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Abstract Competing risks data are routinely encountered in various medical appli-
cations due to the fact that patients may die from different causes. Recently, several
models have been proposed for fitting such survival data. In this paper, we develop
a fully specified subdistribution model for survival data in the presence of compet-
ing risks via a subdistribution model for the primary cause of death and conditional
distributions for other causes of death. Various properties of this fully specified sub-
distribution model have been examined. An efficient Gibbs sampling algorithm via
latent variables is developed to carry out posterior computations. Deviance information
criterion (DIC) and logarithm of the pseudomarginal likelihood (LPML) are used for
model comparison. An extensive simulation study is carried out to examine the perfor-
mance of DIC and LPML in comparing the cause-specific hazards model, the mixture
model, and the fully specified subdistribution model. The proposed methodology is
applied to analyze a real dataset from a prostate cancer study in detail.

Keywords Latent variables · Markov chain Monte Carlo · Partial likelihood ·
Proportional hazards

1 Introduction

Competing risks data are frequently encountered in various medical applications due
to the fact that patients may die from different causes. Studies on this topic have been
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active and productive. Gail (1975) proposed a multivariate model of failure times due to
different causes. Tsiatis (1975) showed that for any joint distribution of n failure times
there exists a joint distribution of n independent failure times such that the marginal
cause-specific cumulative incident functions from the two joint distributions coincide,
which implies that the correlations between the failure times are not identifiable in
the multivariate failure time model. Prentice et al. (1978) introduced a cause-specific
hazards model. Larson and Dinse (1985) established a mixture model with hazards
function conditional on failure from a specific cause. Fine and Gray (1999) discussed
the subdistribution model with proportional hazards assumption to assess the covari-
ates effect on the cumulative incidence function of the cause of interest. Recently, Fan
(2008) introduced a Bayesian nonparametric methodology based on the full likelihood
for the proportional subdistribution hazards model. Elashoff et al. (2007, 2008) jointly
modeled the longitudinal measurements and survival data with competing risks, where
they extended respectively the cause-specific hazards model and the mixture model
for survival data, and used latent random variables to link together the sub-models for
longitudinal measurements and survival data.

The Bayesian literature on competing risks analysis is still sparse. Fan (2008)
developed Bayesian methods by extending the subdistribution model of Fine and
Gray (1999) for each cause-specific risk. More recently, Hu et al. (2009) and Huang
et al. (2011) developed the Bayesian methods for a joint analysis of longitudinal mea-
surements and survival data with competing risks, in which cause-specific hazards
sub-models were considered for modeling survival times. As pointed out in Fine and
Gray (1999), one of the nice properties of the subdistribution model is that the effect
of a covariate on the marginal probability function can be directly assessed. However,
the subdistribution model proposed by Fine and Gray (1999) cannot be compared to
two other established models as the competing risks for other causes are not specified
in their model. Due to this reason, we develop a fully specified subdistribution model
with subdistribution hazard for the primary cause of death and conditional hazards
for other causes of death. Under this fully specified subdistribution model, we are
able to establish a theoretical connection between the partial likelihood of Fine and
Gray (1999) and the one under the fully specified subdistribution model for the cause
of primary interest when all failure times are observed. We notice that this connec-
tion may not be established under the models discussed in Fan (2008). With this new
development, formal model comparisons between the fully specified subdistribution
model and two other established models, namely, the cause-specific hazards model
(Prentice et al. 1978) and the mixture model (Larson and Dinse 1985), can be carried
out via Bayesian deviance information criterion (DIC) and logarithm of the pseudo-
marginal likelihood (LPML). Furthermore, the fully specified subdistribution model
also facilitates an efficient implementation of the Gibbs sampling algorithm.

The rest of the article is organized as follows. In Sect. 2, we present a detailed devel-
opment of the fully specified subdistribution model and examine various properties
of it. The prior and posterior are discussed and an efficient Gibbs sampling algorithm
via a set of latent variables is developed in Sect. 3. In Sect. 4, we briefly review the
cause-specific hazards model (Prentice et al. 1978) and the mixture model (Larson and
Dinse 1985), and provide necessary mathematical formulations for DIC and LPML
under these two models and the fully specified subdistribution model. In Sect. 5, we
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present the design of a simulation study and the simulation algorithms for generating
the data under the three competing risk models. We notice that these three compet-
ing risk models have never been formally compared based on our best knowledge. In
Sect. 6, we analyze a real data from a prostate cancer study in detail. We conclude the
paper with brief discussion and some extensions of the proposed model in Sect. 7.

2 Subdistribution based models for competing risks

2.1 Preliminary

We consider two competing risks throughout the paper and the extension to more than
two competing risks will be discussed in Sect. 7. Let Tj be the time to failure due to
cause j for j = 1, 2 and δ be the index of cause of death. Also let T = min{T1, T2}.
Assume cause 1 is the cause of primary interest. The subdistribution hazard for cause
1 defined in Gray (1988) is given as follows:

h1(t) = lim�t→0

{
Pr(t ≤ T ≤ t + �t, δ = 1|T ≥ t ∪ (T ≤ t ∩ δ �= 1))

�t

}

= ∂ F1(t)/∂t

1 − F1(t)
, (2.1)

where F1(t) = Pr(T ≤ t, δ = 1). As discussed in Fine and Gray (1999), to develop
the regression model of (2.1) with the proportional hazards assumption, h1(t |x) =
h10(t) exp(x′β1) and F1(t |x) = 1 − exp

{ − ∫ t
0 h10(u) exp(x′β1)du

}
, where x is a

vector of covariates and β1 is a vector of the corresponding regression coefficients. As
pointed out in Fine and Gray (1999), the covariate effects can be directly assessed on
the cumulative incidence function for primary cause under the subdistribution model.
However, the distributions for failure times due to other causes are never specified in
Fine and Gray (1999).

2.2 A fully specified subdistribution model for two competing risks

Let T ∗
j = Tj × I (δ = j) + ∞ × I (δ �= j), j = 1, 2, where we define ∞ × 0 = 0.

Write T ∗ = min{T ∗
1 , T ∗

2 } as the observed time to failure. We propose the cause-
specific cumulative incidence functions for both causes as follows:

F1(t) = Pr(T ∗ ≤ t, δ = 1) = Pr(T1 ≤ t, δ = 1),

F2(t) = Pr(T ∗ ≤ t, δ = 2) = M2(t)Pr(δ = 2), (2.2)

where M2(t) is the cumulative incidence function conditional on cause 2. The fact
that lim

t→∞ Fj (t) = Pr(δ = j) < 1 implies that Fj (t) is improper. Yet M2(t) is

proper due to lim
t→∞ M2(t) = lim

t→∞[F2(t)/Pr(δ = 2)] = 1. Note that in (2.2), we

do not directly model the correlation between T1 and T2, which is not identifiable
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as shown in Tsiatis (1975). Instead, F1(t) and F2(t) are related to each other via
Pr(δ = 2) = 1 − Pr(δ = 1) = 1 − F1(∞).

We apply the definition of subdistribution hazard in Fine and Gray (1999) for cause 1
by h1(t) = ∂ F1(t)

∂t × 1
1−F1(t)

. Then H1(t) is improper because lim
t→∞ H1(t) = − log

[
1−

lim
t→∞ F1(t)

]
< ∞. We specify a proportional hazards model with an improper baseline

hazard function for F1(t |x) as

F1(t |x) = 1 − exp
{

− H10(t) exp(x′β1)
}
. (2.3)

For cause 2, we propose a proportional hazards model for M2(t |x) as

M2(t |x) = 1 − exp
{

− H20(t) exp(x′β2)
}
. (2.4)

The model defined by (2.3) and (2.4) is thus called the fully specified subdistri-
bution (FS) model. Under the FS model, Pr(δ = 2|x) = 1 − Pr(δ = 1|x) =
exp{−H10(∞) exp(x′β1)}.

