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Abstract In many clinical research applications the time to occurrence of one event
of interest, that may be obscured by another—so called competing—event, is inves-
tigated. Specific interventions can only have an effect on the endpoint they address
or research questions might focus on risk factors for a certain outcome. Different
approaches for the analysis of time-to-event data in the presence of competing risks
were introduced in the last decades including some new methodologies, which are
not yet frequently used in the analysis of competing risks data. Cause-specific hazard
regression, subdistribution hazard regression, mixture models, vertical modelling and
the analysis of time-to-event data based on pseudo-observations are described in this
article and are applied to a dataset of a cohort study intended to establish risk strat-
ification for cardiac death after myocardial infarction. Data analysts are encouraged
to use the appropriate methods for their specific research questions by comparing
different regression approaches in the competing risks setting regarding assumptions,
methodology and interpretation of the results. Notes on application of the mentioned
methods using the statistical software R are presented and extensions to the presented
standard methods proposed in statistical literature are mentioned.
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1 Introduction

In the presence of competing risks, i.e. when two or more mutually exclusive events
may possibly occur, a joint distribution for the time to different types of event cannot
be estimated without making strong unverifiable assumptions (Tsiatis 1975). It is well
known that the application of standard survival models and methods is not adequate in
that situation. In the last three decades different methods for the analysis of failure time
data in the presence of competing risks have been introduced. Prentice et al. (1978)
proposed the use of standard survival models like Cox regression on the cause-specific
hazard. In the cause-specific hazard model the effect of the investigated covariates on
the competing event(s) is ignored, so there is no direct connection between the regres-
sion coefficients and the incidence of events. Larson and Dinse (1985) published an
approach to express the joint distribution of event times and types of event as the
product of the marginal distribution of event types and the conditional distribution of
event times given the type of event. The authors proposed to use a logistic regression
model to assess the influence of the covariates of interest on the type of event and
piece-wise exponential regression models to asses their effect on failure time given
the type of event. More flexible distributions for survival times were introduced in
recent years as e.g. the generalized three-parameter gamma distribution (Lau et al.
2008). Fine and Gray (1999) introduced a regression approach focusing on the so
called subdistribution hazard. In the Fine and Gray model the regression coefficients
are monotonously linked to the cumulative incidence function and the occurrence
of competing events has an influence on the coefficients. Modified standard survival
models can be fit to estimate the influence of the investigated covariates on the sub-
distribution hazard. Andersen et al. (2003) introduced a method to estimate covariate
effects on measures of interest in the presence of censored observations based on
pseudo-values. The method was adjusted later for the competing risks setting by using
the cumulative incidence function as measure of interest (Klein and Andersen 2005).
The generalized estimating equation approach by Liang and Zeger (1986) is used to
estimate the influence of covariates on the cumulative incidence function. Nicolaie
et al. (2010) proposed another way to factorize the joint distribution of event times
and types of event by expressing the joint distribution as product of the marginal dis-
tribution of the event times and the conditional distribution of the event types given
the time of event. The so called vertical modelling approach gives an estimate for the
relative hazard, showing the pattern of events in the course of time.

Due to different measures used for regression modelling and different approaches
available for the analysis of time-to-event data with mutually exclusive types of event,
analysis and interpretation of competing risks data is not straightforward and many
sources of error are present in that situation. In this article an overview over cur-
rent methodologies for the regression analysis of competing risks data is provided. In
Sect. 2 terms and important measures used in the competing risks framework will be
introduced. The above mentioned methods for the regression analysis of competing
risks data will be described in more detail in Sect. 3 providing an overview over funda-
mental theory for all approaches as well as possible strategies for model applications
using the statistical software R (R Development Core Team 2011). In Sect. 4 all meth-
ods will be applied to a cohort study including 2,341 patients who survived myocardial
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Fig. 1 Competing risks model: one initial state and K mutually exclusive types of failure

infarction (MI) (Bauer et al. 2009). Aim of the analysis is to establish a prespecified
risk stratification for cardiac death with death from other causes as competing event.
A discussion of the results and a comparison of the methods regarding interpretation
and applicability will be provided in Sect. 5. A sketch of the R code used for data
analysis is shown in the Appendix.

2 Competing risks

The problem of competing risks occurs, when the time from one certain starting point
to an event of interest may not be observable, because of the incidence of another,
so-called competing event (Fig. 1). Competing risks problems occur in different fields
as medical statistics, engineering or social sciences with a rising awareness of the
pitfalls present in that situation and a wider use of adequate models. For example in a
cancer study investigating the time from treatment initiation to tumour-related death,
deaths from other causes are competing events. In most competing risks applications
one certain event of interest and one or more other possible events can be specified.
In this situation the events not of major interest can be summarized to one category of
competing events. It is also possible that more than one event is of special interest and
the different types of event are treated equivalently. A large amount of literature deal-
ing with competing risks can be found in textbooks (Beyersmann et al. 2012; Pintilie
2006; Crowder 2001; Kalbfleisch and Prentice 2002) or in introductory articles (e.g.
Putter et al. 2007; Klein 2010; Lau et al. 2009; Bakoyannis and Touloumi 2011) mainly
describing regression models based on cause-specific and subdistribution hazards.

It is well known that the analysis of times to a certain event k, conducted by estima-
tion of the survivor function using standard Kaplan–Meier method (Kaplan and Meier
1958), is not adequate in the presence of competing risks (see e.g. Putter et al. 2007;
Andersen and Keiding 2012). The cumulative incidence function Fk(t), estimating
the probability of failing from cause k before a given time t , is used instead to provide
information for a certain population or to compare a discrete number of subgroups
descriptively. The cumulative incidence function can be denoted as
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36 B. Haller et al.

Fk(t) = P(T ≤ t, D = k), (1)

with T and D being random variables representing the time to the first observed event
and the type of event, respectively. In the absence of competing risks the cumulative
incidence function equals 1 − S(t), where S(t) is the survivor function, which can be
derived by the Kaplan–Meier estimator. In the presence of competing risks, the cumu-
lative incidence function in a population or in subgroups of interest can be estimated
as

F̂k(t) =
∑

i :ti ≤t

λ̂k(ti )Ŝ(ti−1). (2)

Here Ŝ(t) is the estimator for the overall survivor function at time t including all types
of event and ti denotes the i th ordered event time. λk is defined as the cause-specific
hazard rate which is given as

λk(t) = lim
�t→0

P(t ≤ T < t + �t, D = k|T ≥ t)

�t
(3)

and can be estimated by

λ̂k(ti ) = dki

ni
, (4)

where dki is the number of failures from type k at time ti and ni the risk set at time ti ,
i.e. the number of patients who were not censored and have not failed from any cause
up to time ti .

