent onset of hypertension,
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presence of atherosclerotic vascular disease and serum creatinine (SCr) concentra-
tion. We model baseline risk using the first five characteristics and look to estimate the
incremental value gained from adding SCr concentration to the model. Age and BMI
were mean-centered. SCr concentration was log-transformed and standardized to have
mean 0 and standard deviation 1. The study cohort includes 98 cases and 328 controls.

4.2.2 Methods

We simulated nested case–control studies using this dataset. Specifically, we resam-
pled 426 observations with replacement from the cohort, selected all the cases and
twice the number of controls, and disregarded SCr concentration data for patients
who were not in the selected case–control subset. In one set of analyses the controls
were selected unmatched as a simple random sample from all controls. In a second
set of analyses the controls were selected to match the cases in regards to estimated
baseline risk category. In particular, we created a three-level risk category variable,
W , defined as: low if r̂isk(X) < 0.10, medium if 0.10 < r̂isk(X) < 0.20 and high
if r̂isk(X) > 0.20. We selected two controls per case at random without replacement
within each baseline risk category for the matched controls datasets. We also evaluated
settings with 1:1 case–control ratios.

4.2.3 Results from renal artery stenosis dataset

Tables 4 and 5 summarize results of 1,000 nested case–control studies based on
the renal artery stenosis dataset. We see that the Mad j estimators are only valid in
unmatched case–control studies. Interestingly, the bias in Mad j in matched studies is
such that prediction performance appears to disimprove considerably with addition
of Y when the IDI, NRI(>0) or �HRD performance measures are employed. This is
very similar to results in Table 2 for the simulated bivariate normal distributions. Also
as in Table 2, we see that M2−stage is valid in matched and unmatched designs.

Comparing the efficiency of M2−stage to Mad j in unmatched designs where both are
valid, we see trends in the top panel of Table 5 that are similar to those observed in Table
3. For a case–control ratio of 1:1, M2−stage-NP is more efficient than Mad j -NP, but
only for �HRD,�MRD and NRI(>0). For a larger number of controls (case–control
ratio = 1:2), M2−stage loses some of its efficiency advantage. As before, M2−stage has

worse performance than Mad j for the estimation of �HRD̄ , although again, this effect
is lessened with the larger case–control ratio of 1:2.

Turning to the main question concerning efficiency due to matching, we again see
some trends in the top panel of Table 5 that are similar to observations made for the
bivariate binormal simulations in Table 3. Comparing M2−stage-NP in matched versus

unmatched designs, matching appears to improve the efficiency with which �HRD̄ is
estimated. However, �HRD is not affected by matching and estimation of NRI(> 0)
may be worse in matched studies. With larger numbers of controls, we see in the bot-
tom panel of Table 5 that there is no gain from matching with regards to efficiency of
M2−stage-NP.
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Semiparametric estimation improves efficiency much more than matching does in
these simulations. Again, this is consistent with the earlier simulation results.

5 Bootstrap method for inference

Performance improvement estimates obtained from nested case–control data incor-
porate variability from both the cohort and the nested case–control subset. However,
simple bootstrap resampling from observed data cannot be implemented in this setting,
as data on Y are observed only for subjects selected in the original case–control subset.
Below we discuss our proposed strategy for bootstrapping with nested case–control
data.

5.1 Proposed approach

We propose a parametric bootstrap method that combines resampling observations in
the cohort and resampling residuals in the case–control subset (Efron and Tibshirani
1993). To begin, we have the original study cohort for which X and disease status
are available and a nested case–control subsample on which Y is measured. We first
bootstrap a cohort (say, cohort∗) from the original cohort and proceed to generate the
matching variable W ∗ based on quartiles of X∗ in the bootstrapped cohort∗. A matched
or unmatched case–control subsample∗ is then constructed in the same fashion as
before. However, note that in this bootstrapped case–control subsample∗, the only
subjects that have Y data are those who were selected to be in the original case–control
subsample. We generate Y ∗ values for all subjects in the bootstrapped case–control
subsample∗ using a parametric bootstrap method combined with residual resampling.