Assume there are n observations with the vector of observed time t =
(t1, t2, . . . , tn)′, the matrix of covariates X = (x1, x2, . . . , xn)′, and the vector of
cause indicator δ = (δ1, δ2, . . . , δn)′, where δi takes possible values of 0, 1, and 2,
corresponding to “censored”, “died due to cause 1”, and “died due to cause 2” for the
i th subject, respectively. Under the model defined in (2.3) and (2.4), the likelihood
function is given by

L(β1,β2, h10, h20|t, X, δ)

=
n∏

i=1

[
h10(ti ) exp(x′

iβ1) exp
{

− H10(ti ) exp(x′
iβ1)

}]I (δi =1)

×
[
h20(ti ) exp(x′

iβ2) exp
{

− H20(ti ) exp(x′
iβ2)−H10(∞) exp(x′

iβ1)
}]I (δi =2)

×
[

exp
{

− H10(ti ) exp(x′
iβ1)

}

−
(

1 − exp
{

− H20(ti ) exp(x′
iβ2)

})
× exp

{
− H10(∞) exp(x′

iβ1)
}]I (δi =0)

.

(2.5)

2.3 Justification of Fine and Gray’s partial likelihood

The FS model is not only a natural expansion of the subdistribution model of Fine and
Gray (1999) but also provides novel justifications of Fine and Gray’s partial likelihood
under certain conditions. Assume there are n complete observations with the vector
of observed time t = (t1, t2, . . . , tn)′, the matrix of covariates X = (x1, x2, . . . , xn)′,
and the vector of cause indicator δ = (δ1, δ2, . . . , δn)′. The partial likelihood of β1
for cause 1 given in Fine and Gray (1999) is of the form
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L p(β1|t, X, δ) =
n∏

i=1

[ exp(x′
iβ1)∑

j∈R∗
i

exp{x′
jβ1}

]I (δi =1)

, (2.6)

where R∗
i is defined as a special risk set at failure time ti given by

R∗
i = {

j : (t j ≥ ti ) ∪ (t j ≤ ti ∩ δ j �= 1)
}
. (2.7)

Note that the risk set R∗
i is quite different than the risk set in Cox’s partial likelihood

(Cox 1972, 1975) as the patients who died from cause 2 before ti are also included in
R∗

i .
Three theorems are established below to show that the partial likelihood (2.6) can

be obtained under the FS regression model via three different approaches with detailed
proofs given in Appendix A. Denote D1 as the number of deaths due to cause 1. Let
yi = ti when δi = 1, and yi = ∞ when δi �= 1. Write y = (y(1), y(2), . . . , y(n))

′,
where 0 = y(0) < y(1) < · · · < y(D1) < y(D1+1) = · · · = y(n) = ∞. Since all
observations are failure times, the likelihood function of β1 for cause 1 given the n
complete observations is the part of the likelihood function in (2.5) involving β1:

L(β1, h10| y, X, δ) =
n∏

i=1

[
h10(y(i)) exp(x′

iβ1)
]

× exp
{

− H10(y(i)) exp(x′
iβ1)

}
.

Theorem 1 With n complete observations, assume that in the FS model the baseline
hazard rate h10 is zero after the last failure time due to cause 1. The partial likeli-
hood function (2.6) can be attained by the profile likelihood approach, which is to
plug in the profile maximum likelihood estimator of h10 in the likelihood function
L(β1, h10| y, X, δ).

Theorem 2 With n complete observations, assume that in the FS model the baseline
hazard rate h10(t) is zero after the last failure time due to cause 1 and the prior of
h10(t) is degenerate at 0 everywhere except at yi ’s when δi = 1. Let h10(yi ) = λi

when δi = 1 and λ = (λ1, . . . , λD1)
′. We further assume independent Jeffreys-type

priors for the λi ’s, i.e., π(λ) ∝ ∏D1
i=1 1/λi . Then, the partial likelihood function (2.6)

is obtained by

L p(β1| y, X, δ) ∝
∫

L(β1, h10| y, X, δ)π(λ)dλ1 . . . dλD1 ,

where L(β1, h10| y, X, δ) is defined in (2.8).

Theorem 3 With n complete observations, assume that in the FS model the base-
line hazard rate h10(t) is zero after the last failure time due to cause 1 and that
H10(t) has a Gamma process prior, i.e., h1i ∼ Gamma(c0h0i , c0), where c0 > 0,
h1i = H10(y(i)) − H10(y(i−1)) for i = 1, 2, . . . , D1, h1,D1+1 = · · · = h1n = 0,
h0i = H0(y(i)) − H0(y(i−1)), H0(y) is increasing and differentiable at y1, . . . , yD1
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with H0(0) = 0, and the h1i are independent of each other. Then the partial likelihood
function (2.6) can be approximated by

L p(β1| y, X, δ) ≈ lim
c0↓0

g(c0)Eh10
[
L(β1, h10| y, X, δ)

]
,

where g(c0) is a function of c0, which is free from β1.

Fine and Gray (1999) also showed that the partial likelihood arises from complete
data using a certain reduced data structure, without any assumptions on the models
for the subdistribution for other causes. The results established in the above theorems
give insight into Fine and Gray’s partial likelihood.

3 Prior, posterior, and computational development

3.1 Prior and posterior

For the sake of simpler calculation, a special case of the gamma process prior for the
cumulative baseline hazard function assumed in Theorem 3 is considered here for the
FS model. Assume the baseline hazard functions respectively have piecewise constant
forms, which are, with K j + 1 partitions of the time axis, 0 = s j0 < s j1 < s j2 <

· · · < s j K j < ∞,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

h10(t) = λ1k, s1,k−1 < t ≤ s1k, k = 1, 2, . . . , K1;
h10(t) = λ1,K1+1 exp{−(t − s1K1)}, t > s1K1;
h20(t) = λ2k, s2,k−1 < t ≤ s2k, k = 1, 2, . . . , K2;
h20(t) = λ2K2 , t > s1K2 .

(3.1)

To construct posterior distributions for the unknown parameters, we assume β j
follows an improper uniform prior, λ jk follows a Jeffreys-type prior, and λ1,K1+1
follows a gamma prior. We further assume that β j , λ jk , and λ1,K1+1 are indepen-
dent for k = 1, . . . , K j and j = 1, 2. Let λ1 = (λ11, λ12, . . . , λ1,K1+1)

′ and
λ2 = (λ21, λ22, . . . , λ2K2)

′, then the joint prior of (β1,β2,λ1,λ2) is specified as
follows

π(β1,β2,λ1,λ2)=π(β1)π(β2)π(λ1)π(λ2) ∝
[ 2∏

j=1

K1∏
k=1

1

λ jk

]
π(λ1,K1+1), (3.2)

where π(λ1,K1+1) ∝ λa−1
1,K1+1 exp(−bλ1,K1+1) with a > 0 and b > 0, which are

prespecified hyperparameters. The joint posterior distribution is given by

π(β1,β2,λ1,λ2|t, X, δ) ∝ π∗(β1,β2,λ1,λ2|t, X, δ)

≡ L(β1,β2,λ1,λ2|t, X, δ)π(β1,β2,λ1,λ2), (3.3)
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where L(β1,β2,λ1,λ2|t, X, δ) is given by (2.5) with h10(t) and h20(t) defined in
(3.1). Recently, Wang et al. (2012) established a theoretical connection between the
gamma process prior specified for the cumulative baseline function and the inde-
pendent gamma priors for the λ jk for the interval-censored survival data. Also, the
independent gamma priors assumed for the baseline hazard function approximate the
gamma process prior when c0 → 0+. Thus, the priors in (3.2) for the λ jk can be
considered as a special case of the gamma process priors specified for the cumulative
baseline function in this sense.