3 Regression models in the presence of competing risks

3.1 Hazard-based regression models

3.1.1 Cause-specific hazard regression

As in common survival regression models, a measure of interest that can be used in
the presence of right censored event times is needed. Prentice et al. (1978) proposed
to estimate covariate effects on the cause-specific hazard rate. A semi-parametric Cox
regression approach (Cox 1972) with a flexible unspecified cause-specific baseline
hazard rate λk,0(t) is proposed here

λk(t |X) = λk,0(t)exp(β�
k X). (5)

As in common Cox regression, the cause-specific hazard rates are assumed to be pro-
portional translating to covariate effects that are constant over time. This assumption
can be checked by graphical methods using Schoenfeld residuals (Schoenfeld 1982).
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Modifications of the model as inclusion of time dependent covariates or time depen-
dent effects can be considered to construct a valid Cox regression model. See for
example Therneau and Grambsch (2000) for a detailed description of the Cox regres-
sion model including assumptions, methods for model checking and extensions of
the classical model presented by Cox. Instead of the semi-parametric Cox regression
model parametric models assuming e.g. exponentially, Weibull or gamma distributed
event times can be performed (see e.g. Klein and Moeschberger 2003).

Analysis of competing risks data based on the cause-specific hazard using Cox
regression can be conducted in statistical standard software packages by implement-
ing classical Cox regression treating failures from the cause of interest as events and
failures from other causes as censored observations. Results of the regression model
must be interpreted carefully, since the estimated regression coefficients give the effect
of the covariates on the instantaneous probability of failing from cause k given a sub-
ject experienced no event until time t . Since competing events are not considered, the
effects of the covariates on the cause-specific hazard rate cannot be translated directly
to an effect on the cumulative incidence function. That means a higher cause-specific
hazard in group A compared to group B does not necessarily lead to a higher incidence
of events of interest in group A than in group B. A nice illustration of that fact can be
found in Putter et al. (2007) or in Allignol et al. (2011).

Beyersmann et al. (2009) state that cause-specific hazards “completely determine
the competing risks process”, so cumulative incidence functions can be estimated from
separate cause-specific hazard regression models for all types of event. The cumulative
incidence function for the kth out of K events is

Fk(t |X) =
t∫

0

λk(s|X) exp
( −

K∑

l=1

�l(s|X)
)
ds, (6)

where �k(t |X) denotes the cumulative cause-specific hazard rate for event k at time t
for a given matrix of covariates X, which is defined as �k(t |X) = ∫ t

0 λk(s|X)ds with
λk(t |X) as given by Eq. 5. The set of covariates considered may vary for different event
types. Many extensions of the cause-specific hazard regression have been published,
as flexible modelling of cause-specific-hazard rates (Belot et al. 2010; Scheike and
Zhang 2008), simultaneous estimation of the cause-specific hazards for all event types
including tests on equality of baseline hazards and covariate effects on different types
of event (Lunn and McNeil 1995) or testing and estimation of time-varying effects
(Sun et al. 2008).

3.1.2 Subdistribution hazard regression—the Fine and Gray model

To overcome some of the problems occurring with cause-specific hazard regression
as described above, Fine and Gray (1999) developed a regression model that directly
links the regression coefficients with the cumulative incidence function. In the Fine
and Gray model the association between the so called subdistribution hazard intro-
duced earlier by Gray (1988) and covariates of interest is assessed. The subdistribution
hazard for event k is defined as the probability for a subject to fail from cause k in an
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infinitesimal small time interval �t , given the subject experienced no event until time
t or experienced an event other than k before time t

λ∗
k(t) = lim

�t→0

P(t ≤ T < t + �t, D = k|T ≥ t ∪ {T < t, D �= k})
�t

. (7)

Individuals failing before time t , but not from the cause of interest, remain in the
risk set for all future failure times. If events are documented in discrete time and no
censoring is present, the subdistribution hazard at time ti can be estimated as

λ̂∗
k(ti ) = dki

n∗
i

, (8)

where dki denotes the number of failures of type k at time ti and n∗
i the modified

risk set including all subjects who did not experience any event until time ti and all
subjects that failed before ti from a cause other than k. An illustration of differences
in risk sets for the cause-specific and the subdistribution hazard can be found in Lau
et al. (2009). The estimated subdistribution hazard λ̂∗

k(t) equals the estimated cause-
specific hazard λ̂k(t) until the first competing event is observed and is smaller than the
cause-specific hazard for all following time points, since the modified risk set n∗

i used
for the estimation of the subdistribution hazard is larger than the cause-specific hazard
risk set ni after incidence of the first competing event. In the presence of non-admin-
istrative right-censoring individuals in the adapted risk set n∗

i are weighted using the
inverse probability of censoring weighting (IPCW) approach introduced by Robins
and Rotnitzky (1992). Fine and Gray used that approach to obtain a weighted score
function leading to consistent regression coefficients.

As in the cause-specific hazard regression, different regression models for the sub-
distribution hazard can be used. Due to its wide acceptance and awareness, a Cox-type
regression model is presented again

λ∗
k(t |X) = λ∗

k,0(t)exp(β∗�
k X), (9)

where λ∗
k,0(t) denotes the subdistribution baseline hazard function (i.e. the subdistribu-

tion hazard for a (fictitious) individual with all covariates set to zero). Subdistribution
hazard rates are assumed to be proportional for the included covariates. The subdistri-
bution hazard is linked directly to the cumulative incidence function in a way known
from classical survival analysis with one possible endpoint

Fk(t |X) = 1 − exp(−�∗
k(t |X)) = 1 − exp

⎛

⎝−
t∫

0

λ∗
k(s|X)ds

⎞

⎠ . (10)

Hence the cumulative incidence function for the event of interest can be estimated
directly from the regression coefficients obtained by a Fine and Gray model without
explicit consideration of the covariate effects on competing events. Care has to be
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taken again in the interpretation of the results, since the regression coefficients aim on
the incidence of events, not on the rate (see Sect. 3.1.3).

In the statistical software R the library cmprsk (Gray 2010) is provided allowing to
fit proportional subdistribution hazard models. Time-fixed covariates and covariates
interacting with functions of time can be included and the assumption of proportional
sub-distribution hazards can be checked graphically using Schoenfeld-type residuals.

3.1.3 Comparison of cause-specific and subdistribution hazard regression

Regression models for the cause-specific hazard and the subdistribution hazard are
used most often for the analysis of competing risks data in medical research. Since
these approaches focus on different measures they might lead to substantially different
results and interpretations. Beyersmann et al. (2007) compare competing risk analyses
using cause-specific and subdistribution hazards in a real data example. They pres-
ent the mathematical relationship between cause-specific and subdistribution hazards
(see also Beyersmann and Schumacher 2007). In the presence of two possible types
of failure, the relationship can be derived from Eqs. 6 and 10 to be

λ1(t |X) =
(

1 + F2(t |X)

S(t |X)

)
· λ∗

1(t |X), (11)

where S(t |X) denotes the probability of being free of any event up to time t given X.
Latouche et al. (2007) investigated the results obtained from proportional subdis-

tribution hazard regression models given proportionality assumptions actually hold
for a cause-specific hazards model and concluded that effect estimates are different
in both models with the amount of difference depending on the cause-specific covar-
iate effects on the event of interest as well as the effects on the competing event(s).
Differences between cause-specific and subdistribution hazard regression were also
presented and discussed in detail by Dignam and Kocherginsky (2008) based on dif-
ferent simulation scenarios. It is displayed that the results of a two group comparison
regarding cause-specific or subdistribution hazard ratios might differ substantially in
the presence of competing events.