Specifically, we use the original case–control subsample to model Y |X, D = 0
semiparametrically as in Sect. 3.3,

Y D̄ = μ(X D̄) + σε.

Fiting this model on the original case–control subsample gives us estimated values μ̂, σ̂

and residuals ε̂1, . . . , ε̂nD̄
. Then, for each control* in the bootstrapped case–control

subsample∗, we use that subject’s covariate values, X∗, and sample with replacement
a residual from among ε̂1, . . . , ε̂nD̄

to generate a Y ∗ value using μ̂ and σ̂ :

Y ∗
i = μ̂(X∗

i ) + σ̂ ε̂∗
i , i = 1, ..., n∗̄

D
.

We fit a separate model for Y |X, D = 1 in the original case–control subsample and
take a similar approach to generate Y ∗

1 , . . . , Y ∗
nD∗ for cases in the bootstrapped case–

control subsample∗.

5.2 Simulation study

We assessed the performance of the proposed bootstrap method with a simulation
study using bivariate binormal data generated as in Sect. 4.1.1. We carried out 1,000
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Table 6 Coverage of normality-based 95 % bootstrap confidence intervals

Measure Nonparametric estimation Semiparametric estimation

Unmatched design Matched design Unmatched design Matched design

Mad j
(%)

M2−stage
(%)

Mad j
(%)

M2−stage
(%)

Mad j
(%)

M2−stage
(%)

Mad j
(%)

M2−stage
(%)

ΔHRD(0.20) 95.1 95.2 1.3 95.2 95.1 95.2 1.3 95.2

ΔHRD̄(0.20) 95.3 94.8 1.1 96.6 94.7 94.5 95.1 95.3

ΔB(0.20) 95.9 94.5 27.8 95.0 96.1 95.6 0.6 96.0

ΔROC−1(0.80) 94.4 94.7 66.7 94.9 93.9 93.9 78.3 95.0

ΔROC(0.10) 94.7 94.6 55.2 95.0 94.5 93.9 0.1 96.4

ΔAUC 94.5 94.5 33.2 94.9 95.2 95.1 30.2 95.4

ΔMRD = IDI 95.4 94.1 0.9 95.6 95.7 94.5 0.9 95.4

ΔAARD 93.9 94.4 55.6 94.8 94.7 95.2 39.5 95.7

NRI(>0) 95.3 94.5 0.1 96.0 95.3 94.5 7.0 95.7

Results are from 1,000 simulations of nested case–control studies (nD = 250, nD̄ = 500) with a cohort of
5,000 subjects. 200 bootstrap repetitions were carried out in each simulation. Data were generated from
the bivariate binormal model described in the text with corr(X, Y |D) = 0.5. Estimates calculated with

r̂iskad j
(X, Y ) are denoted by Mad j and those calculated with r̂isk2−stage

(X, Y ) are denoted by M2−stage .
Nonparametric and semiparametric estimates are presented

simulations, each time generating a new study cohort of size N = 5,000 and from
this study cohort, selecting a nested case–control subsample of size 250 cases and 500
controls. We used both the matched and unmatched designs. Within each simulation,
we carried out 200 bootstrap repetitions using the procedure described above. For each
performance measure estimate obtained in that simulation, we estimated its standard
error as the standard deviation across the 200 bootstrap repetitions and used it to
calculate normality-based 95 % confidence intervals. Coverage was averaged over all
1,000 simulations.

Results are presented in Table 6. Not surprisingly, Mad j estimators, which are
biased in matched designs, also generate confidence intervals with poor coverage. For
all other settings, coverage of the 95 % bootstrap confidence intervals is good.

6 Illustration with renal artery stenosis study

We illustrate our methodology on the renal artery stenosis dataset by simulating a single
nested case–control dataset using the unmatched design and a single dataset using the
matched design with a 1:2 case–control ratio. We include bootstrap standard errors
and normality-based 95 % confidence intervals (CIs), obtained from 500 bootstrap
repetitions following the approach described in Sect. 5. Instead of repeating numerous
simulations as in Sect. 4.2, we have a single study cohort and a single two-phase
dataset here that we bootstrap from.