Let ν j ik = 1 if the i th subject failed or was censored in the kth interval
(s j,k−1, s jk], and 0 otherwise for k = 1, 2, . . . , K j + 1, and i = 1, 2, . . . , n, where
s j,K j +1 = ∞, for j = 1, 2. Also let X j be a matrix with its i th row equal to
I (δi = j)(ν j i1, . . . , ν j i K j , x′

i ) for j = 1, 2. Then, we are led to the following the-
orem regarding the propriety of the posterior distribution of (β1,β2,λ1,λ2) with an
improper prior given by (3.2).

Theorem 4 Assume that (i) when δi > 0, ti > 0 and for k = 1, 2, . . . , K j for
j = 1, 2, and (ii) X1 and X2 are of full rank. Then, the posterior distribution
π(β1,β2,λ1,λ2|t, X, δ) in (3.3) with the prior specified in (3.2) is proper.

A proof of Theorem 4 is given in Appendix A. Theorem 4 gives very mild con-
ditions for ensuring propriety of the joint posterior distribution of (β1,β2,λ1,λ2)

under the fully specified subdistribution model. The conditions (i) and (ii) essentially
require that all event times are strictly positive, at least one event occurs in each
chosen interval (s j,k−1, s jk], and the corresponding covariate matrix is of full rank.
Notice that we do not require any events for the last interval (s1K1 ,∞) for the primary
cause as we specify a proper prior for λ1,K1+1. These conditions are easily satisfied
in most applications and are quite easy-to-check. Under certain additional condi-
tions, we can also show that when π(λ1,K1+1) ∝ 1 in (3.2), the resulting posterior of
(β1,β2,λ1,λ2) is still proper. We also notice that following Chen et al. (2006), the
posterior propriety by assuming full gamma process priors on H10 and H20 for c0 > 0
can be established and, however, stronger propriety conditions are required in this
case.

3.2 Computational development

Due to the complexity of the likelihood structure of the FS model, an analytical eval-
uation of the posterior distribution does not appear to be possible. In order to carry
out posterior inference, we adopt Markov chain Monte Carlo (MCMC) methods and
develop a computationally efficient Gibbs sampling algorithm to sample from the
posterior distribution in (3.3).

In order to avoid the complicated form in the censored part of the likelihood func-
tion, we introduce a latent variable ηi to indicate whether or not subject i would
eventually fail from cause 1 or 2 and another latent variable ui to be the failure time
such that ui ≥ ti when subject i was censored at ti and ηi = 1. Then the complete
likelihood is constructed as
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L(β1,β2, h10, h20|t, X, δ, η, u)

=
n∏

i=1

[
h10(ti ) exp(x′

iβ1) exp
{

− H10(ti ) exp(x′
iβ1)

}]I (δi =1)

×
[
h20(ti ) exp(x′

iβ2) exp
{

− H20(ti ) exp(x′
iβ2) − H10(∞) exp(x′

iβ1)
}]I (δi =2)

×
[
h10(ui ) exp(x′

iβ1) exp
{

− H10(ui ) exp(x′
iβ1)

}]I (δi =0,ηi =1)

×
[

exp
{

− H20(ti ) exp(x′
iβ2) − H10(∞) exp(x′

iβ1)
}]I (δi =0,ηi =2)

, (3.4)

whereη = (ηi : δi = 0, 1 ≤ i ≤ n) and u = (ui : δi = 0, ηi = 1, 1 ≤ i ≤ n). Based
on the complete data likelihood, the augmented posterior of (β1,β2,λ1,λ2, η, u) is
given by

π(β1, β2, λ1, λ2, η, u|t, X, δ) ∝ L(β1, β2, h10, h20|t, X, δ, η, u)π(β1, β2, λ1, λ2),

(3.5)

where h10(t) and h20(t) are defined in (3.1). It is easy to show that

∑
η

∫
π(β1,β2,λ1,λ2, η, u|t, X, δ)du = π(β1,β2,λ1,λ2|t, X, δ),

where π(β1,β2,λ1,λ2|t, X, δ) is the posterior given in (3.3). This result ensures that
whenever
(β1,β2,λ1,λ2, η, u) ∼ π(β1,β2,λ1,λ2, η, u|t, X, δ), then (β1,β2,λ1,λ2) ∼
π(β1,β2,λ1,λ2|t, X, δ).

The introduction of the latent variables η and u greatly facilitates a con-
venient implementation of the Gibbs sampling algorithm. To develop an effi-
cient Gibbs sampling algorithm, we use the collapsed Gibbs method of Liu
(1994). First, we group (β2,λ2, η, u) together. Then, the Gibbs sampling algo-
rithm requires to sample from the following conditional posterior distributions
in turn: (i) [β1|λ1,β2,λ2, η, u, t, X, δ]; (ii) [λ1|β1,β2,λ2, η, u, t, X, δ]; and (iii)
[β2,λ2, η, u|β1,λ1, t, X, δ]. For (i), the conditional posterior density of β1 given
(λ1,β2,λ2, η, u, t, X, δ) is log-concave in each component of β1. Thus, we can use
the adaptive rejection algorithm of Gilks and Wild (1992) to sample β1. For (ii), it can
be shown that given (β1,β2,λ2, η, u, t, X, δ), the λ1k’s are conditionally independent
and each of them follows a gamma distribution. Thus, sampling λ1 is straightforward.
For (iii), it is easy to see that

[β2,λ2, η, u|β1,λ1, t, X, δ]=[β2,λ2, η|β1,λ1, t, X, δ][u|β1,λ1,λ2, η, t, X, δ].
(3.6)

In (3.6), we collapse out u in the conditional distribution [β2,λ2, η|β1,λ1, t, X, δ].
However, jointly sampling (β2,λ2, η) from their conditional distribution is not
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possible. Thus, we need to run a sub-Gibbs sampling algorithm to sample (β2,λ2, η)

from this conditional posterior distribution. The approach is called the modified col-
lapsed Gibbs sampling algorithm. As shown in Chen et al. (2000), the modified
collapsed Gibbs sampling algorithm yields the target posterior as its stationary distri-
bution. The sub-Gibbs sampling algorithm requires to sample from the following three
additional conditional posterior distributions in turns: (iiia) [β2|β1,λ1,λ2, η, t, X, δ];
(iiib) [λ2|β1,λ1,β2, η, t, X, δ]; and (iiic) [η|β1,λ1,β2,λ2, t, X, δ]. For (iiia) the
conditional posterior density of β2 is log-concave in each component of β2 and
we again use adaptive rejection algorithm of Gilks and Wild (1992) to sample
β2. For (iiib), the λ1k’s are conditionally independent and each of them follows
a gamma distribution. Finally, for (iiic), ηi ’s are conditionally independent and
each ηi follows a Bernoulli distribution. The technical detail of sampling η from
[η|β1,λ1,β2,λ2, t, X, δ] and sampling u from [u|β1,λ1,λ2, η, t, X, δ] is given in
Appendix B.