E.g. in a scenario with one covariate having a high effect on the cause-specific
hazard of a competing event, but the risk of failing from the event of interest is inde-
pendent of that covariate, a Fine and Gray regression model will reveal an effect of
that covariate on the subdistribution hazard, because the observed incidence of events
of interest is diminished by a high number of competing events reducing the num-
ber of patients at risk. In extreme scenarios both methods might even give different
signs for regressions coefficients indicating a higher cause-specific hazard, but a lower
subdistribution hazard for one group compared to the other. Therefore investigators
should be aware of differences between cause-specific hazard and subdistribution
hazard regression to avoid misuse of the methods and misinterpretation of obtained
results. Furthermore, model assumptions (proportionality of hazard rates) relate to
different measures. Grambauer et al. (2010) describe that proportional cause-specific
hazard rates mostly translate into non-proportional subdistribution hazard rates and
vice versa, but they state that the estimated coefficient in the subdistribution hazard
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model gives a consistent estimate of the so called least false parameter β̃, that can be
interpreted as time-averaged subdistribution hazard ratio.

3.2 Mixture models

As summarized in the introduction, Larson and Dinse (1985) proposed to consider
the joint distribution of event types and times as product of the marginal distribution
of types of event P(D) and the conditional distribution of the times to the accordant
event given the type of event P(T |D)

P(D, T ) = P(D)P(T |D), (12)

with D denoting a random variable for the type of event and T a non-negative random
variable for the time of failure. In order to estimate distribution parameters or regression
coefficients, respectively, and to draw inference, the likelihood of the mixture model
has to be formulated. As presented by Lau et al. (2008), in a mixture model with two
possible types of failure the likelihood contributed by individual i can generally be
written as

Li = (
πi f1(ti )

)I (Di =1) × (
(1 − πi ) f2(ti )

)I (Di =2)

× (
πi S1(ti ) + (1 − πi )S2(ti )

)I (Di =0)
, (13)

where πi is the probability of failing from cause 1 for individual i , fk(t) the value of
the density function of the survival time distribution, Sk(t) the value of the survivor
function for failure type k at time t and I (Di = k) indicates the type of failure by
giving the value 1 if Di = k and 0 else, where Di = 0 denotes a censored observation.

A multinomial logistic regression model can be used to assess the influence of
covariates on the probability of failing from a certain event k (see e.g. Fahrmeir and
Tutz 2001)

P(D = k|X) = exp(μk + π�
k X)

∑K
l=1 exp(μl + π�

l X)
. (14)

In the case of two possible events or the case of one event of interest and summarizing
the competing events to one category, the multinomial logistic regression will reduce
to a binary logistic regression model, so the constant term μ becomes a scalar and the
probability for an event of type 1 for subject i given his vector of covariates xi can be
expressed as

P(Di = 1|xi) = 1/(1 + exp(−(μ + π�xi))). (15)

So a valid model can provide an estimate for the probability that an individual will
fail from the event of interest based on his covariate information.
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An adequate assumption for the conditional distribution of the survival times for a
given type of event has to be made. Different survival time distributions were proposed
in the literature like piecewise exponentially distributed survival times (Larson and
Dinse 1985), described in detail by Friedman (1982) for classical survival analysis,
or a three-parameter generalized gamma distribution proposed by Lau et al. (2008),
which was investigated by Cox et al. (2007) for classical survival analysis. Details on
survival time distributions can be found e.g. in Kalbfleisch and Prentice (2002) or in
Klein and Moeschberger (2003). Ng and McLachlan (2003) and Escarela and Bowater
(2008) proposed semi-parametric mixture models assuming proportional hazards for
a given type of failure and fitting Cox proportional hazards models for the conditional
hazard functions, so no distribution assumption has to made for the event times given
the type of event.

The survivor function for a given type of failure and a given set of covariates can
be denoted as

Sk(t |X) = P(T > t |X, D = k) = exp

⎛

⎝−
t∫

0

hk(s)exp
(
β�

k X
)

ds

⎞

⎠ . (16)

Here hk(s) is the null hazard function for a (fictitious) individual with all covariates
set to zero. Using a piece-wise exponential model with m = {1, . . . , M} pieces, like
in the original article by Larson and Dinse (1985), the null hazard function has the
form

hk(t) = exp(αkm) for all t in interval m, (17)

where αkm represents the log–null hazard for an event of type k in the mth interval.
The covariate sets that are assumed to effect the probability of failing from the event
of interest or the time to an event given the type of failure do not have to be identical
(see e.g. Lau et al. 2011), but should be chosen based on knowledge and biological
plausibility.

Formulation of the likelihood for an adequate mixture model (see Eq. 13) may be
complicated, which is one of the major drawbacks of that approach. Another reason
for the rare usage of mixture models may be the lack of standard software available
for parameter estimation or inference. Maximum-likelihood estimates of the regres-
sion coefficients can be assessed using an expectation-maximization (EM) algorithm
(McLachlan and Krishnan 1997) or by using non-linear regression methods as nlm
in R. Standard errors and confidence intervals for the regression coefficients can be
obtained by bootstrapping methods (e.g. Efron and Tibshirani 1994) or via the Hessian
matrix provided by non linear regression algorithms.

Lau et al. (2011) presented a method to estimate time-dependent cause-specific
and subdistribution hazard ratios and corresponding summaries over time from a mix-
ture model that lead to similar results as the semi-parametric methods presented in
Sects. 3.1.1 and 3.1.2.
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3.3 Vertical modelling

In the vertical modelling approach proposed by Nicolaie et al. (2010) a different fac-
torisation of the joint distribution of types of event and event times is used. The joint
distribution is expressed as the product of the marginal distribution of event times for
all types of events and the conditional distribution for types of event given the event
time

P(T, D) = P(T )P(D|T ). (18)

For each observed event time relative hazards for the types of events can be estimated,
revealing the pattern of occurrence of different events given the event times. Using
this approach, it can e.g. be assessed if certain events tend to happen soon after an
intervention while other events occur rather in the long term follow-up. The marginal
distribution of the survival times can be estimated using the Kaplan–Meier method
or, if the effects of covariates on the marginal event time distribution are of inter-
est, by some regression model as proportional hazards or parametric survival models.
The probability for occurrence of a certain event k, given some event 1, . . . , K was
observed at time t , is called the relative hazard πk ,

πk(t) = P(D = k|T = t). (19)

The relative hazard for event k given an observed event time ti can be estimated as

π̂k(ti ) =
dik
ni

di
ni

= dik

di
. (20)

