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Abstract The Cox regression model is often used when analyzing survival data as
it provides a convenient way of summarizing covariate effects in terms of relative
risks. The proportional hazards assumption may not hold, however. A typical viola-
tion of the assumption is time-changing covariate effects. Under such scenarios one
may use more flexible models but the results from such models may be complicated
to communicate and it is desirable to have simple measures of a treatment effect, say.
In this paper we focus on the odds-of-concordance measure that was recently studied
by Schemper et al. (Stat Med 28:2473–2489, 2009). They suggested to estimate this
measure using weighted Cox regression (WCR). Although WCR may work in many
scenarios no formal proof can be established. We suggest an alternative estimator of
the odds-of-concordance measure based on the Aalen additive hazards model. In con-
trast to the WCR, one may derive the large sample properties for this estimator making
formal inference possible. The estimator also allows for additional covariate effects.

Keywords Average hazard ratio · Cox model · Weighted Cox regression

1 Introduction

The Cox regression model is by far the most frequently used model to analyze survival
data. The proportional hazards assumption gives a convenient way of reporting the
effect of explanatory variables in terms of relative risks. This is however only appro-
priate if in fact the proportional hazards assumption is reasonable. An alternative to
the Cox model is the Aalen additive hazards model Aalen (1980) that is well suited to
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Aalen additive model 101

describe time-varying covariate effects. Reporting of results will inevitably be more
complicated in this setting, however, and it is desirable with a simple quantity that
summarizes the effect of a given covariate in a convenient way under such scenarios.
An appealing measure is the odds-of-concordance, OC, defined as

OC = P(T 0 < T 1)

1 − P(T 0 < T 1)

imagining here a situation with two treatments, denoted 0 and 1, and with T 0 and
T 1 being random variables describing the corresponding life times. In a recent paper,
Schemper et al. (2009) advocated the use of weighted Cox regression (WCR) (Lin
1991; Sasieni 1993) as a general way of estimating an average hazard ratio (AHR)
which may approximate the OC well under certain conditions. Their recommendation
was based on comparing population values of AHR and OC under various conditions,
and by extensive simulation studies, but no formal proof of properties was given. Esti-
mation of the odds of concordance with censored data has also been considered in
Dunkler et al. (2010) and Koziol and Jia (2009).

We suggest an alternative estimator based on the Aalen additive hazards model. It
estimates a restricted version of the OC focussing on the time span where we observe
death times. Its advantages are twofold. Firstly, it is easy to adjust for additional
covariates, and secondly, its large sample properties can be derived. Specifically, we
show that our estimator is consistent and asymptotically normal and we also provide
a consistent estimator of the limiting variance. This estimator is calculated for a given
covariate configuration. We also suggest an alternative estimator by averaging over
the observed covariate distribution. It has the advantage that it does not depend on a
given covariate value. This estimator is also shown to be consistent and asymptoti-
cally normal, and a consistent estimator of the limiting variance is provided. Small
sample properties of the different estimators are investigated in a simulation study.
Data from the TRACE study Jensen et al. (1997) concerning the effect of ventricular
fibrillation on mortality for patients with myocardial infarction are analysed in Sect.
5.2—these data provide an example where the proportional hazards assumption is
clearly inappropriate. In the Appendix we give proofs of the large sample properties
of the proposed estimators. We also look into the properties of the WCR estimator
(Appendix A.2 and A.3).

2 Odds of concordance and weighted Cox regression revisited

In this section we introduce some notation and review the recent proposal by Schemper
et al. (2009) on how to estimate the OC by means of WCR (Lin 1991; Sasieni 1993).
In the two sample case with only a single risk factor G present (the exposure) we
show that this is a sensible approach when the effect of G is moderate and when the
censoring does not depend on the exposure. Based on an extensive simulation study
this was also the conclusion reached in Schemper et al. (2009). In Sect. 6 we comment
on the exposure dependent censoring case. Let G denote the exposure variable and
put p = P(G = 1). The survival and hazard functions are denoted by Sg and hg ,

123



102 T. Martinussen, C. B. Pipper

g = 0, 1. The population survival function, S, is thus given by S = pS1 + (1 − p)S0.
With this notation, and considering the case with no censorings, the estimator β̂w,
from a WCR with weight function w converges in probability to the solution of

uw(β) =
∫ ∞

0
w(t){e(t)− e(t, β)}s(0)(t)dt = 0, (1)

see Lin (1991), where

e(t) = pS1(t)h1(t)

(1 − p)S0(t)h0(t)+ pS1(t)h1(t)
, e(t, β) = pS1(t) exp(β)

(1 − p)S0(t)+ pS1(t) exp(β)
,

s(0)(t) = (1 − p)S0(t)h0(t)+ pS1(t)h1(t).