Results are presented in Table 7. We see that the two-phase estimates are quite
different from the full-data estimates. We used only a single two-phase sample here
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to mimic a real-life two-phase dataset. Repeating the sampling 100 times and aver-
aging estimates across repetitions showed that the estimates are unbiased (data not
shown). The observed inconsistency is a result of sampling variability. As before, we
see that a standard adjusted analysis (Mad j ) underestimates performance improve-
ment in a matched design. M2−stage produces valid estimates. Conclusions regarding
the incremental value of SCr concentration are similar using any of the valid esti-
mation methods in this setting. We use estimates from M2−stage with semiparametric
estimation and a matched design in the following discussion.

The incremental value of SCr concentration appears to be significant using �MRD
and NRI as the measures of interest. Values of 0 for both measures would indicate
no improvement from SCr concentration. ̂�MRD is 0.069 {95 % CI (0.013,0.124)},
indicating that the change in the difference in mean risks between cases and controls
is approximately 0.069. ̂NRI is 0.547 {95 % CI (0.259,0.836)}; given that NRI has a
range of (−2,2), this seems like a moderate level of improvement in risk reclassifica-
tion. Small improvements that are not statistically significant are seen using all other
measures.

7 Discussion

Matching controls to cases on baseline risk factors is a common practice in epidemio-
logic studies of risk. It has also become common practice in biomarker research (Pepe
et al. 2008). It allows one to evaluate from simple two-way analyses of Y and D if
there is any association between Y and D and to be assured that the association is not
explained by the matching factors. Matching also allows for efficient estimation of the
relative risk associated with Y controlling for baseline predictors X in a risk model for
risk(X, Y ). However, the impact of matching on estimates of prediction performance
measures has not been explored previously.

We demonstrated the intuitive result that matching invalidates standard estimates
of performance improvement. Our estimators that simply adjust for population preva-
lence but not for matching, Mad j , substantially underestimated the performance of
the risk model risk(X, Y ) and therefore underestimated the increment in performance
gained by adding Y to the set of baseline predictors X . Intuitively, this underestima-
tion can be attributed to the fact that matching causes the distribution of X to be more
similar to cases in study controls than in population controls and therefore the distri-
bution of risk(X, Y ) is also more similar to cases in study controls than in population
controls.

We derived two-stage estimators that are valid in matched or unmatched nested
case–control studies. We were unable to derive analytic expressions for the vari-
ances of these estimates. Therefore we investigated efficiency in two simple sim-
ulation studies. Our results suggest that the impact of two-stage estimation and of
matching varies with the performance measure in question. In our simulations two-
stage estimation in unmatched studies had little impact on efficiencies of ROC mea-
sures but was advantageous for estimating the reclassification measures NRI(> 0)
and IDI = �MRD. On the other hand, matching improved efficiency of estimates
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of ROC related measures but did little to improve estimation of reclassification
measures.

Our preferred measures of performance increment are neither ROC measures nor
risk reclassification measures. We argue for use of the changes in high risk proportions
of cases, �HRD(r), high risk proportion of controls, �HRD̄(r), and the linear combi-
nation �B(r). These measures are favored due to their practical value for quantifying
effects on improved medical decisions (Pepe and Janes 2013).

In our simulations we found that two-stage estimation improved efficiency of
�HRD but that matching had little to no further impact. Note that matching only
affects the two-stage estimator for �HRD through the influence of controls on the
estimator of risk(X, Y ). That is, given estimates of risk(X, Y ), the empirical esti-
mator of �HRD is employed in both matched and unmatched designs as the cases
are a simple random sample from the cohort. We conclude that the improvement in
estimating risk(X, Y ) that is gained with matched data does not carry over to sub-
stantially impact on estimation of the distribution of risk(X, Y ) in cases. On the other
hand, matching improved estimation of �HRD̄(r), at least with smaller control to case
ratio.

We implemented a semiparametric method that modeled the distribution of Y given
X among controls. This had a profound positive influence on efficiency with which
most measures were estimated, especially in unmatched designs. If one is comfortable
with making necessary assumptions to model Y given X in controls, it seems that little
additional efficiency is gained by using a matched design.