Here di describes the number of observed events at time ti , dik the number of events
of type k at time ti and ni the number of subjects at risk at time ti . Since in most
applications events are documented in continuous time, the relative hazards will give
a series of zeros and ones for each type of event. So Nicolaie et al. proposed to either
use some pre-specified time intervals summarizing multiple events for the estimation
of relative hazards or to use multinomial regression models with spline functions like
B-Splines (see e.g. Hastie 1997) for flexible estimation of time and covariate effects on
the relative hazards. If events are summarized in discrete time intervals, the number
and length of the intervals considered can play an important role. Choice of many
small intervals allows flexible description of the relative hazards, but leads to higher
uncertainty in the estimates, as less events are observed in each interval. Due to the
structure of the model only subjects with observed events can be used for estimation of
relative hazards, whereas all observations are used for estimation of the marginal dis-
tribution of survival times and corresponding covariate effects. As the relative hazard
πk(t) denotes the probability for an event of type k at time t , given any event happened
at the corresponding timepoint or in the time interval, respectively, the relative hazards
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π1(t), . . . , πK (t) sum up to one for any t . A possible model for estimation of time
and covariate effects on the relative hazard is

πk(t |X) = exp
(
γ �

k B(t) + β�
k X

)
∑K

l=1 exp
(
γ �

l B(t) + β�
l X

) . (21)

B(t) denotes the vector of the spline basis functions, γ k the vector of regression weights
of the B-spline functions for event k, X the matrix of covariates and βk the vector of
covariate regression coefficients for the kth type of event. Additionally, an interaction
effect between covariates and B-spline functions can be estimated, if sufficient data
are available. Graphical methods, e.g. drawing the relative hazards for all possible
event types versus time, seem to be most adequate for presentation and interpretation
of the results. A summary of the results should always include the relative hazards as
well as the distribution of event times, so that relative hazards for each type of event
and the pattern of overall events can be interpreted in consideration. Presentation of
the distribution of event times by e.g. Kaplan–Meier curve(s) might avoid mis- or
overinterpretation of relative hazards in time-intervals with a low number of observed
events.

3.4 Competing risks regression based on pseudo-observations

Andersen et al. (2003) introduced a method for the estimation of covariate effects
on state probabilities in multi-state models using pseudo-observations. Since classi-
cal survival models and competing risks models can be interpreted as special cases
of multi-state models, this approach can be adjusted for the competing risks setting
as demonstrated by Klein and Andersen (2005). Generally, the pseudo-observation
approach can be considered to estimate the effects of covariates on any function of
event times f (T ), if an unbiased estimator θ̂ exists for

θ = E
(

f (T )
)
. (22)

A summary of different methods for survival analysis based on pseudo-observations is
presented by Andersen and Perme (2010). Main idea of the approach is to replace cen-
sored observations, which are usually present in event-time analysis, by some useful
measure, so that standard methods can be used for data analysis. The estimated pseudo-
observations θ̂ih , which are assessed via leave-one-out estimates (see e.g. Miller 1974)
for some measure of interest at a predefined series of timepoints τ = (τ1, . . . , τH )

can be used for that purpose

θ̂ih = n θ̂ (τh) − (n − 1) θ̂ (i)(τh). (23)

Here θ̂ (τh) is the estimated measure of interest at time τh using all observations and
θ̂ (i)(τh) indicates the estimated measure of interest derived from all but the i th obser-
vation. So a n×H-matrix of pseudo-observations is obtained. For regression purposes
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these pseudo-observations θ̂ih can be used as dependent variable (Klein and Andersen
2005)

g(θih |xih) = β�xih, (24)

where g is a link function and xih is the vector of covariates of subject i at time τh .
In order to obtain valid standard errors the generalized estimation equation approach
(GEE, Liang and Zeger 1986) can be applied to account for multiple observations per
subject.

In the competing risks setting the relevant measure f (T ) is the cumulative inci-
dence function for event k. Pseudo-observations for each individual can be generated
following Eq. 23 inserting the estimate for the cumulative incidence function at time τh

using all observations for θ̂ (τh) and the cumulative incidence function based on all but
the i th observation for θ̂ (i)(τh). When a complementary log–log link is used in Eq. 24,
the regression coefficients can be interpreted as logarithm of the subdistribution hazard
ratio, if all covariates are time-independent (Klein and Andersen 2005). The analysis
can be performed using the R function geese from the R library geepack (Højsgaard
et al. 2005), that allows different link functions between response and linear predictor.
SAS and R functions for the computation of pseudo-values for time-to-event data are
provided and discussed by Klein et al. (2008).

4 Example: application to cardiac data

4.1 Description of the data

The five presented methods were all applied to a dataset collected at a cohort study in
the Klinikum rechts der Isar and in the German Heart Centre Munich, both located in
Munich, Germany, between January 1995 and March 2005. A total of 2,343 patients
who survived an acute MI at an age of 75 years or younger were included in the study.
The analysed data are presented in Bauer et al. (2006, 2009) and Barthel et al. (2003)
including medical details and a more substantial description of the study cohort. Two
of the patients were excluded from the analysis due to missing values, so the results
presented are based on the evaluation of 2,341 individuals. Patients were planned to be
followed for at least 5 years. Time from the MI to death and type of death (cardiac or
non-cardiac reason) were documented. At inclusion time patients were prospectively
categorized to risk groups. Patients with a left ventricular ejection fraction (LVEF) of
less than 30 % and patients with an LVEF of more than 30 %, but severe autonomic
failure (SAF), were specified to be of high risk for cardiac death (n = 236), patients
with an LVEF of more than 30 % and no SAF to be of low risk (n = 2,105).

1,140 patients were followed for 5 years, so the median follow-up time was 5 years
assessed by inverse Kaplan–Meier method (Schemper and Smith 1996). About 75 %
of the patients were followed for at least 3 years. Patients lost to follow-up or retreating
from the trial were considered as censored observations. During follow-up 181 of the
2,341 patients died, 104 of them from cardiac reasons (55 sudden cardiac deaths), 77
patients died from other causes or types of death were not specified (n = 14). For ease
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Table 1 Estimated cumulative incidences (F̂) for cardiac and non-cardiac death 5 years after MI with 95 %
confidence intervals

Cardiac death Non-cardiac death

F̂card. (5 years) (%) 95 % CI F̂non-card. (5 years) (%) 95 % CI

Overall 5.1 4.2–6.1 % 4.1 3.1–5.0 %
Low risk 2.7 1.9–3.4 % 3.3 2.4–4.2 %
High risk 27.5 21.1–33.9 % 10.9 6.3–15.7 %
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Fig. 2 Cumulative incidence functions for cardiac or non-cardiac death for the whole study population
with cumulative incidences for both types of event summing up to 1 – overall survival (a), comparison of
high (dashed) and low risk group (solid line) regarding incidences of cardiac (b) and non-cardiac death (c)

of analysis and interpretation these 77 patients were defined to have died from non-
cardiac reasons. The estimated probability of dying in the first 5 years after MI was
9.2 % (95 % confidence interval (95 % CI) 7.9 to 10.5 %). Estimates of the cumulative
incidence functions 5 years after MI with 95 % confidence intervals for both types of
death are presented in Table 1 for the whole study population and stratified for the risk
groups. In Fig. 2 non-parametric estimates of the cumulative incidence functions for
the two competing types of event are presented.