4 Model comparison

The cause-specific hazards model and the mixture model are two well-established
models for competing risks survival data. We discuss details of these two models and
compare them with the FS model both theoretically, in simulation, and in an analysis
of a real dataset.

4.1 Other models for comparison

Cause-specific Hazards Model As discussed in Gaynor et al. (1993), the cause-spe-
cific hazard function is denoted by

hC j (t) = lim
�t→0

{
Pr(t ≤ T < t + �t, δ = j |T ≥ t)

�t

}
, j = 1, 2.

Under the proportional hazards assumption, hC j (t |x) = hC j0(t) exp(x′β j ) and the
cumulative incidence function of cause j is given by

Fj (t |x) = Pr(T ≤ t, δ = j) =
t∫

0

hC j0(u) exp(x′β j )

× exp
{

−
2∑

j=1

HC j0(u) exp(x′β j )
}

du.

The covariate effects can be directly assessed on the cause-specific hazard functions.
But they cannot be directly estimated by β j alone on the cause-specific cumulative
incidence function of cause j , as the cause-specific cumulative incidence function of
cause 1 also depends on regression coefficients β2 for cause 2.
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Mixture Model Larson and Dinse (1985) discussed the mixture model. Assume the
types of cause-specific failures follow a multinomial distribution. Define the proba-
bility of failing from cause j as p j = Pr(δ = j) for j = 1, 2, where p1 + p2 = 1.
Define hM j (t) as the hazard function conditional on failure from cause j ,

hM j (t) = lim
�t→0

{
Pr(t ≤ T < t + �t |δ = j, T ≥ t)

�t

}
.

Under the proportional hazards assumption, hM j (t |x) = hM j0(t) exp(x′β j ) and the
cause-specific cumulative incidence function is given by

Fj (t |x) = Pr(T ≤ t, δ = j |x) = p j

(
1 − exp

{
− HM j0(t) exp(x′β j )

})
.

It is observed that both cause-specific hazard functions and cause-specific cumulative
incidence functions depend on regression coefficients of the corresponding cause as
well as the probability of failing from that cause.

Notice that the definition of the subdistribution hazard is different than the defini-
tion of the cause-specific hazard function or the definition of the conditional hazard
function in the mixture model. Thus, if the proportional structure on the hazard func-
tion of one model is true, the hazard functions of other two models could never achieve
the Cox proportional hazards assumption.

4.2 Model comparison measures

Deviance information criterion (DIC) (Spiegelhalter et al. 2002) and logarithm of the
pseudomarginal likelihood (LPML) (Ibrahim et al. 2001) are used here to compare the
cause-specific hazards model, the mixture model, and the FS model. Let θ denote a
collection of model parameters. DIC is defined as DIC = D(θ̂)+2pD , where D(θ) is
a deviance function, pD = D̄ − D(θ̂), D̄ and θ̂ are the posterior means of D(θ) and θ .
The formula of LPML is given by LPML = ∑n

i=1 log(CPOi ), where the Conditional
Predictive Ordinate (CPO), CPOi = f (ti |xi , D(i)) = ∫

f (ti |θ, xi )π(θ |D(i)), D(i)

is the data with the i th observation deleted, and π(θ |D(i)) is the posterior distribu-
tion based on the data D(i). According to Gelfand and Dey (1994), LPML implicitly
includes a similar dimensional penalty as AIC asymptotically.

For the proposed FS model, θ = (β1,λ1,β2,λ2), and the deviance function D(θ)

is given by D(θ) = −2 log L(β1,β2, h10, h20|t, X, δ), where L(β1,β2, h10, h20|t,
X, δ) is given by (2.5) and h10(t) and h20(t) are defined in (3.1).

For the cause-specific hazards model, suppose the piecewise exponential models
for hC j0(t), j = 1, 2. The deviance function is defined by

D(θ) = −2 log LC (β1,β2, hC10, hC20|t, X, δ),
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where

LC (β1,β2, hC10, hC20|t, X, δ) =
n∏

i=1

{
hC10(ti ) exp(x′

iβ1)
}I (δi =1)

×
{

hC20(ti ) exp(x′
iβ2)

}I (δi =2)

× exp
{

− HC10(ti ) exp(x′
iβ1)

−HC20(ti ) exp(x′
iβ2)

}
.

From the above likelihood function, it is easy to see that under the cause-specific haz-
ards model, DIC = DIC1 + DIC2, where DIC j is the DIC of the survival model with
single cause j by treating other causes of death as censored.

For the mixture model, let p1i denote the probability of death due to cause 1 for
the i th subject, p1 = (p11, p12, . . . , p1n)′. The likelihood function is

L M (β1,β2, hM10, hM20, p1|t, X, δ)

=
n∏

i=1

[
p1i hM10(ti ) exp(x′

iβ1) exp
{

− HM10(ti ) exp(x′
iβ1)

}]I (δi =1)

×
[
(1 − p1i )hM20(ti ) exp(x′

iβ2} exp
{

− HM20(ti ) exp(x′
iβ2)

}]I (δi =2)

×
[

p1i exp
{

− HM10(ti ) exp(x′
iβ1)

}

+(1 − p1i ) exp
{

− HM20(ti ) exp(x′
iβ2)

}]I (δi =0)

.

Assume p1i = exp{z′
iφ}

1+exp{z′
iφ} , where zi is a vector of covariates, which may be a subset

of xi .
For the cause-specific hazards model and mixture model, the form of the baseline

hazard functions hC j0 and hM j0 and the prior of (β1,β2,λ1,λ2) are assumed in the
same way as those in the FS model excluding the last piece h10(t) when t ≥ s1,K1 . Sim-
ilar to the FS model, the propriety of the joint posterior distribution of (β1,β2,λ1,λ2)

can also be established under an improper joint prior π(β1,β2,λ1,λ2), which is sim-
ilar to (3.2).

5 A simulation study

In this section, we carry out a simulation study to compare the cause-specific haz-
ards model, mixture model, and fully specified subdistribution model via DIC and
LPML. To generate data from the FS model, we assume there are two causes with
cause 1 to be the cause of interest, and there are two covariates with true parameters
β1 = (β11, β12)

′ and β2 = (β21, β22)
′, which are chosen such that Pr(δ = 1) is

around 1/3. Covariates xi1 are generated from N (0, 1) and xi2 given xi1 are generated
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from Bernoulli(p(xi1)), where p(xi1) = exp{0.5+0.3xi1}
1+exp{0.5+0.3xi1} . Assume the failure times

of two causes follow distinct piecewise exponential distributions, where for cause 1
the time is partitioned as s10 = 0, s11 = 8, s12 = 12, s13 = 15, s14 = 16, and
s15 = 17 with corresponding λ1 = (0.001, 0.01, 0.03, 0.02, 0.3)′, and for cause 2
the time is partitioned as s20 = 0, s21 = 3, s22 = 5, s23 = 8, s24 = 10, s25 =
11, s26 = 12, s27 = 13, s28 = 15, s29 = 17, and s210 = 18 with correspond-
ing λ2 = (0.001, 0.005, 0.01, 0.02, 0.04, 0.07, 0.1, 0.15, 0.2, 1.0)′. Generate ri from
U (0, 1). If ri < Pr(δi = 1|xi ), then generate t∗i of cause 1 from a piecewise expo-
nential distribution

f1(t
∗
i |xi ) =

h10(t∗i ) exp(x′
iβ1) exp

{
− H10(t∗i ) exp(x′

iβ1)
}

1 − exp
{

− H10(∞) exp(x′
iβ1)

} .