The suggestion by Schemper et al. (2009) is to use the weight S thus resulting in the
estimator β̂S . In practice, S needs of course to be replaced by the Kaplan-Meier estima-
tor, Ŝ. With this weight, and denoting P(T 0 > T 1) by θ , straightforward calculations
yield

uS(log(OC)) = p(1 − p)θ + p2/2 − pθ
∫ ∞

0

S(t)S1(t)s(0)(t)

(1 − p)(1 − θ)S0(t)+ pθ S1(t)
dt.

(2)

Notice that for log(OC) = 0, that is, θ = 1/2, the last term on the right hand side of
(2) simplifies to

p
∫ ∞

0
S1(t)s

(0)(t)dt = p(1 − p)/2 + p2/2 = p/2

from which we see that the right hand side of (2) is zero. Hence, in this case, the
estimator from the WCR indeed converges in probability to log(OC). Intuitively, the
derivations above lead us to expect that this estimator will be close to log(OC) when
the latter quantity is close to zero, that is when the effect of G is moderate. In general,
however, one may not expect this to be the case. We explore this in more detail in
the Appendix where we study a scenario constructed to mimic the application of this
paper, that is, with a large effect of the exposure for an initial period of time, see Sect.
5.2. In the next section we suggest an alternative estimator of the log odds concordance
that also allows for additional covariates. Furthermore, large sample properties for this
estimator of the OC can be derived making formal inference possible.

3 Model and definition of odds of concordance

Let Ti denote the possibly right-censored failure time of the i th individual. Further-
more suppose that for the i th individual we have recorded the covariates Gi , Xi , where
Gi is the exposure variable corresponding to no treatment or treatment and Xi is a
p-dimensional vector of additional covariates. With this setup we assume the Aalen
additive hazards model (Aalen 1980)
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λ(t,Gi = g, Xi = x) = β0(t)+ βG(t)g + xTβX (t),

where β0(t) is the baseline hazard function, βG(t) is the excess hazard due to treat-
ment, and βX (t) denotes the effect of the additional covariates. To define the odds of
concordance within this model suppose that T 0 and T 1 are two independent failure
times that follow the above model with g = 0 and g = 1, respectively, and with the
same value, x , of the additional covariates. With this notation, the odds of concordance
is given by

OC(x) = Px (T 0 > T 1)

Px (T 1 > T 0)
, (3)

with

Px (T
1 > T 0) =

∫ ∞

0
exp[−{2B0(t)+ BG(t)+ 2xT BX (t)}]{d B0(t)+ xT d BX (t)},

where B0(t) = ∫ t
0 β0(s)ds and similarly with the other quantities. Notice that with

x = 0 the above expression reduces to the average hazard ratio as originally defined
in Efron (1967) and later extended by Kalbfleisch and Prentice (1981). In both these
papers modification of the average hazard ratio to ensure stability of the suggested
estimates in the presence of censored event times was necessary. We consider the
following modification

OC(x, v) = Px (T 1 < T 0, T 1 < v)

Px (T 0 < T 1, T 0 < v)
, (4)

where we suggest to choose v as v = ψ−1(q), q ∈ [0, 1], with

ψ(t) = P0(max(T 0, T 1) > t).

The parameter q ∈ [0, 1] relates to the quantiles in the distribution corresponding to
the survival function given by ψ . Thus, we may choose q irrespective of the actual
distribution of the data and as shown later still obtain stability of the estimators we sug-
gest. This is contrary to the data specific suggestion given by for instance Kalbfleisch
and Prentice (1981). The OC(x, v) is a restricted version of the OC-measure focussing
on the time frame where we actually have data. In some applications the choice of v
may be guided by substance matter if one wishes to consider some pre specified time
interval. With q = 0, (4) reduces to (3). In the case without any additional covariates
we will adopt the notation OC(v) for (4).