Aim of the analysis is to evaluate the risk stratification. Therefore, the effects of
risk group, age (dichotomized at 65 years) and diabetes on cardiac mortality were
assessed using the methods described in Sect. 3. All analyses were performed using
the statistical software R (R Development Core Team 2011) and its libraries survival
(Therneau 2011), cmprsk (Gray 2010), geepack (Højsgaard et al. 2005) and splines
(part of R).

4.2 Cause-specific hazard regression

The effect of the risk group on the cause-specific hazard adjusted for age and diabetes
was analysed. Therefore, since an investigation of Schoenfeld residuals revealed no
evidence against the assumption of proportionality for both types of event (not shown),
a Cox regression model was fit for each of the two types of failure to estimate the effect
of the three covariates on the cause-specific hazards using the R function coxph from
the library survival. In order to describe the whole competing risks process and to
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Table 2 Results of the cause-specific hazard regression models for both types of failure

β̂ exp(β̂) Std. error p value

Cardiac death
Risk group 2.36 10.53 0.20 <0.001
Diabetes 0.72 2.06 0.21 0.001
Age ≥65 0.48 1.60 0.20 0.016

Non-cardiac death
Risk group 1.06 2.89 0.26 <0.001
Diabetes 0.70 2.01 0.25 0.005
Age ≥65 1.28 3.69 0.24 <0.001

estimate the cumulative incidence function for a given set of covariates, the influence
of the covariates on all types of failures have to be assessed (see Eq. 6). For each type of
failure patients experiencing the competing event were considered as censored obser-
vations. Risk group, diabetes and age had a significant effect on the cause-specific
hazards for both types of event (results are shown in Table 2). A cause-specific hazard
ratio between the high risk and the low risk group for cardiac death (H Rcs

c ) of 10.53
(95 % CI 7.10 to 15.64) was observed. This indicates an about ten times higher risk of
dying from a cardiac event for patients with an LVEF≤30 % or with SAF compared
to patients with an LVEF>30 % and no SAF. The analysis for non-cardiac deaths
revealed an increased risk for patients from the high risk group, too, but the effect was
much lower (H Rcs

nc = 2.89, 95 % CI 1.73 to 4.85). Age had a greater influence on the
cause-specific hazard for non-cardiac death with a cause-specific hazard ratio of 3.69
(95 % CI 2.29 to 5.91) compared to 1.60 (95 % CI 1.09 to 2.40) for cardiac events.
For both types of event the cause-specific hazard for patients with diabetes was about
twice as high as for patients without diabetes. Cumulative incidence functions were
predicted from the Cox regression models following Eq. 6 for both risk groups using
the mean of diabetes, i.e. the proportion of patients with diabetes (17.6 %), and the
mean of the indicator variable for age, i.e. the proportion of patients being at least
65 years of age (30.2 %). The baseline hazard required for the estimation of �k(t) was
estimated using the method by Breslow (see e.g. Kalbfleisch and Prentice 2002). The
predicted cumulative incidence curves are shown in Fig. 5a.

4.3 Subdistribution hazard regression—Fine and Gray model

A proportional subdistribution hazards model as described in Eq. 9 was fit to assess the
influence of risk group, diabetes and age on the subdistribution hazard for both types of
event. The analysis was performed using the function crr in the R library cmprsk. Since
the assumption of proportional hazards cannot be valid for cause-specific and subdis-
tribution hazards (Grambauer et al. 2010) and due to conceptual problems appearing
when proportional subdistribution hazard models are fitted for both types of events
shown by Beyersmann et al. (2012), results from the subdistribution hazards models
have to be interpreted as time-averaged effects.
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Table 3 Results of the subdistribution hazard regression (Fine and Gray) models for both types of failure

β̂ exp(β̂) Std. error p-value

Cardiac death
Risk group 2.32 10.21 0.20 <0.001
Diabetes 0.68 1.98 0.21 0.001
Age ≥65 0.47 1.60 0.20 0.017

Non-cardiac death
Risk group 0.84 2.31 0.28 0.002
Diabetes 0.62 1.85 0.24 0.011
Age ≥65 1.28 3.58 0.25 <0.001

Results of the two regression models investigating the influence of the covariates
on the subdistribution hazard are shown in Table 3 for both types of failure. Effects
on the subdistribution hazard can be directly translated to effects on the cumulative
incidence function. For cardiac mortality a subdistribution hazard ratio (H Rsd

c ) com-
paring the high risk to the low risk group of 10.21 (95 % CI 6.91 to 15.08) was found,
indicating a much higher incidence of cardiac events for patients categorized to be of
high risk. The effect of the risk group allocation was weaker for non-cardiac death
(H Rsd

nc = 2.31, 95 % CI 1.39 to 3.97). Effects of diabetes were similar for both types
of failure with a higher subdistribution hazard for patients suffering from diabetes,
whereas age had a higher effect on the subdistribution hazard of non-cardiac deaths.
Cumulative incidence functions for cardiac death comparing high and low risk group
at mean of age and diabetes are shown in Fig. 5b.

4.4 Mixture model

For the analysis of the data using a mixture model the semi-parametric approach
proposed by Ng and McLachlan (2003) was applied, so no assumptions for the distri-
butions of failure times for a given type of event had to be made, but the hazard rates
were assumed to be proportional. Parameter estimates were obtained via an expecta-
tion-conditional maximization (ECM) algorithm. In the ECM algorithm parameters
are estimated iteratively by altering the expectation of the failure type for censored
observations given the observed data and the current parameter estimates (E-step) and
the maximization of the log-likelihood given the observed data and the expected fail-
ure-type probabilities for censored observations (M-step). These steps are repeated
until some pre-specified convergence criterion is fulfilled (e.g. absolute or relative
change of the parameter estimates). The value of the likelihood is increased by each
iteration step. Different starting values were used to avoid finding a local maximum,
but all computations led to the same final results. Five hundred bootstrap samples were
generated to estimate standard errors of the regression coefficients. As described by
Ng and McLachlan subsamples were randomly drawn with replacement from patients
experiencing cardiac death, from patients failing from non-cardiac death and from cen-
sored individuals according to the numbers observed in the original dataset. Results
of the analysis are presented in Table 4. The coefficients of the logistic regression,
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Table 4 Regression coefficients obtained from the mixture model analysis with 95 % confidence intervals
based on 500 bootstrap samples

Event types Event times

Cardiac Cardiac Non-cardiac

π̂ 95 % CI (bs) β̂ 95 % CI (bs) β̂ 95 % CI (bs)

Constant −2.30 −3.92 to 1.65 – – – –
Risk group 2.22 −1.44 to 3.97 0.88 −0.92 to 3.19 1.76 −0.21 to 2.76
Diabetes −0.43 −2.00 to 1.82 1.17 −0.44 to 2.02 0.52 −0.49 to 2.07
Age ≥65 0.96 −1.45 to 2.66 −0.25 −1.60 to 1.02 1.54 0.71 to 2.54

modelling the expected type of failure, indicate that high risk patients were more likely
to die from cardiac events (OR = exp(2.22) = 9.21, 95 % bootstrap CI 0.24 to 52.98).
For a low risk patient aged at least 65 years and having no diabetes, following Eq. 15, a
probability of dying from a cardiac event of 20.7 % was estimated, for a person of the
same age, who is also free of diabetes, but who was identified to be of high risk,
the predicted probability increases to 70.7 %. For both types of failure, patients from
the high risk group tended to survive for a shorter time period, as their estimated risk
for failing from the given type of event is increased (hazard ratios of exp(0.88) = 2.41
and exp(1.76) = 5.81).