If ri ≥ Pr(δi = 1|xi ), then generate t∗i of cause 2 from a piecewise exponential
distribution

f2(t
∗
i |xi ) =

h20(t∗i ) exp(x′
iβ2) exp

{
− H20(t∗i ) exp(x′

iβ2) − H10(∞) exp(x′
iβ1)

}

exp
{

− H10(∞) exp(x′
iβ1)

}[
1 − exp

{
− H20(∞) exp(x′

iβ2)
}] .

The censoring time ci is generated from a uniform distribution, U (ac, bc), where
0 < ac < bc are chosen so that the proportion of death is around 2/5, and then ti
is taken to be ti = min{t∗i , ci }. Note that under the FS model, Pr(δi = 1|xi ) =
F1(∞|xi ) = 1 −

{
− H10(∞) exp(x′

iβ1)
}

.

For the mixture model, the settings of model parameters and covariates are sim-

ilar to those for the FS model, while Pr(δ = 1) is calculated by p1 = exp(z′φ)

1+exp(z′φ)
,

where φ = (φ1, φ2)
′ is chosen such that p1 is around 1/3. If ri from U (0, 1) falls

in (0, Pr(δ = 1)), then t∗i of cause 1 is generated from a piecewise exponential
distribution

f1(t
∗
i |xi ) = h10(t

∗
i ) exp(x′

iβ1) exp
{

− H10(t
∗
i ) exp(x′

iβ1)
}
.

Otherwise, t∗i of cause 2 is generated from a piecewise exponential distribution

f2(t
∗
i |xi ) = h20(t

∗
i ) exp(x′

iβ2) exp
{

− H20(t
∗
i ) exp(x′

iβ2)
}
.

For the cause-specific hazards model, the parameter and covariates settings are
also similar as above. According to Lu and Tsiatis (2001), ti is generated by ti =
min{t1i , t2i , ci }, where t1i , t2i , and ci are generated independently, respectively, from
a piecewise exponential distribution

f1(t1i |xi ) = h10(t1i ) exp(x′
iβ1) exp

{
− H10(t1i ) exp(x′

iβ1)
}
,
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Table 1 Frequency of ranking each model as best under different scenarios

(K1, K2) DIC LPML

FS best C best M best FS best C best M best

Data simulated from FS model

(5, 10) 0.626 0.002 0.372 0.608 0.000 0.392

(10, 20) 0.764 0.004 0.232 0.778 0.008 0.214

(15, 30) 0.892 0.006 0.102 0.918 0.006 0.076

Data simulated from C model

(5, 10) 0.194 0.524 0.282 0.190 0.482 0.328

(10, 20) 0.130 0.722 0.148 0.132 0.716 0.152

(15, 30) 0.156 0.732 0.112 0.158 0.726 0.116

Data simulated from M model

(5, 10) 0.096 0.044 0.860 0.100 0.072 0.828

(10, 20) 0.104 0.094 0.802 0.110 0.142 0.748

(15, 30) 0.098 0.154 0.748 0.120 0.192 0.688

a piecewise exponential distribution

f2(t2i |xi ) = h20(t2i ) exp(x′
iβ2) exp

{
− H20(t2i ) exp(x′

iβ2)
}
,

and a uniform distribution, U (ac, bc), such that the proportion of death is around 2/5.
500 data sets with n = 500 observations in each dataset were generated from each

of the three models, respectively, as described above. Each simulated dataset was fitted
by all three models and the corresponding DICs and LPMLs were calculated. From
Table 1, we see that the best model chosen by DIC and LPML is always consistent with
the true model where the data were simulated. The mean DIC and mean LPML under
each model and scenario are shown in Table 2. The true value, estimate, standard devi-
ation, mean square error, and coverage probability of each covariate coefficient when
estimating from the true model for all of the three models are given in Table 3. It is
observed that the standard deviations and mean square errors are moderate and stable,
and that the coverage probabilities are always around 0.95 under all three scenarios
of (K1, K2).

To further compare the models, the median and interquartile range (IQR) of the
pairwise differences of DIC and LPML for two models under each scenario are cal-
culated, and the corresponding boxplots are shown in Fig. 1. When the data were
simulated from another model, the mixture model and fully specified subdistribution
model fit better than the cause-specific hazards model.

6 Analysis of the prostate cancer data

A subset of data from the prostate cancer studies published in Choueiri et al. (2010)
is analyzed using the three models. The response variable was the time from pros-
tate-specific antigen (PSA) failure to death or to the last follow-up, whichever came
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Table 2 Mean of DIC and LPML of the three models

(K1, K2) DIC LPML

FS model C model M model FS model C model M model

Data simulated from FS model

(5, 10) 2142.0 2167.1 2144.2 −1071.1 −1083.7 −1072.0

(10, 20) 2119.2 2145.6 2123.2 −1060.6 −1073.9 −1062.6

(15, 30) 2126.5 2153.9 2131.8 −1065.8 −1079.6 −1068.4

Data simulated from C model

(5, 10) 2064.8 2055.8 2056.6 −1032.5 −1028.0 −1028.2

(10, 20) 2039.0 2030.7 2033.4 −1020.5 −1016.4 −1017.8

(15, 30) 2044.6 2037.5 2040.8 −1024.9 −1021.4 −1023.0

Data simulated from M model

(5, 10) 2286.8 2283.7 2274.7 −1144.0 −1142.3 −1137.7

(10, 20) 2285.9 2282.3 2276.1 −1144.4 −1142.4 −1139.5

(15, 30) 2295.9 2291.8 2287.0 −1150.9 −1148.7 −1146.5

Bold values are the best values of DIC or LPML corresponding to the best model

Table 3 Posterior estimates of β under the three models in simulation studies

(K1, K2) = FS model C model M model

(5, 10) (10, 20) (15, 30) (5, 10) (10, 20) (15, 30) (5, 10) (10, 20) (15, 30)

β11 True 0.2 0.2 0.2

Est 0.2 0.2 0.2 0.18 0.19 0.19 0.19 0.20 0.20

SD 0.09 0.09 0.09 0.11 0.11 0.11 0.13 0.13 0.13

MSE 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02

CP 0.94 0.94 0.94 0.95 0.95 0.95 0.94 0.94 0.94

β12 True 0.8 1.0 1.5

Est 0.78 0.78 0.78 1.00 1.02 1.02 1.47 1.48 1.48

SD 0.23 0.23 0.23 0.24 0.24 0.24 0.35 0.36 0.37

MSE 0.05 0.05 0.06 0.06 0.06 0.06 0.14 0.15 0.16

CP 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.94 0.94

β21 True 0.3 0.3 0.3

Est 0.29 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30

SD 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08

MSE 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

CP 0.97 0.96 0.96 0.95 0.95 0.95 0.95 0.95 0.95

β22 True 1.0 0.2 0.5

Est 0.98 1.00 1.00 0.19 0.20 0.20 0.53 0.53 0.54

SD 0.17 0.17 0.17 0.15 0.15 0.15 0.18 0.18 0.18

MSE 0.03 0.03 0.03 0.02 0.02 0.02 0.03 0.03 0.03

CP 0.94 0.95 0.95 0.96 0.95 0.96 0.96 0.96 0.96

Note that Est, SD, MSE, and CP denote the average of the posterior means, the average of the posterior
standard deviations, and the mean square error, and the coverage probability of the 95 % HPD intervals over
500 simulations
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Fig. 1 Box plots of DIC and LPML differences between models

first. The median follow-up time after PSA failure was 11.2 years with IQR=(5.8,
16.0). The sample size was 546, with 54 prostate cancer deaths and 151 other causes
of deaths. Seven covariates were considered in the analysis, including patient’s age at
the date of PSA failure, the natural logarithm of PSA (logpsa), prostatectomy Gleason
score (7 (GS7 = 1) or otherwise (GS7 = 0)), prostatectomy Gleason score (8 to 10
(GS8H = 1) or otherwise (GS8H = 0)), prostatectomy T classification (T3 and higher
(T3 = 1) or otherwise (T3 = 0)), surgical margin status (positive (margin = 1) or
otherwise (margin = 0)), and PSA doubling time (DT) (less than 6 months (DT6 = 1)
or otherwise (DT6 = 0)). In this analysis, the prostate cancer cause of death is the
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Table 4 DIC, dimension penalty, and LPML of three models