Before suggesting an estimator of OC(x, v)we express it as a function of the cumu-
lated regression functions of the Aalen model. With A0 = (1, 0, xT ), A1 = (1, 1, xT ),
A2 = (2, 1, 2xT ), B(t) = {B0(t), BG(t), BT

X (t)}T , we can write

Px (T
k < T l , T k < v) =

∫ v

0
e−A2 B(u)Akd B(u)

123
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with (k, l) = (1, 0) and (k, l) = (0, 1). The quantity OC(x, v) is a measure of the
exposure effect for a given covariate configuration, x . It may be attractive to report a
single number that does not depend on a specific covariate configuration, which is also
the case for the WCR measure. Here we suggest an estimator based on the marginal
probabilities

p1(v) =
∫

Px (T
1 < T 0, T 1 < v)d F(x),

p0(v) =
∫

Px (T
0 < T 1, T 0 < v)d F(x),

where d F denotes integration w.r.t. the distribution of the covariates Xi . We therefore
suggest to estimate the quantity

OC(v) = p1(v)

p0(v)
, (5)

which we shall term the overall adjusted OC. In the next section, we use the empirical
counterparts of p0(v) and p1(v) to obtain an estimator of this latter quantity.

4 Estimation and large sample properties

Suppose that the event times Ti are subject to right-censoring, that is they are not
observed if they exceed the censoring time Ci . Instead we observe the first time
either failure or censoring occurs T̃i = min(Ti ,Ci ) and an indicator of whether
it is censoring or failure that occurs δi = I (Ti ≤ Ci ). We shall assume that
{Ti ,Ci ,Gi , Xi }i are independent and identically distributed according to the model
described in the previous section, and that Ti and Ci are conditionally independent
given (Gi , Xi ). This is the standard ”independent censoring” assumption that allows
for exposure dependent censoring; we discuss this further in Sect. 6 in relation to
the WCR estimator. These quantities translate into the counting process framework
of Andersen et al. (1993) as the counting process Ni (t) = δi I (T̃i ≤ t) and at risk
process Yi (t) = I (T̃i ≥ t) for the i th individual. With this notation, the estima-
tor of B(t) is obtained by well-established methods Martinussen and Scheike (2006)
as

B̂(t) =
∫ t

0
Z−(s)d N (s), (6)

where Z−(t) is the generalized inverse of Z(t) with the latter being the n × (p + 2)-
matrix with i th row Yi (t)(1,Gi , X T

i ).
Estimators â(x, v) and b̂(x, v) of the probabilities Px (T 1 < T 0, T 1 < v) and

Px (T 0 < T 1, T 0 < v) are obtained by simply plugging in the above estimator of B.
These estimators are then used to estimate OC(x, v) defined in (4) as
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ÔC(x, v) = â(x, v)

b̂(x, v)
.

Furthermore we estimate the marginal probabilities p1(v) and p0(v) by

p̂1(v) = n−1
n∑

i=1

â(Xi , v), p̂0(v) = n−1
n∑

i=1

b̂(Xi , v),

respectively. From this we may estimate OC(v) defined in (5) by

ÔC(v) = p̂1(v)

p̂0(v)
. (7)

Since we have the following asymptotic representation

n1/2{B̂(t)− B(t)} = n−1/2
n∑

i=1

εB
i (t)+ op(1), (8)

where the εB
i ’s are zero-mean iid terms, see Martinussen and Scheike (2006, Chap.

5), we may show that

n1/2{ÔC(x, v)− OC(x, v)} = n−1/2
n∑

i=1

εoc
i (x, v)+ op(1),

with {εoc
i (x, v)} being zero-mean iid terms. Hence, n1/2{ÔC(x, v)− OC(x, v)} con-

verges in distribution to a zero-mean normal variate with a variance that is consistently
estimated by

n−1
n∑

i=1

ε̂oc
i (x, v)2.

The proof of this result is given in the Appendix A.1, where we also give an expression
for ε̂oc

i (x, v). We also show in the Appendix that

n1/2{ p̂1(v)− p1(v)} = n−1/2
n∑

i=1

εa
i (v)+ oP (1), (9)

n1/2{ p̂0(v)− p0(v)} = n−1/2
n∑

i=1

εb
i (v)+ oP (1), (10)

from which asymptotic normality of ÔC(v) is deduced and a consistent estimator of
the asymptotic variance is obtained as above. Expressions for εa

i (v) and εb
i (v) are

given in Appendix A.1.
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5 Numerical results