4.5 Vertical modelling

In the vertical modelling approach patterns for the occurrence of events in the course
of time can be investigated. Marginal survivor functions for both risk groups adjusted
for age and diabetes were estimated by a Cox regression model and are presented
using the mean of diabetes and the mean of age derived from the whole study popula-
tion (Fig. 3a). In order to estimate relative hazards of the event types in the course of
time, a logistic regression model was fitted considering all uncensored subjects. Time,
risk group, diabetes and age were included as covariates, an indicator variable giving
one, if the observed event was death from cardiac reasons, and zero for a death from
non-cardiac reasons was used as dependent variable. Flexible cubic B-spline func-
tions were used to estimate the effect of time smoothly. As proposed by Nicolaie et al.
(2010) interaction terms between risk group and the smooth functions of time were
considered to allow for different patterns in both groups. Calculations were conducted
using the function glm with flexible B-splines incorporated in the splines library. Coef-
ficients for the main effects obtained from the logistic regression model estimating the
probability of occurrence of a cardiac event, given any event was observed, are pre-
sented in Table 5. As interpretation of regression coefficients is difficult due to the use
of B-spline functions and interaction terms, estimated relative hazards are displayed
for both types of event in Fig. 3b, c. The estimated probability for death of any type,
adjusted for age and diabetes, is higher in the high risk group compared to the low risk
group (Fig. 3a). For a high risk patient the probability for dying from a cardiac event,
given the patient dies at a certain time t , is substantially higher than the probability
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Fig. 3 Results of the vertical modelling approach: survivor functions for both risk groups adjusted for age
and diabetes (a), relative hazards for the high risk group (b) and relative hazards for the low risk group (c)

Table 5 Results from the vertical modelling approach

β̂ Std. error p value

Constant 0.75 0.61 0.218
Risk group 1.27 0.91 0.165
Diabetes −0.08 0.36 0.825
Age ≥65 −0.65 0.34 0.053
B-Spline comp. Not shown

Regression coefficients for B-Spline components of time, and the interaction terms between the B-Spline
components and risk group are not shown, as these cannot be interpreted properly

for a non-cardiac event for all timepoints (Fig. 3b), whereas both types of events seem
to appear with a similar probability in the low risk group (Fig. 3c). For both types of
event the probability for a cardiac event, given any event occurred at a certain time,
seems to decrease slightly over time, indicating a higher relative hazard for cardiac
events in the first year after MI.

4.6 Analysis based on pseudo-observations

In order to analyse the data using the approach proposed by Klein and Andersen
(2005), pseudo-values for the cumulative incidence function for death from cardiac
reasons were estimated. First, the cumulative incidence function for cardiac death
was estimated for 21 different points in time (three month intervals equally spaced
from baseline to 5 years of follow-up) for the whole data set. The procedure was
repeated for all prespecified timepoints leaving out each subject once. From these
estimates 2,341×21 pseudo-observations were calculated following Eq. 23. Exam-
ples for pseudo-observations obtained from the observed data are displayed in Fig. 4.
The patient displayed in the left picture (a) died from a cardiac reason after 2.57 years,
the patient in Fig. 4b was censored after 3.79 years and the patient in the right picture
(c) died from a non-cardiac reason after 2.07 years. Due to the large amount of patients
followed for 5 years without any critical event, the pseudo-value approach does not
affect the weights of censored individuals heavily, but patients experiencing an event
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Fig. 4 Examples for pseudo-values: cardiac death after 2.57 years (a), censored after 3.79 years (b), non-
cardiac death after 2.07 years (c); different scales are used for (b) and (c) compared to (a)

of interest will obtain weights larger than one for time points later than their time of
cardiac death, the value depending on the event time. These pseudo-values were used
as dependent variable in a GEE model to account for multiple observations in the
same subjects. Age, diabetes and 20 dummy variables indicating the timepoint were
included as covariates. The independence working covariance matrix was used in the
GEE model. Applying the function geese of the R library geepack, the influence of
the covariates of interest on the cumulative incidence function for cardiac death was
estimated using a complementary log–log (cloglog) link between the response and
the linear predictor, so the estimated coefficients can be interpreted as logarithms of
subdistribution hazard ratios. The results of the GEE model are presented in Table 6.
Effects observed in the pseudo-value approach are similar to those obtained in the Fine
and Gray model and can be interpreted analogously as an effect on the subdistribution
hazard translating to an effect on the cumulative incidence function. A subdistribution
hazard ratio comparing the high risk to the low risk group of exp(2.36) = 10.59 was
estimated (95 % CI 6.88 to 16.28). As described by Andersen and Perme (2010), the
standard errors obtained in the pseudo-value approach are higher than those in the
Fine and Gray regression model. Regression coefficients for the different time points
partly presented in Table 6 are not of major interest, but are necessary for estimation
of the cumulative incidence function. The cumulative incidence function estimated
via the pseudo-observation approach (Fig. 5c) is similar to the cumulative incidence
functions obtained from the cause-specific hazard regression or the subdistribution
hazard regression. Steps of the function are obtained for each timepoint specified for
the estimation of pseudo-values.

5 Discussion

In recent years statistical researchers as well as other applicants of statistical methods
have become more and more aware of problems and pitfalls present in the analysis of
time-to-event data with competing risks. Nevertheless, in a recent literature review of
leading medical journals Koller et al. (2012) revealed, that competing risks data were
not considered adequately in the analysis of time-to-event data in numbers of medical
publications, although the problem is substantially described in statistical literature.
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Table 6 Regression coefficients obtained by the pseudo-value approach—coefficients are not shown for
all time points (skipped coefficients are monotonously increasing)

β̂ exp(β̂) Std. error p value

Constant −6.81 0.00 0.35 <0.001
Risk group 2.36 10.59 0.22 <0.001
Diabetes 0.81 2.25 0.25 0.001
Age ≥65 0.53 1.70 0.26 0.043
Time = 3 months 1.04 2.83 0.30 <0.001
Time = 6 months 1.21 3.35 0.26 <0.001

. . . . .