We recognize that the simulation scenarios we studied are limited and our conclu-
sions may not apply to other scenarios. There are a number of factors to consider with
respect to study design and estimation and changing one of these factors could affect
results. In fact, we see this happen in our two simulation studies. For example, in our
second simulation study, changing the case–control ratio from 1:1 to 1:2 alone lessens
the advantage of matching on results. Moreover, the effect of matching is different
on different performance measures. More work is needed to derive analytic results
that could generalize our observations. In the meantime our practical suggestion is to
use simulation studies based on the application of interest in order to guide decisions
about matching and other aspects of study design. Simulation studies may be based
on hypothesized joint distributions for biomarkers, as in our first simulation study
(Sect. 4.1). If pilot data are available one could base simulation studies on that, as we
did with the renal artery stenosis data (Sect. 4.2). Simulation studies can be used to
guide the design of another larger study, by simulating both matched and unmatched
nested case–control studies by varying factors related to study design and estima-
tion approach and investigating which approaches would maximize efficiency for the
performance improvement measures of interest.

Another consideration in the decision to match is that inference is complicated by
matching. Asymptotic distribution theory is not available for two-stage estimators of
performance measures. The difficulty in deriving analytic expressions comes from the
fact that there are multiple sources of variability that must be accounted for, given the
complicated analytic approach and study design. Simple bootstrap resampling cannot
be implemented in this setting because the nested case–control design implies that Y
is only available for the study controls. We proposed a parametric bootstrap approach
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that generates Y for all cohort subjects using semiparametric models for Y given X
fit to the original data. We showed that this method was valid with good coverage in
simulation studies. We recommend this approach with the caveat that near the null,
estimates tend to be skewed and in turn, inference tends to be problematic near the
null for all measures of performance improvement. We and others have noted severe
problems with bootstrap methods and inference in general for estimates of performance
improvement even in cohort studies and especially with weakly predictive markers
(Pepe et al. 2013; Kerr et al. 2011; Vickers et al. 2011). In practice, we recommend
doing simulations similar to those suggested above to determine if valid inference
is possible with the given data and study design or if the performance improvement
is too close to the null. Continued effort is needed to develop methods for inference
about performance improvement measures in cohort studies and then to extend them
to nested case–control designs.
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Appendix

Table 8 Estimators of performance measures—nonparametric estimators using the baseline risk model
and cohort data

Name Estimator

HRD
X (r) 1

ND

N

i=1 I {r̂isk(Xi ) > r, Di = 1}
HRD̄

X (r) 1
ND̄


N
i=1 I {r̂isk(Xi ) > r, Di = 0}

BX (r) 1
ND


N
i=1 I {r̂isk(Xi ) > r, Di = 1} − ND̄

ND
r

(1−r)
1

ND̄

N

i=1 I {r̂isk(Xi ) > r, Di = 0}
ROCX (pD̄) 1

ND

N

i=1 I {r̂isk(Xi ) > r(pD̄), Di = 1},
where r(pD̄) s.t. 1

ND̄

N

i=1 I {r̂isk(Xi ) > r(pD̄), Di = 0} = pD̄

ROC−1
X (pD) 1

ND̄

N

i=1 I {r̂isk(Xi ) > r(pD), Di = 0},
where r(pD) s.t. 1

ND

N

i=1 I {r̂isk(Xi ) > r(pD), Di = 1} = pD

AUCX
1

ND

N

i=1
1

ND̄

N

j=1 I {r̂isk(X j ) ≤ r̂isk(Xi ), Di = 1, D j = 0}
MRDX

1
ND


N
i=1r̂isk(Xi ) I (Di = 1) − 1

ND̄

N

i=1r̂isk(Xi ) I (Di = 0)

AARDX
1

ND

N

i=1 I {r̂isk(Xi ) >
ND
N , Di = 1} − 1

ND̄

N

i=1 I {r̂isk(Xi ) >
ND
N , Di = 0}

NRI(>0) N/A
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