5.1 Simulation study

In the simulation study we mimic the TRACE data considered in the next subsection
by utilizing estimated parameter values based on the model

h1(t) = γ h0(t)I (t ≤ r)+ h0(t)I (t > r)

with a piecewise constant baseline hazard that also changes in the change point r .
Specifically the change point for the TRACE data was estimated in Martinussen and
Scheike (2007) to be 0.092 years. Furthermore the baseline hazard was estimated to
be

h0(t) = 0.8 · I (t < 0.092)+ 0.09 · I (t ≥ 0.092)

and the effect γ of the exposure in the initial period was estimated to exp(2.05). We
generated the exposure from a Bernoulli distribution with probability psim given by
p, 2p, 4p, where p = 71/1000 is the frequency of exposure in the TRACE data.
Event times are sampled from the above specifications with the effect size γsim given
by γ = exp(2.05). Number of observations was taken to be n = 200, 600, 1000. We
induced censoring times similarly to those seen in the TRACE study, which are uni-
formly distributed between 6 and 8 years resulting in approximately 50 % censoring.
For each configuration of n and psim , 2000 data sets were generated and for each data
set log{OC(v)} as defined in (4) is estimated by the proposed method for q = 0.9, 0.7
with v = ψ−1(q). Results are given in Table 1.

Table 1 Summary results of the first simulation study. Bias corresponds to sample median minus true value
(on log-scale)

psim n q=0.9 q=0.7
bias SE SEE CP bias SE SEE CP

p 200 −0.10 0.49 0.44 94.1 −0.11 0.44 0.39 93.3

2p −0.03 0.355 0.34 94.9 −0.06 0.31 0.30 95.2

4p 0.00 0.29 0.29 95.0 −0.02 0.23 0.24 95.6

p 600 −0.04 0.27 0.27 95.1 −0.03 0.25 0.24 94.6

2p −0.02 0.20 0.20 95.0 −0.02 0.19 0.18 94.8

4p −0.01 0.17 0.17 94.9 −0.01 0.14 0.14 95.2

p 1000 −0.02 0.21 0.21 95.4 −0.03 0.19 0.19 94.4

2p 0.00 0.16 0.16 95.1 −0.01 0.14 0.14 94.9

4p 0.00 0.13 0.13 95.1 −0.01 0.11 0.11 95.5

SE corresponds to sample standard error of the log (OC(q)) estimates and SEE denotes the median of the
estimated standard errors. CP denotes the 95 % coverage probability. The parameter p is the frequency of
exposure seen in the TRACE study that is p = 0.07, and q defines the (1 − q)-quantile of the distribution
max(T 0, T 1)
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Fig. 1 TRACE data. Effect of ventricular fibrilation shown as estimate of cumulative regression coefficient
along with 95 % confidence limits

For the low sample size (n = 200) the method proposed in this paper shows some
bias when the frequency psim is at its lowest. This is not surprising since in this case
the expected number of individuals in the exposure group is only 14. In all other
simulation scenarios the performance of the proposed procedure in terms of coverage
probabilities is good with coverage probabilities close to the nominal 95 %.

We also conducted a small simulation study to investigate the small sample prop-
erties of the overall adjusted OC estimator defined in (7). The same setup as in the
previous study was considered but only with the configuration psim = 4p and n = 200.
In addition we include an exponentially distributed covariate in the hazard with a cor-
responding regression coefficient equal to 0.5. The true value of the overall adjusted
OC for q = 0.7 in this scenario is calculated to 2.14. The sample median of the esti-
mator on log-scale minus the true log-value is −0.02 with a sample standard error of
0.24. The median estimated standard error is 0.22 and the 95 % coverage probability
0.94. Based on this we conclude that the performance of the estimation procedure is
acceptable.

5.2 The TRACE study

The TRACE study group Jensen et al. (1997) investigated the prognostic importance
of various risk factors on mortality for approximately 6600 patients with myocardial
infarction. We consider a random subsample of 1000 of these patients that have pre-
viously been analysed in Martinussen and Scheike (2006, Chap. 5) and Martinussen
and Scheike (2007); the data are available in the R-package timereg. In these anal-
yses, ventricular fibrillation was recorded for 71 patients and was identified to be
a very important risk factor. Figure 1 displays the estimated cumulative regression
coefficient for this variable fitted in the additive Aalen model where we also adjust for
gender, diabetes (present/absent), clinical heart failure status (present/absent), and age
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Fig. 2 TRACE data. Estimated survival and q values

Table 2 Results from the analysis of TRACE data

Model ÔC(1.04) (95 % CI) ÔC(3.5) (95 % CI) ÔC(5.96) (95 % CI)

Un–adjusted 3.76 (2.54–5.57) 2.65 (1.81–3.89) 2.28 (1.57–3.31)

Conditional 5.61 (3.08–10.2) 3.54 (2.15–5.84) 2.71 (1.71–4.30)

Overall adjusted 4.06 (2.77–5.95) 2.94 (2.00–4.31) 2.60 (1.76–3.83)

The conditional estimate corresponds to covariate configuration x given by gender = females, diabetes
status = absent, clinical heart failure = absent and age at enrollment equal to 70 years. The OC is evaluated
at time points v = 1.04, 3.5, 5.96 corresponding to q = 0.9, 0.8, 0.7, respectively, with v = ψ−1(q)

at enrollment centered around 70 years. A very strong effect is seen, but it vanishes
after approximately one month. Specifically, Martinussen and Scheike (2007), using
a change-point model, estimated the change-point to 33 days. In the study design
individuals were followed for approximately 6 years after which their follow-up was
terminated according to a uniformly distributed censoring time in the range 6–8 years.