. . . . .

. . . . .
Time = 60 months 2.74 15.49 0.18 <0.001

0 1 2 3 4 5

0.00

0.05

0.10

0.15

0.20

0.25

0.30

C
um

. i
nc

id
en

ce
 (

ca
rd

ia
c)

Time in years

High risk
Low risk

(a)

0 1 2 3 4 5

0.00

0.05

0.10

0.15

0.20

0.25

0.30

C
um

. i
nc

id
en

ce
 (

ca
rd

ia
c)

Time in years

High risk
Low risk

(b)

0 1 2 3 4 5

0.00

0.05

0.10

0.15

0.20

0.25

0.30

C
um

. i
nc

id
en

ce
 (

ca
rd

ia
c)

Time in years

High risk
Low risk

(c)

Fig. 5 Estimated cumulative incidence functions for cardiac death using the cause-specific hazard regres-
sion (a), the subdistribution hazard regression (b) and the analysis based on pseudo-observations (c) com-
paring the high risk (dashed) and low risk group (solid line)

Many articles and some textbooks published in the last two decades showed draw-
backs or failures of classical time-to-event methods used in this situation. Most of these
articles and text books, summarizing and describing approaches for the analysis of
competing risks data, are either focussed on cause-specific hazard and subdistribution
hazard regression models (e.g. Bakoyannis and Touloumi 2011; Putter et al. 2007) or
additionally describe the mixture model approach (e.g. Lau et al. 2009). In this article
these three methods are complemented by the vertical modelling approach presented
by Nicolaie et al. (2010) and the analysis of survival data based on pseudo-observa-
tions proposed by Klein and Andersen (2005). In our article main ideas and theoretical
background for these five approaches are presented and compared regarding intention
of the modelling, model assumptions and interpretation of obtained results. Addition-
ally, available literature describing the methods in more detail and extending the basic
models are mentioned.

All methods were applied to a real dataset of a cohort study investigating risk strat-
ification for patients who survived a MI. Based on the observed data the prespecified
risk stratification seems to discriminate well between patients of high and low risk
for cardiac death. Over ten times higher cause-specific and subdistribution hazard
ratios (estimated by the Fine and Gray regression model or via the pseudo-observation
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approach) for cardiac death were found for high risk patients compared to low risk
patients, whereas hazard ratios for non-cardiac deaths were much smaller. This effect
can also be seen in the results of the mixture model approach. Odds for dying from
a cardiac reason were about nine times higher for a high risk patient than for a low
risk patient. Graphical investigation of the results obtained by the vertical modelling
approach revealed a higher relative hazard for cardiac deaths for patients identified as
being of high risk, whereas the hazards of cardiac and non-cardiac deaths, given any
event was observed, were pretty similar in the low risk group.

The well-established and commonly used methods, cause-specific hazard regres-
sion and subdistribution hazard regression, could be applied most easily, because of a
variety of implemented functions provided in the statistical software package R. For
the application of a mixture model, the vertical modelling approach and the analysis
of survival times based on pseudo-observation some additional computation is nec-
essary, but functions provided in standard software can be used for certain steps. A
sketch of the R code used for data analysis is provided in the Appendix. In the ana-
lysed data, results of the cause-specific and the subdistribution hazard regression were
very similar, which in general will not be the case, as presented e.g. by Dignam and
Kocherginsky (2008) or Grambauer et al. (2010). Results of both modelling approaches
have to be interpreted carefully. In the cause-specific hazard regression, the effect of
the competing event(s) is not considered, so a higher cause-specific hazard does not
necessarily translate into a higher cumulative incidence function, which means it does
not translate into a higher proportion of observed events. In the subdistribution haz-
ard regression, the covariates are directly linked to the cumulative incidence function
of the event of interest. Hence it is possible that an observed effect of a covariate
on the event of interest is caused by an effect on a competing event, which might
lead to biological implausible results. Bakoyannis and Touloumi (2011) recommend
to investigate cause-specific and subdistribution hazard regression simultaneously to
avoid misinterpretation of the data. Putter et al. (2007) point out that the effects of the
covariates on the competing event(s) have to be considered when the covariate effects
on the cumulative incidence function are derived from a cause-specific hazard regres-
sion model. Andersen and Keiding (2012) question the interpretability and therefore
the usefulness of the Fine and Gray approach, as in their opinion keeping individuals,
who failed from a competing event, in the risk set is not justified.

Adequate estimation of a mixture model as proposed by Larson and Dinse (1985)
gives estimates for the marginal probabilities for the type of event a subject might
experience. A large number of samples and an appropriate follow-up time seem to be
necessary to obtain valid estimates. Interpretation of the mixture model might be diffi-
cult due to the large number of parameters obtained. Since for each covariate included
in the model the effect on the distribution of the event types and the event times given
the type of event is estimated, this modelling approach seems to be adequate to explore
the data and to find certain patterns or structures in the data, but it does not seem to be
adequate to be used for hypothesis testing. The confidence intervals estimated from
our data, which were obtained via the bootstrap method, were very wide, probably due
to the large amount of censoring and the rather small number of events, and computa-
tions took several days due to the repeated application of the EM algorithm. Further
research developing faster methods could improve the performance as well as new
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technical developments as e.g. multicore computations as provided by the R package
multicore (Urbanek 2011).

As the mixture model approach, the method of vertical modelling proposed by
Nicolaie et al. (2010) appears to be a rather explorative tool estimating the relative
hazards and evaluating the pattern of events happening in the course of time. The
presentation of the marginal event time distribution on the one hand and the relative
hazards given the event time on the other hand complicates the interpretation of the
results. The approach does not seem to be adequate for a valid primary data analysis
in a confirmatory clinical trial, but in certain applications the display of the relative
hazards over time, describing which event is most likely to happen given any event
happens, might add valid information.

The analysis of time-to-event data in the presence of competing risks based on
pseudo-values using a GEE-model with complementary log–log link gives results
similar to the subdistribution hazard model and can be interpreted analogously. Sim-
ulation studies showed that standard errors of this approach are larger than in the Fine
and Gray model and so the pseudo-value approach was recommended not to be used
for estimation when standard methods are available (Andersen and Perme 2010), but it
might be very useful in situations where standard methods do not exist. Pseudo values
can also be useful for checking model assumptions by investigation of pseudo resid-
uals (Perme and Andersen 2008). The arbitrary choice of the number and placement
of investigated time points appear to be drawbacks of that approach, but application
of the established and well-investigated GEE-model might be used to develop some
new ideas based on the pseudo-observation approach.