K1 K2 C model M model FS model

DIC pD LPML DIC pD LPML DIC pD LPML

10 10 1586.5 34.3 −795.3 1580.0 42.5 −791.9 1565.3 34.4 −784.2

20 1578.6 44.6 −792.5 1574.9 52.7 −791.2 1560.1 44.7 −782.9

30 1600.8 55.0 −805.6 1596.0 63.0 −803.1 1581.5 55.1 −795.0

15 10 1584.2 39.9 −795.7 1576.4 48.3 −791.9 1564.4 39.8 −785.0

20 1575.8 49.9 −792.7 1571.1 58.4 −790.3 1558.9 49.9 −783.5

30 1598.0 60.3 −805.2 1592.1 68.8 −802.6 1580.1 60.5 −795.4

20 10 1599.8 45.1 −805.4 1592.6 53.6 −801.4 1579.4 45.2 −794.6

20 1592.0 55.5 −802.6 1587.9 64.1 −800.3 1574.7 55.8 −793.4

30 1614.1 65.9 −815.2 1609.6 74.7 −813.0 1595.4 65.9 −805.2

Bold values are the best values of DIC or LPML corresponding to the best model

Table 5 Estimates of β1 under the subdistribution model and the fully specified subdistribution model

Variable Subdistribution model Fully Specified Subdistribution model

Estimate SE 95 % CI Estimate SD 95 % HPD interval

age 0.017 0.022 (−0.026, 0.059) 0.020 0.020 (−0.017, 0.061)

logpsa −0.057 0.143 (−0.337, 0.223) 0.036 0.139 (−0.225, 0.316)

GS7 −0.173 0.431 (−1.018, 0.672) −0.123 0.411 (−0.935, 0.676)

GS8H 0.298 0.400 (−0.486, 1.082) 0.153 0.402 (−0.615, 0.951)

T3 0.453 0.409 (−0.348, 1.255) 0.598 0.417 (−0.195, 1.414)

margin 0.483 0.305 (−0.115, 1.080) 0.417 0.295 (−0.124, 1.035)

DT6 0.990 0.278 ( 0.445, 1.535) 0.919 0.271 ( 0.407, 1.467)

primary cause and the other cause of death is any causes of death other than pros-
tate cancer. We let β1 = (β11, β12, . . . , β17) denote the vector of the corresponding
regression coefficients for the prostate cancer cause of death.

Different values of K1 and K2 were tried out for optimizing the model fitting. In
the mixture model, z is the vector of all covariates without preselecting for a fair
comparison between the models. The values of DIC, pD , and LPML for the 3 × 3
combinations of K1 and K2 under all three models are reported in Table 4. We see that
(K1, K2) = (15, 20) is the optimum combination of (K1, K2) for almost all models,
and that the fully specified subdistribution model always outperforms the other two
models by achieving the smallest DIC and the largest LPML.

The subdistribution model of Fine and Gray (1999) was also fit the data. For the pros-
tate cancer death, the estimates, standard errors (SEs) and 95 % confidence intervals
(CIs) of β1 under the subdistribution model of Fine and Gray (1999) and the posterior
means (estimates), posterior standard deviations (SDs), and 95 % highest posterior den-
sity (HPD) intervals of β1 under the FS model for the scenario of (K1, K2) = (15, 20)

are shown in Table 5. We see, from Table 5, that all estimates were quite close and
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Fig. 2 Plots of the PCSMs under the three models

the two models gave consistent conclusions in terms of significance of covariates at
a significance level of 0.05. Note that the estimates of β1 under the subdistribution
model of Fine and Gray (1999) were computed using the R-package cmprsk.

Let the prostate cancer specific mortality (PCSM) be the cumulative incident func-
tion corresponding to the primary cause of death due to prostate cancer. The covariate
effect was further investigated by comparing the posterior means of the PCSM at dif-
ferent times stratified by PSA doubling time (DT6 = 1 versus DT6 = 0) under each
of the three models, where the other covariates were fixed at age = mean age (66.5),
logpsa = mean logpsa (2.5), GS7 = 1, GS8H = 0, T3 = 1, and margin = 1. The
PCSM plots are shown in Fig. 2. The shapes of the PCSM curves under the three
models were similar except at the tail part and the difference between the two curves
was slightly smaller under the cause-specific hazards model. For example, at the 10th
and 15th year after PSA failure, the posterior means of PCSM under the cause-specific
hazards model were 0.055 and 0.166 for patients with PSA doubling time less than
6 months and 0.021 and 0.071 for patients with PSA doubling time greater than or
equal to 6 months; under the mixture model the posterior means of PCSM were 0.052
and 0.17 for patients with PSA doubling time less than 6 months and 0.022 and 0.073
for patients with PSA doubling time greater than or equal to 6 months; under the FS
model the posterior means of PCSM were 0.061 and 0.192 for patients with PSA
doubling time less than 6 months and 0.025 and 0.082 for patients with PSA doubling
time greater than or equal to 6 months. Those PCSM plots indicate that the patients
with PSA doubling time less than 6 months had worse PCSMs than those with PSA
doubling time greater than or equal to 6 months. This covariate effect can directly be
seen from Table 5 under the FS model as DT6 was significant at a significance level
of 0.05. In addition, the proportional hazards structure of the FS model also allows
us to compute the adjusted hazard ratio (AHR), which is defined as exp(β17), of DT6
for the PCSM. Specifically, the posterior mean and 95 % HPD interval of the AHR of
DT6 were 2.601 and (1.369, 4.061), respectively. However, this covariate effect could
not be directly assessed under the other two models. For example, under the mixture
model with K1 = 15, K2 = 20, for the hazard regression sub-model corresponding
to the prostate cancer death, the posterior mean, SD, and 95 % HPD interval of β17
for DT6 were 0.122, 0.384, and (−0.627, 0.865) while the posterior mean, SD, and
95 % HPD interval of φ7 for DT6 were 0.519, 0.168, and (0.187, 0.839) in the logistic
regression sub-model for p1, indicating that DT6 was significant.
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7 Discussion

In this paper, we have developed a fully specified subdistribution model of Fine and
Gray (1999) and provided a justification of Fine and Gray’s partial likelihood via the
profile likelihood approach and the Bayesian approach. Our Bayesian justification is
the first such development in the context of competing risk models after the Bayesian
justification of Cox’s partial likelihood (Kalbfleisch 1978; Sinha et al. 2003) as the
risk set at time t in Fine and Gray’s partial likelihood includes all patients who are
still alive prior to t as well as the patients who were died from other causes of death
up to t , which is quite different than the usual risk set in Cox’s partial likelihood (Cox
1972, 1975). To fit the proposed FS model, a piecewise exponential model with Jeff-
reys-type priors, which is a special case of the gamma process prior when c0 → 0+, is
assumed for the baseline hazard function. Compared to the full gamma process priors,
the gamma priors based on the piecewise exponential model relax the conditions for
the posterior propriety and facilitate the development of an efficient Gibbs sampling
algorithm for carrying out the posterior computation.