During follow-up, 47 patients in the vf = 1 group and 466 patients in the vf = 0 group
died from myocardial infarction. The estimated survival curves for each of the two
groups as well as an estimate of ψ (denoted Max) are depicted in Fig. 2.

First we consider estimating (4) only including ventricular fibrillation in the model.
From the estimate of ψ depicted in Fig. 2 it is evident that we may estimate (4) for
q ≥ 0.7. Estimates of (4) for q = 0.9, 0.8, 0.7 (corresponding roughly to 1, 3.5 and
6 years) are obtained along with 95 % confidence limits calculated on a log-scale and
back transformed. Similar conditional estimates are calculated for the covariate con-
figuration x : gender = Females, Diabetes status = absent, clinical heart failure = absent,
age at enrollment= 70 years, corresponding to the baseline intensity. Finally, we calcu-
late overall adjusted OC estimates given by (7) for q = 0.9, 0.8, 0.7. Table 2 contains
the results of these analyses.

123



Aalen additive model 109

66 68 70 72 74

2
3

4
5

6

Age

E
st

im
at

e

Fig. 3 TRACE data. OC(x, 6) for different ages

All estimates indicate a substantial effect of ventricular fibrillation. Adjusting for
the other explanatory variables yields conditional estimates of OC(x, v) that are higher
than the unadjusted estimates for the risk factor configuration we consider which cor-
responds to a person of median age with a low risk profile in the sampled population
w.r.t. the other considered risk factors. As noted earlier the OC(x, v) depends on the
covariate configuration x . This is illustrated in Fig. 3 that displays OC(x, v) with v
equal to 6 years (q ≈ 0.7) in the age span 65–75 years keeping the other covariates
fixed at: gender = Females, Diabetes = absent and clinical heart failure = absent. We
finally calculate the overall adjusted OC given by (7); this measure does not depend
on a specific covariate configuration similarly to the WCR estimate. The adjusted over-
all OC estimates are seen to be lower than the specific conditional OC estimates, where
we condition on a low risk profile on the other risk factors (sex, clinical heart failure
and diabetes). The adjusted WCR estimator is of similar magnitude and precision as
the overall adjusted OC estimates.

6 Concluding remarks

The WCR estimator is attractive as it summarizes the exposure effect by one number.
We suggested a similar simple summary of the exposure effect based on the mar-
ginal concordance probabilities obtained by averaging over the empirical covariate
distribution. This estimator was shown to be asymptotically normal and a consistent
estimator of the variance was provided justifying formal inference, something which
is problematic for the WCR estimator due to its unknown large-sample properties. In
Appendix A.2 we study the potential bias of the WCR closer under a scenario sim-
ilar to that of the TRACE study, but without censoring. We give a theoretical result
showing that WCR may be biased under very strong exposure effect; this is further
investigated in some simulations. They point to that the bias seems to be of little
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practical consequence. However, it may be more problematic to employ the WCR
estimator when the censoring depends on the exposure (still assuming that T and C
are conditionally independent given covariates). This is explored in Appendix A.3
where it is seen that WCR may indeed be biased.

The overall adjusted OC(v) given in (5) is constructed by plugging in the mar-
ginal concordance probabilities. These are obtained from the full model by integrating
over the conditional concordance probabilities with respect to the covariate distribu-
tion. An alternative more direct approach would have been to average the conditional
OC(x, v) or log {OC(x, v)} with respect to the covariate distribution. However, by
the above approach we can still interpret (5) in terms of a comparison between two
randomly chosen exposed and unexposed individuals that are otherwise comparable
(alike with respect to the other risk factors). Interpretation of the alternative approaches
if OC(x, v) varies with x is unclear.

