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Abstract Reuse of controls in a nested case–control (NCC) study has not been con-
sidered feasible since the controls are matched to their respective cases. However, in
the last decade or so, methods have been developed that break the matching and allow
for analyses where the controls are no longer tied to their cases. These methods can be
divided into two groups; weighted partial likelihood (WPL) methods and full maxi-
mum likelihood methods. The weights in the WPL can be estimated in different ways
and four estimation procedures are discussed. In addition, we address modifications
needed to accommodate left truncation. A full likelihood approach is also presented
and we suggest an aggregation technique to decrease the computation time. Further-
more, we generalize calibration for case-cohort designs to NCC studies. We consider
a competing risks situation and compare WPL, full likelihood and calibration through
simulations and analyses on a real data example.

Keywords Nested case–control · Competing risks · Weighted partial likelihood ·
Maximum likelihood for nested case–control · Calibration

1 Introduction

When analyzing infrequent events in a cohort study, the cohort may need to be very
large to obtain reliable estimates. Retrospective sampling designs like nested case–
control (NCC) (Thomas 1977) or case-cohort (CC) (Prentice 1986) can then be very
useful alternatives. In both designs, some or all covariates are obtained only for a subset
of the original cohort. In the CC design, this subset usually includes all cases and a
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subcohort sampled at the outset of the study. In a NCC design, the subset again usually
includes all cases, but at each event time m controls are sampled from those at risk at
that time. In a prospective cohort study, on the other hand, covariates are collected for
every subject in the cohort. NCC and CC are therefor useful alternatives when some
covariates, for instance analyzed blood samples, are too expensive to obtain for a large
group of people. Moreover, because covariates only need to be obtained for cases and
controls more effort can be used to ensure high quality of the collected data.

Traditionally, the risk sets in a NCC design only contain the case together with
the time-matched controls, on the other hand in a CC design, controls contribute to a
number of risk sets while the cases either are included at their event times (Prentice
1986) or whenever they are at risk (Kalbfleisch and Lawless 1988). A main advantage
of the CC design has been the possibility to reuse controls for other endpoints. This
has not been feasible with the NCC design since the controls are matched to their
respective cases. However, in the last decade or so, methods have been developed that
allow for analyses where the controls are no longer tied to their cases (Samuelsen
1997; Chen 2001; Scheike and Juul 2004; Saarela et al. 2008; Salim et al. 2009). This
opens up for the possibility to reuse controls also within the NCC design.

Two main strategies have been proposed for reusing controls in a NCC design.
One method is using weighted partial likelihoods (WPLs) (Samuelsen 1997; Chen
2001). Another is full likelihood approaches (Scheike and Juul 2004; Saarela et al.
2008), where the whole cohort is used and information not obtained for individuals
outside the case–control set is treated as missing. A full likelihood is computationally
demanding, but we will suggest an aggregation technique that reduces the complexity.

Reusing controls within the NCC design can be useful in many event-history situa-
tions with general types of endpoints. We will only consider a competing risks setting
where the cause specific hazards are given by Cox’s proportional hazards model. In
particular, we will consider competing risks settings with one relatively common end-
point and one much less common endpoint. We are then able to use controls from the
common endpoint as additional controls for the less common endpoint, and this can
potentially give large efficiency improvements.

Recently, a method of finding more efficient weights in CC designs has been pro-
posed (Breslow et al. 2009a,b), referred to as calibration of weights. The idea is to
adjust the weights in such a way that known totals of some auxiliary variables are
estimated exactly, but at the same time the weights stay as close to the population
based weights as possible. We will suggest a generalization of this approach to the
NCC design and investigate if it can improve the efficiency of the WPL approach
further.

The aim of this article is mainly to compare WPL with different weighing schemes
and Saarela’s full likelihood in the sense of bias and efficiency through simulations. In
Sect. 2 we look at WPL with four different weighing schemes and Saarela’s full likeli-
hood. How to deal with left truncation is also reviewed, and needed to be extended for
some of the estimators. In Sect. 3 we generalize the calibration technique to NCC. The
estimation methods are compared through simulations in Sect. 4, while in Sect. 5 we
look at the methods through a real data example. Finally we conclude with a discussion
in Sect. 6.
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2 NCC with competing risks/multiple outcomes

2.1 The cohort

Our basic framework is a competing risks situation where each subject can experience
at most one out of K different events. This is a special case of the multiple endpoints
or general life-history setting where each subject can experience several or even all K
events.

Let the cohort C = {1, . . . , n} consist of n individuals who either experience
one out of K different events, Ei = k, or are censored, Ei = 0, at time ti . This
means that Ei is an event indicator taking values in {0, 1, . . . , K }, where 0 corre-
sponds to being censored, and for each individual we observe the pair (ti , Ei ). Let
Ek = {i ∈ C , Ei = k} be the set of all cases experiencing event k and denote the set
of all cases by E = ⋃K

k=1 Ek .
Let β = (β ′

1, . . . , β
′
k, . . . , β

′
K ) and γ = (γ ′

1, . . . , γ
′
k, . . . , γ

′
K ), where β ′

k and γ ′
k

are vectors of regression coefficients connected to endpoint k. Let (xi , Zi ) be our
covariates, assumed to be time constant. Here the xi is considered to be non-random,
and assumed known for the entire cohort, while the Zi is a vector of covariates only
known for cases and controls. For the full likelihood it will be useful to consider the
Zi as random variables, which is emphasized by the capital letter.