In Sect. 5, we conducted an extensive simulation study in examining the perfor-
mance of DIC and LPML in identifying the model from which the data were generated.
Our simulation results empirically showed that when the data are from one (the true
model) of the three models (cause-specific hazards model, mixture model, and fully
specified subdistribution model), it is unlikely that the other two models would have
smaller DICs and larger LPMLs than the true model. This may be due to different pro-
portional hazard functions assumed under these three models. For the prostate cancer
data, the FS model had much smaller DIC and larger LPML than those under the
cause-specific model and mixture model, implying that the FS model was much more
appropriate for fitting this dataset than the other two models.

The fully specified subdistribution model can be further extended to the cases
with more than 2 competing risks. Assume there are J competing risks with cause
1 as the cause of interest. Denote T ∗

j = Tj × I (δ = j) + ∞ × I (δ �= j), j =
1, 2, . . . , J , and T ∗ = min{T ∗

1 , T ∗
2 , . . . , T ∗

J }. The cause-specific cumulative inci-
dence functions can be constructed as follows: F1(t) = Pr(T ∗ ≤ t, δ = 1) =
Pr(T1 ≤ t, δ = 1), and Fj (t) = Pr(T ∗ ≤ t, δ = j) = M j (t)Pr(δ �= j − 1|δ �=
1, . . . , δ �= j − 2) . . . Pr(δ �= 2|δ �= 1)Pr(δ �= 1), j = 2, . . . , J , where M j (t) is
the probability of failure from cause j by time t conditional on not failing from causes
1, 2, . . . , j − 1.

In this paper, we only considered fixed covariates. Including time-dependent covar-
iates in the FS model, as well as jointly modeling longitudinal measurements (e.g.,
a series of PSA measures over-time) and survival endpoints of cause-specific death
times are important future research topics, which are under investigation currently.
Models with frailty terms (Clayton 1978; Vaupel et al. 1979) are commonly used for
correlated survival data with multivariate risk factors. Dixon et al. (2011) introduced
a multivariate subdistribution hazard model including frailty to induce correlations
among clustered survival times. The FS model can be extended for correlated sur-
vival data in the presence of competing risks in the manner to include frailties. This
is another interesting topic for future research.
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In all the Bayesian computations, we used 10,000 Gibbs samples after a burn-in of
1000 iterations for each model to compute all the posterior estimates, including poster-
ior means, posterior standard deviations, 95 % HPD intervals, DICs and LPMLs. We
also generated 50,000 Gibbs samples after a burn-in of 1000 to re-compute those pos-
terior quantities and the results were very similar. The HPD intervals were computed
via the Monte Carlo method developed by Chen and Shao (1999). Codes were written
for FORTRAN 95 compiler, and we used IMSL subroutines with double precision
accuracy. The fortran codes for the FS model are available upon request.
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Appendix A: Proofs of Theorems

Proof of Theorem 1 With the assumption that h10 is zero after the last observation of
failure due to cause 1, the likelihood function is now

L(β1, h10| y, X, δ)=
D1∏

i=1

[
h10(y(i)) exp(x′

iβ1)
]

× exp
{

−
n∑

i=1

H10(y(i)) exp(x′
iβ1)

}
.

The profile likelihood approach assumes that h10 is zero except for the failure times
due to cause 1. Then

L(β1, h10| y, X, δ) =
[ D1∏

i=1

h10(y(i)) exp(x′
iβ1)

]

× exp
{

−
D1∑

i=1

i∑
k=1

h10(y(k)) exp(x′
iβ1)

−
n∑

i=D1+1

D1∑
l=1

h10(y(l)) exp(x′
iβ1)

}

=
[ D1∏

i=1

h10(y(i)) exp(x′
iβ1)

]

× exp
{

−
D1∑

i=1

h10(y(i))
∑
j∈R∗

i

exp(x′
jβ1)

}
.

Therefore, the profile maximum likelihood estimator of h10 is given by

ĥ10(y(i)) = 1∑
j∈R∗

i
exp(x′

jβ1)
.
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Plugging ĥ10(y(i)) in L(β1, h10| y, X, δ) results in the profile likelihood function given
by

L∗
p(β1| y, X, δ) ∝

D1∏
i=1

exp(x′
iβ1)∑

j∈R∗
i

exp{x′
jβ1}

,

which is (2.6). ��
Proof of Theorem 2 Assume the prior of h10 only has value λi at times y(i) such
that δi = 1. Then λi = H10(y(i)) − H10(y(i−1)), and λD1+1 = · · · = λn = 0,
i = 1, . . . , D1. The survival function at time t is

Pr(T∗
1 > t) =

n∏
i=1

[
1 − F1(y(i))

]

= exp
{

−
D1∑

i=1

H10(y(i)) exp(x′
iβ1) −

n∑
i=D1+1

H10(∞) exp(x′
iβ1)

}

= exp
{

−
D1∑

i=1

i∑
k=1

λk exp(x′
iβ1) −

n∑
i=D1+1

D1∑
l=1

λl exp(x′
iβ1)

}

= exp
{

−
D1∑

i=1

λi

∑
j∈R∗

i

exp(x′
jβ1)

}
. (A.1)

Then the likelihood function in (2.8) reduces to

L(β1,λ| y, X, δ) =
D1∏

i=1

[
λi exp(x′

iβ1)
]

× exp
{

− λi

∑
j∈R∗

i

exp(x′
jβ1)

}

=
D1∏

i=1

[ exp(x′
iβ1)∑

j∈R∗
i

exp(x′
jβ1)

]
×

[
λi

∑
j∈R∗

i

exp(x′
jβ1)

]

× exp
{

− λi

∑
j∈R∗

i

exp(x′
jβ1)

}
.

Since π(λ) ∝ ∏D1
i=1 1/λi , we have

∫
L(β1,λ| y, X, δ)π(λ)dλ

=
∫ D1∏

i=1

1

λi
×

[ exp(x′
iβ1)∑

j∈R∗
i

exp(x′
jβ1)

]
×

[
λi

∑
j∈R∗

i

exp(x′
jβ1)

]
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× exp
{

− λi

∑
j∈R∗

i

exp(x′
jβ1)

}
dλ

=
D1∏

i=1

exp(x′
iβ1)∑

j∈R∗
i

exp(x′
jβ1)

.

��
Proof of Theorem 3 Assume H10 follows a gamma process prior. Let h1i =
H10(y(i)) − H10(y(i−1)), h1i ∼ G(c0h0i , c0), i = 1, . . . , D1. h1i ’s are independent
of each other, and h1,D1+1 = · · · = h1n = 0. Similar to (A.1), we can show that the
survival function at time t is given by

Pr(T∗
1 > t) =

n∏
i=1

[
1 − F1(y(i))

]
= exp

{
−

D1∑
i=1

h1i

∑
j∈R∗

i

exp(x′
iβ1)

}
.