Appendix

A.1 Large sample properties of proposed estimators

By straightforward calculations one has

n1/2{â(x, v)− a(x, v)} = ∫ v
0 e−A2 B(t)A1dn1/2{B̂ − B)(t)

− ∫ v
0 e−A2 B(t)A2n1/2{B̂(t)− B(t)}A1d B(t)+ op(1)

and because of (8) it is easy to see that we can write

n1/2{â(x, v)− a(x, v)} =
n∑

i=1

εa
i (x, v)+ op(1),

where εa
i are zero-mean iid variates given by

εa
i (x, v) =

∫ v

0
e−A2 B(t)A1dεB

i (t)−
∫ v

0
e−A2 B(t)A2ε

B
i (t)A1d B(t).

Similarly one can derive that

n1/2{b̂(x, v)− b(x, v)} =
n∑

i=1

εb
i (x, v)+ op(1),

with

εb
i (x, v) =

∫ v

0
e−A2 B(t)A0dεB

i (t)−
∫ v

0
e−A2 B(t)A2ε

B
i (t)A0d B(t).
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The result now follows by noting that

n1/2{ÔC(x, v)− OC(x, v)} =[
n1/2{â(x, v)− a(x, v)} − n1/2{b̂(x, v)− b(x, v)}OC(x, v)

]
/b(x, v)+ op(1)

The expression for ε̂oc
i (x, v) is given by

1

b̂(x, v)
{ε̂a

i (x, v)− ÔC(x, v)ε̂b
i (x, v)},

where ε̂a
i (x, v) is obtained from εa

i (x, v) by replacing unknown quantities with their
empirical counterparts, similarly with ε̂b

i (x, v); for ε̂B
i (t), see Martinussen and Scheike

(2006).
We now turn to the asymptotic distribution of p̂1(v) and p̂0(v). Following the line

of arguments in Chen et al. (2010, Appendix A) one may show that the εa
i (v) and

εb
i (v) in display (9) and (10) are given by

εa
i (v) = a(Xi , v)− p1(v)+ EXε

a
i (X, v)}

εb
i (v) = b(Xi , v)− p0(v)+ EXε

b
i (X, v),

where EX denotes expectation w.r.t. the distribution of X . A further calculation shows
that

EXε
a
i (X, v) = ∫ v

0 EX f1(t, X, B)dεB
i (t)− ∫ v

0 EX f2(t, X, B, εB
i )d B(t),

EXε
b
i (X, v) = ∫ v

0 EX f3(t, X, B)dεB
i (t)− ∫ v

0 EX f4(t, X, B, εB
i )d B(t),

with

f1(t, x, B) = e−A2 B(t)A1, f2(t, x, B, εB
i ) = e−A2 B(t)A2ε

B
i (t)A1,

f3(t, x, B) = e−A2 B(t)A0, f4(t, x, B, εB
i ) = e−A2 B(t)A2ε

B
i (t)A0.

The above may then be combined into expressions for εa
i (v) and εb

i (v) the empirical
counterpart of which may be obtained by inserting the estimator of B, the empiri-
cal counterpart of εB

i (t), and replacing expectations by their empirical counterparts.
Asymptotic normality around the true value for ÔC(v) now follows from

n1/2{ÔC(v)− OC(v)} = n1/2{ p̂1(v)− p1(v)}/p0(v)− OC(v)n1/2{ p̂0(v)− p0(v)}
that also gives the asymptotic variance.

A.2 Bias of the WCR estimator: the uncensored case

As noted in Sect. 2 the WCR estimator converges in probability to the parameter, β∗
say, that solves (1). If OC=1 it was seen that eβ

∗ = OC. In general, however, one
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may not expect this to be the case. We will explore this in some more detail under a
scenario that mimics the application given in Sect. 5.2, that is, with a large effect of
the exposure for an initial period of time. Specifically, we consider the situation where

h1(t) = γ h0(t)I (t ≤ r)+ h0(t)I (t > r) (11)

corresponding to an extended Cox-model with relative risk γ in the time period [0, r ]
and with relative risk 1 thereafter. This results in the following relationship between
the two survival functions

S1(t) = S0(t)
γ I (t ≤ r)+ S0(r)

γ−1S0(t)I (t > r). (12)

In this case a straightforward calculation reveals that

θ = γ

1 + γ
+ S0(r)

γ+1(
1

2
− γ

1 + γ
)

from which we get

OC = γ + (γ + 1)S0(r)γ+1( 1
2 − γ

1+γ )
1 − (γ + 1)S0(r)γ+1( 1

2 − γ
1+γ )

. (13)

Note from this expression that OC ≤ γ for γ > 1 as we would expect since the expo-
sure effect is not present after time r . The following result gives a bound on the bias.