In a confirmatory clinical trial cause-specific hazard regression or subdistribution
hazard regression seem to be most adequate for the primary analysis. Depending on
the research question, one of these models should be selected a priori for the analysis
of the primary endpoint. The model used for the primary analysis should be stated
in the study protocol to avoid model selection based on the obtained results, which
might lead to biased interpretations (see also Tai et al. 2011). Other models and effects
of covariates on the competing events should be performed in the sense of sensitivity
analyses to avoid misinterpretation of the results and to analyse patterns of events
occurring over time in an explorative manner. Further research seems to be necessary
to evaluate adequate measures for confirmatory hypothesis testing and to investigate
consequences of covariate effects on the competing events for the interpretation of the
primary endpoint.
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Centre Munich was supported by the Bundesministerium für Bildung, Wissenschaft, Forschung und Tech-
nologie (13N/7073/7), the Kommission für Klinische Forschung, and the Deutsche Forschungsgemeinschaft
(SFB 386).

Appendix: Applying competing risk regression models using R

Variables considered:

– Time: Event time or censoring time
– Status: Indicating type of event (1 = cardiac, 2 = non-cardiac, 0 = censoring)
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– Group: Indicating risk group (0 = low risk group, 1 = high risk)
– Age: Indicating patient’s age (0 = (age<65), 1 = (age ≥65))
– Diab: Indicating diabetes (0 = no, 1 = yes)

Cause-specific hazard regression for the event of interest

require(survival)
COXcsh <- coxph(Surv(Time,Status==1)˜Group+Age+Diab)

Subdistribution hazard regression

require(cmprsk)
COXsdh <- crr(Time,Status,cbind(Group,Age,Diab),failcode=1)

Mixture model

ECM algorithm as described by Ng and McLachlan (2003) for two possible types of
failure and three covariates. For estimation of the cumulative hazard functions a data-
set ordered by observed times is required. Expectation and conditional maximization
steps have to be iterated until some predefined convergence criterion is fulfilled.

– Expectation for τi denoting the probability for a failure of type 1 for individual
i in the (k + 1)th iteration given kth estimates for μ, π , β1, β2 and the baseline
survival functions S01(ti , xi ,β1

(k)) and S02(ti , xi ,β2
(k)) according to Eqs. (8) and

(10) from Ng and McLachlan (2003):

p1 <- exp(mu+Group*pi1+Age*pi2+Diab*pi3) /
(1+exp(mu+Group*pi1+Age*pi2+Diab*pi3))
p2 <- 1-p1
tau <- p1*S01ˆexp(Group*b1_1+Age*b1_2+Diab*b1_3) /
(p1*S01ˆexp(Group*b1_1+Age*b1_2+Diab*b1_3) +
p2*S02ˆexp(Group*b2_1+Age*b2_2+Diab*b2_3))

– Function for (k + 1)th estimation of μ and π . Q0 denotes the logistic regression
component of the expectation of the complete-data log-likelihood given the current
parameter estimates.

require(rootSolve)
Q0 <- function(MU) {
mu.opt <- MU[1]
pi1.opt <- MU[2]
pi2.opt <- MU[3]
pi3.opt <- MU[4]
P1 <- exp(mu.opt+pi1.opt*Group+pi2.opt*Age+pi3.opt*Diab)/
(1+exp(mu.opt+pi1.opt*Group+pi2.opt*Age+pi3.opt*Diab))
fct.mu<-sum((as.numeric(Status==1)+(Status==0)*tau-P1))
fct.p1<-sum((as.numeric(Status==1)+(Status==0)*tau-P1)*Group)
fct.p2<-sum((as.numeric(Status==1)+(Status==0)*tau-P1)*Age)
fct.p3<-sum((as.numeric(Status==1)+(Status==0)*tau-P1)*Diab)
return(c(fct.mu,fct.p1,fct.p2,fct.p3)) }

opt <- multiroot(Q0,c(0,0,0,0))
mu.new <- opt$root[1]
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pi1.new <- opt$root[2]
pi2.new <- opt$root[3]
pi3.new <- opt$root[4]

– Calculation of the cumulative baseline hazard function and the baseline survivor
function for event type 1 in the (k + 1)th iteration according to Eq. 12 from Ng
and McLachlan (2003). Measures for k = 2 can be estimated analogously:

h01 <- c()

# Estimation of baseline hazard rate
n <- length(Time)
for(i in 1:n)
h01[i] <- 1 / sum((((Status[i:n]==1) +
(Status[i:n]==0)*tau[i:n])* exp(Group[i:n]*b1_1+
Age[i:n]*b1_2+Diab[i:n]*b1_3)))*(Status[i]==1)

# Replace empty components at the end with zeros
h01[which(is.na(h01))] <- 0
# Calculate cumulative baseline hazard function
H01 <- cumsum(h01)
# Calculate baseline survival function
S01 <- exp(-H01)

– Conditional maximization step to obtain the (k+1)th estimate for β1. According to
Eq. 9 from Ng and McLachlan (2003) maximization can be conducted separately
for all types of event. β

(k+1)
2 can be obtained analogously.

# Event type 1:
Q1 <- function(b1.opt)
{ b1.opt_1 <- b1.opt[1]
b1.opt_2 <- b1.opt[2]
b1.opt_3 <- b1.opt[3]
eta1 <- Group*b1.opt_1 +
Age*b1.opt_2 + Diab*b1.opt_3
fct1 <- sum(((Status==1)-((Status==1)+(Status==0)*tau) *
H01*exp(Group*b1.opt_1+Age*b1.opt_2+Diab*b1.opt_3))*Group)
fct2 <- sum(((Status==1)-((Status==1)+(Status==0)*tau) *
H01*exp(Group*b1.opt_1+Age*b1.opt_2+Diab*b1.opt_3))*Age)
fct3 <- sum(((Status==1)-((Status==1)+(Status==0)*tau) *
H01*exp(Group*b1.opt_1+Age*b1.opt_2+Diab*b1.opt_3))*Diab)
return(c(fct1,fct2,fct3))}
b1 <- multiroot(Q1,c(0,0,0))$root
b1_1.new <- b1[1]
b1_2.new <- b1[2]
b1_3.new <- b1[3]

Vertical modelling

– Cox regression for marginal event-time distribution considering covariates

coxph(Surv(Time,Status>=1) ˜ Group + Age + Diab)

– Estimation of relative hazards from a logistic regression model including B-splines
for flexible influence of Time and interaction between Group and Time. Only indi-
viduals with an observed event can be considered. Estimates of relative hazards
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for cardiac and non-cardiac death for the high risk group are calculated from the
regression coefficients.

library(splines)
GLM <- glm(Status==1 ˜ Group * bs(Time) + Diab +
Age, family=binomial(link=‘logit’),subset=Status>0)
# Relative hazard for cardiac death in the high risk group
rel.haz.highrisk.cardiac <-
predict(GLM,type=‘response’,newdata=data.frame(Group=1,
Time=seq(0,5,length=300),Diab=mean(Diab),Age=mean(Age)))
# Relative hazard for non-card. death in the high risk group
rel.haz.highrisk.noncardiac <- 1 - rel.haz.highrisk.cardiac

Pseudo observations

R code for generation of pseudo observations and estimation of covariate effects apply-
ing a GEE model can be found in Klein et al. (2008).
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