Taking expectation with respect to the gamma process prior gives

Eh10
[

Pr(T∗
1 > t)

]
=

D1∏
i=1

[ c0

c0 + ∑
j∈R∗

i
exp(x′

iβ1)

]c0h0i

=
D1∏

i=1

exp
{

c0

i∑
k=1

h0k log
(

1 − exp(x′
iβ1)

c0 + ∑
j∈R∗

i
exp(x′

iβ1)

)}
.

Now the expectation of the likelihood function in (2.8) with respect to the gamma
process prior reduces to

Eh10
[

L(β1, h10| y, X, δ)
]

=
D1∏

i=1

exp
{

c0

i∑
k=1

h0k log
(

1 − exp(x′
iβ1)

c0 + ∑
j∈R∗

i
exp(x′

iβ1)

)}

×
[

− c0

i∑
k=1

dh0k

dy(i)
log

(
1 − exp(x′

iβ1)

c0 + ∑
j∈R∗

i
exp(x′

iβ1)

)]
.

Since limc0↓0 exp
{

c0
∑i

k=1 h0k log
(

1 − exp(x ′
iβ1)

c0+∑
j∈R∗

i
exp(x ′

iβ1)

)}
= 1 and

lim
c0↓0

log
(

1 − exp(x′
iβ1)

c0 + ∑
j∈R∗

i
exp(x′

iβ1)

)
≈ − exp(x′

iβ1)∑
j∈R∗

i
exp(x′

iβ1)
,

we have

lim
c0↓0

Eh10

[
L(β1, h10| y, X, δ)

]
∏D1

i=1

[
c0

∑i
k=0

dh0k
dy(i)

] ≈
D1∏

i=1

exp(x′
iβ1)∑

j∈R∗
i

exp(x′
iβ1)

.

��

123



360 M. Ge, M.-H. Chen

Proof of Theorem 4 To show that (3.3) is proper, it is needed to show that

∫
π∗(β1,β2,λ1,λ2|t, X, δ)dβ1dβ2dλ1dλ2 < ∞,

where π∗(β1,β2,λ1,λ2|t, X, δ) is the unnormalized joint posterior density defined
in (3.3). After some algebra, we can show that

π∗(β1,β2,λ1,λ2|t, X, δ)

≤
n∏

i=1

K1∏
k=1

[
λ1k exp(x′

iβ1) exp
{

− exp(x′
iβ1)λ1k(ti − s1, k−1)

}]ν1ik I (δi =1)

× λ−1
1k λa−1

1,K1+1 exp(−bλ1,K1+1)

×
n∏

i=1

K2∏
k=1

[
λ2k exp(x′

iβ2) exp
{

− exp(x′
iβ2)λ2k(ti − s2,k−1)

]ν2ik I (δi =2) × λ−1
2k

≡ π∗∗(β1,λ1|t, X, δ) × π∗∗(β2,λ2|t, X, δ).

It suffices to show that

∫
π∗∗(β1,λ1|t, X, δ)dβ1dλ1 < ∞,

since
∫

π∗∗(β2,λ2|t, X, δ)dβ2dλ2 < ∞ can be proved in a similar way.
Consider the transformation u j = log(λ1 j ), j = 1, 2, . . . , K1, and let u =

(u1, u2, . . . , uK1)
′. Then, we have

∫
π∗∗(β1,λ1|t, X, δ)dβ1dλ1

=
∫

π∗∗(β1, u|t, X, δ)dβ1du ×
∫

λa−1
1,K1+1 exp(−bλ1,K1+1)dλ1,K1+1

∝
∫ n∏

i=1

K1∏
k=1

[
exp(uk + x′

iβ1)

× exp
{

− exp(uk + x′
iβ1)(ti − s1, k−1)

}]ν1ik I (δi =1)

dβ1du. (A.2)

It is easy to show that exp(uk + x′
iβ1)× exp

{
− exp(uk + x′

iβ1)(ti − s1, k−1)
}

≤ M1,

where M1 > 0 is a constant. Under condition (ii), X1 is of full rank. Thus, there exist
distinct i1, i2, . . . , iK1+p1 , where p1 = dim(β1), such that the (K1 + p1)× (K1 + p1)

matrix X∗
1 , which has rows (x∗

1�)
′ = (ν j i�1, . . . , ν j i�K j , x′

i�
) for � = 1, . . . , K1+ p1, is

of full rank. Let ki� be an integer such that ti� ∈ (s1,ki�−1, s1ki�
] for � = 1, . . . , K1+ p1.

We take a one-to-one transformation ξ1 = X∗
1(u′,β ′

1)
′. Using (A.2), we have
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∫
π∗∗(β1,λ1|t, X, δ)dβ1dλ1

≤ M2

∫ K1+p1∏
�=1

(
exp{(x∗

1�)
′(u′,β ′)′}

× exp
[

− exp
{
(x∗

1�)
′(u′,β ′)′(ti − s1, ki�−1)

}])
dudβ

= M3

K1+p1∏
�=1

∞∫
−∞

exp(ξ1�) exp
{

− exp(ξ1�)(ti − s1, ki�−1)
}

dξ1�

= M3

K1+p1∏
�=1

((ti − s1, ki�−1)
−1 < ∞,

where M2 and M3 are two positive constants. This completes the proof. ��

Appendix B: Generating η from [η|β1, λ1, β2, λ2, t, X, δ] and u from
[u|β1, λ1, λ2, η, t, X, δ]

Generating η from [η|β1,λ1,β2,λ2, t, X, δ] When δi = 0, we generate ηi by
I (ηi = 1) ∼ Bin(1, pi1) and I (ηi = 2) = 1 − I (ηi = 1), where pi1 = ai

ai +bi
,

ai = exp
{ − H10(ti ) exp(x′

iβ1)
} − exp

{ − H10(∞) exp(x′
iβ1)

}
, and bi = exp{ − H20(ti ) exp(x′

iβ2) − H10(∞) exp(x′
iβ1)

}
.

Generating u from [u|β1,λ1,λ2, η, t, X, δ] When δi = 0 and ηi = 1, we generate
ui from a truncated piecewise exponential distribution f (ui ), where

f (ui ) ∝ h10(ui ) exp(x′
iβ1) exp

{ − H10(ui ) exp(x′
iβ1)

}
, ui ≥ ti .

Denote δ j i as the index such that s j, δ j i −1 ≤ ti < s j δ j i . Let

a1i = exp
{ − H10(ti ) exp(x′

iβ1)
} − exp

{ − H10(s1 δ1i ) exp(x′
iβ1)

}
,

aki = exp
{ − H10(s1, δ1i +k−2) exp(x′

iβ1)
}

− exp
{ − H10(s1, δ1i +k−1) exp(x′

iβ1)
}
,

k = 2, . . . , K1 − δ1i + 1.

aK1−δ1i +2,i = exp
{ − H10(s1K1) exp(x′

iβ1)
} − exp

{ − H10(∞) exp(x′
iβ1)

}
.

Generate vi from a U (0, 1) distribution. If vi falls into the kvi th interval such that

a1,i + · · · + akv−1,i

a1,i + · · · + aK1−δ1i +2,i
< vi ≤ a1,i + · · · + akv,i

a1,i + · · · + aK1−δ1i +2,i
,
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the inverse distribution function method is used to calculate ui as

vi = a1,i + · · · + akv−1,i +exp
{ − H10(s1,kv−1) exp(x′

iβ1)
}−exp

{ − H10(ui ) exp(x′
iβ1)

}
a1,i + · · · + aK1−δ1i +2,i

.
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