Proposition 1 Under model (11) and withγ → ∞andr → 0 such thatγ S0(r)γ → c
for some constant c > 0 then, for n → ∞, β̂S converges in probabilty to β∗ with

log(OC)− β∗ ≥ p(1 − p)2

2{(1 − p)(1/c + 1/2)+ p} . (14)

Proof We first show that uS{log(OC)} converges to a constant different from zero.
Under model (12) we may rewrite (2) as

uS{log(OC)} = p(1 − p)θ + p2/2

−pOC
∫ r

0

{(1 − p)S0(t)+ pS0(t)γ }S0(t)γ {(1 − p)S0(t)+ γ pS0(t)γ }λ0(t)

(1 − p)S0(t)+ OCpS0(t)γ
dt

−pθ
∫ ∞

r

{1 − p + pS0(r)γ−1}2S0(r)γ−1

(1 − p)(1 − θ)+ pθ S0(r)γ−1 S0(t)
2λ0(t)dt.

Also note that from the expression (13) of OC we get OC/γ → 1
1+c/2 . By the sub-

stitution u = S0(t)γ we see that the second term on the right hand side in the above
equality may be re-expressed as
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p
OC

γ

∫ 1

S0(r)γ

{(1 − p)u1/γ + pu}{(1 − p)u1/γ + γ pu}
(1 − p)u1/γ + OCpu

du.

For any u ∈ (S0(r)γ , 1) we have that under the convergence specified above

{(1 − p)u1/γ + pu}{(1 − p)u1/γ + γ pu}
(1 − p)u1/γ + OCpu

→ (1 − p + pu)(1 + c/2).

Furthermore for γ > 1

sup
u∈(S0(r)γ ,1)

{(1 − p)u1/γ + pu}{(1 − p)u1/γ + γ pu}
(1 − p)u1/γ + OCpu

≤ 1 − p + γ p

1 − p + OCp
→ 1 + c/2.

Thus by Lebesgue’s Dominated Convergence Theorem

p
OC

γ

∫ 1

S0(r)γ

{(1 − p)u1/γ + pu}{(1 − p)u1/γ + γ pu}
(1 − p)u1/γ + OCpu

du → p(1 − p)+ p2/2.

The third term on the right hand side in the above equality may be directly calculated
as

p(1 − p + pS0(r)γ−1)2

(1 − p)OC−1S0(r)1−γ + p
S0(r)

2/2.

Hence, under the considered convergence, uS{log(OC)} converges to

− p(1 − p)2

2{(1 − p)(1/c + 1/2)+ p} .

By similar arguments it may be seen that

u
′
S{β} → −

∫ 1

0

{(1 − p)+ pu}pu

eβ p2u2 + 2(1 − p)pu + (1 − p)2e−β du ≥ −1.

for β > 0. By the mean-value theorem we then have

log(OC)− β0 = uS{log(OC)}/u ′
S{β∗},

where β∗ is on the line segment between log(OC) and β0. The result thus follows from
the latter display.

We now explore the magnitude of the potential bias of the WCR in scenarios sim-
ilar to the TRACE data. We use estimated parameter values based on the model (11)
with a piecewise constant baseline hazard that also changes in the change point r .
Specifically the change point for the TRACE data was estimated in Martinussen and
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Table 3 Bias of the WCR estimator, corresponding to sample median minus the true value

(psim , γsim ) psim = p psim = 2p psim = 4p
γ 2γ 4γ γ 2γ 4γ γ 2γ 4γ

OC 2.16 4.26 12.3 2.16 4.26 12.3 2.16 4.26 12.3

Bias −0.01 −0.03 −0.13 0.00 −0.06 −0.22 −0.02 −0.10 −0.33

Bound −0.04 −0.04 −0.04 −0.07 −0.07 −0.06 −0.09 −0.09 −0.08

Bound corresponds to the theoretical bound given in Proposition 1. The parameter p and γ are the frequency
of exposure and the estimated exposure effect (see text for more details) in the TRACE study, that is, p = 0.07
and γ = exp (2.05), respectively

Scheike (2007) to be 0.092 years. Furthermore the baseline hazard was estimated to
be

h0(t) = 0.8 · I (t < 0.092)+ 0.09 · I (t ≥ 0.092)

and the effect γ of the exposure in the initial period, see (11), was estimated to
exp(2.05). Finally the frequency of exposure was also taken from the TRACE data,
that is, p = 71/1000. We simulate data sets consisting of 1000 binary exposures
sampled from a Bernoulli distribution with probability psim given by p, 2p, 4p and
1000 event times sampled from the above specifications with the effect size γsim given
by γ, 2γ, 4γ . For each combination of psim and γsim 2000 data sets were generated.
For each data set ł log{OC} is estimated by means of weighted Cox regression as
suggested in Schemper et al. (2009). The median bias (on log-scale) is reported in the
below Table 3.

The results in Table 3 confirm the claim of Proposition 1 as an apparent bias of
WCR is seen for the scenarios with large psim and γsim . Also notice that for γsim = 4γ
the bias is substantial and well above the bound given in Proposition 1. However, an
effect of 4γ is unrealistic in practice and we therefore conclude that the bias of WCR
does not seem to pose a practical problem in this setting when there is no censoring
taking place.

A.3 Bias of the WCR estimator: censoring depending on exposure

The performance of the WCR under censoring not depending on the exposure (or any
other important covariate) seems to be similar to what we reported in the previous
subsection; this is also in line with what was reported by Schemper et al. (2009). Note
that the weight under censoring should be Ŝ(t)/Ĥ(t), where Ĥ(t)denote the Kaplan-
Meier estimator of the censoring distribution Schemper et al. (2009). We will now
investigate an exposure dependent censoring situation. Suppose that censoring times
are distributed according to survival functions H0 and H1 in the two exposure groups.
Then the characterization of the WCR estimator is in terms of the solution to

uw(β) =
∫ ∞

0
w(t){e(t)− e(t, β)}s(0)(t)dt = 0,
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Table 4 Comparison of bias of the WCR and proposed estimators on the log scale

WCR Proposal
n Cens. % Bias 95 % CP Bias 95 % CP

500 0.80 −0.30 0.85 −0.17 0.89

0.50 0.02 0.94 −0.02 0.94

0.20 0.00 0.95 0.01 0.95

1000 0.80 −0.32 0.77 −0.11 0.93

0.50 0.02 0.95 −0.01 0.93

0.20 0.00 0.96 0.00 0.95

2000 0.80 −0.32 0.57 −0.05 0.93

0.50 0.02 0.95 −0.01 0.95

0.20 −0.00 0.95 −0.00 0.94

Bias corresponds to sample median of the WCR estimator minus the true value. Also reported is the sample
coverage percentage by means of 95 % Wald CI calculated for the logarithm of the WCR estimator. A
similar summary is made for the proposed estimator

where

w(t) = {(1 − p)S0(t)+ pS1(t)}{(1 − p)H0(t)+ pH1(t)}−1,

s(0)(t) = (1 − p)S0(t)H0(t)h0(t)+ pS1(t)H1(t)h1(t),

e(t) = pS1(t)H1(t)h1(t)

(1 − p)S0(t)H0(t)h0(t)+ pS1(t)H1(t)h1(t)
,

e(t, β) = pS1(t)H1(t) exp(β)

(1 − p)S0(t)H0(t)+ pS1(t)H1(t) exp(β)
.

Clearly, in this scenario, the censoring distribution does not cancel out as would be
the case if H0 = H1. As a consequence the solution to uw(β) = 0 may depend on
censoring in which case the solution is clearly not given by log {OC}. To investigate
this we simulated event times according to the hazard rate

hg(t) = 0.5 · (1 + g · 1.86 · t),

where g = 0, 1 denotes exposure groups. The censoring times in the exposed group
(g = 1) are given by Iiτ1 + (1 − Ii )τ , where the censoring indicator Ii at τ1 is gener-
ated as Bernoulli variables with P(Ii = 1) = pcens . In the unexposed group (g = 0)
failure times were censored at τ . Finally, the Gi ’s are generated as Bernoulli variables
with P(Gi = 1) = P(Gi = 0) = 0.5.

We consider the scenarios n = 500, 1000, 2000. For censoring, the scenarios
(pcens, τ1) = (0.93, 0.25), (0.58, 0.25), (0.53, 1) are considered. The two first of
these scenarios correspond to early censoring in the exposure group with 80 and 50 %
censoring before τ . The third scenario corresponds to late censoring in the exposure
group with 20 % censoring before τ . Finally, τ is set to 2.
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For each scenario 2000 datasets were generated, and for each data set, the WCR esti-
mator was computed as suggested in Schemper et al. (2009). Table 4 below shows the
performance of the WCR estimator and the proposed estimator under these scenarios

Table 4 shows that the WCR estimator is unbiased with coverage close to the nom-
inal 95 % when censoring in the exposure group is not large. However in the case of
strong early censoring the WCR estimator is biased and this compromises the cover-
age. In comparison, for n = 500, the proposed estimator seems to be less biased but
with a poor coverage when early censoring is strong. For n = 1000 and 2000 the bias
decreases and coverages are satisfactory.
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