We assume outcome specific proportional hazard models where we model the
hazard function for events of type k for individual i as

αki (t |xi , Zi , β
′
k, γ

′
k) = α0k(t) exp(β ′

k xi + γ ′
k Zi ). (1)

Here α0k(t) is the baseline hazard related to endpoint k.
We restrict our attention to time constant covariates, but at least for WPL it is pos-

sible to handle covariates that can be ascertained at every event time an individual is at
risk. The standard NCC-method on the other hand, handle time-dependent covariates
that are determined for the cases and their time-matched controls only at the event
times of the cases.

A common situation with survival data is left truncation. Let li denote the entry time
of individual i and let ti be the exit time. A subject is then observed from li to ti , where
ti is an event time or a censoring time depending on the event indicator. The WPL and
the full likelihood are first described without left truncation in Sects. 2.3 and 2.4, but
in Sect. 2.5 we describe how left truncation may be taken into consideration.

2.2 The NCC study

We consider independent NCC studies for each of the K different endpoints in the
same cohort. At each event time, m controls are sampled from the individuals still at
risk. Let Oi be a binary variable indicating whether or not individual i is a member of
a case–control set, and let O = {i ∈ C : Oi = 1} be the collection of all cases and
sampled controls.
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Estimation in NCC designs with only one endpoint has traditionally been based on
a partial likelihood similar to the usual Cox-likelihood (Thomas 1977)

Lk(β
′
k, γ

′
k) =

∏

Ei =k

exp(β ′
k xi + γ ′

k Zi )
∑

j∈R̃i
exp(β ′

k x j + γ ′
k Z j )

.

Here R̃i denote the m sampled controls together with the failing individual i at time
ti and

∏
Ei =k is taken to mean the product over all i where Ei = k. Computationally,

the likelihood can be handled as a stratified version of a Cox-likelihood, where each
R̃i constitute a stratum. Inference can be based on standard large sample theory so
that the estimator is approximately normally distributed and the variance is obtained
from the inverse of the information matrix (Borgan et al. 1995).

In a competing risks setting the total partial likelihood is a product over single
endpoint likelihoods. When estimating k regression coefficients connected to a given
endpoint, all products except the k-th are constants.The information matrix will sub-
sequently be a block diagonal matrix and one Cox-regression per endpoint can be
carried out.

2.3 Weighted partial likelihood

In the partial likelihood above, the controls are tied to their respective cases, and it has
been considered impossible to reuse them for other types of events. In addition, the
case and its time-matched controls are only used in the estimation at the event time of
the case. A seemingly more efficient way of using the available information is with a
WPL (Samuelsen 1997; Saarela et al. 2008) in which all sampled risk sets are pooled
together. In this way, controls can be reused for other event times.

A WPL for event k is of the form

Lk(β
′
k, γ

′
k) =

∏

Ei =k

exp(β ′
k xi + γ ′

k Zi )
∑

j∈Oi
exp(β ′

k x j + γ ′
k Z j )w j

, (2)

where Oi is the collection of all cases and controls at risk at time ti . We will refer to
Oi as a subcohort, using a term from CC studies in a slightly different way. The w j

is a weight assigned to the j-th individual in the subcohort. If we ignore the weights,
the cases will be over-represented since all cases, but only a fraction of the non-cases,
are included in O . A sensible way of dealing with this is to weight the individuals by
the inverse of their probability of actually being included in the subcohort,

w j =
{

1 E j �= 0

1/p j E j = 0
.

Different ways of estimating these sampling probabilities have been proposed.
Samuelsen (1997) suggested a “Kaplan–Meier like” estimator;
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p j = 1 −
∏

i∈E , ti ≤t j

{

1 − m

n(ti )− 1

}

,

where n(ti ) is the number at risk at ti . A similar estimator was considered by Suissa
et al. (1998). Other weighting options include logistic regression models, where we
model the inclusion probabilities as

p j = E[O j |t j ] = exp(ξ + f (t j ))

1 + exp(ξ + f (t j ))
. (3)

The most general case is when f (t) is some smooth function of t , referred to as GAM
(generalized additive model), this has been tried out by Samuelsen et al. (2007). We
have used smoothing splines to estimate p j , but other smoothers should also work. A
special case of this logistic regression framework is a model with f (t) = ηt which cor-
respond to standard logistic regression, referred to as GLM, tried out by Saarela et al.
(2008). It is important to note that only non-cases are included when using (3) to esti-
mate the inclusion probabilities. A fourth option, called local averaging was proposed
by Chen (2001) for generalized CC designs. The method involves choosing a partition
of the time axis and calculate separate weights for controls censored in different time
intervals. Let tB be the upper time limit for the study, let 0 = t0 < t1 < · · · < t B be
a partition of the follow-up time, and define Ib = (tb−1, tb]. Then

wb =
∑n

j=1 I (t j ∈ Ib, E j = 0, j ∈ C )
∑n

j=1 I (t j ∈ Ib, E j = 0, j ∈ O)
(4)

where I (·) is an indicator function. The numerator in (4) counts the number of indi-
viduals censored in Ib, while the denominator counts how many of them that were
sampled as controls. Individual j is then given weight wb if censored in Ib. This can
be seen as a special case of GLM with ξ + f (t) = logit(1/wb) for t ∈ Ib. Samuelsen
et al. (2007) also pointed out that this technique can be interpreted as post-stratification
on censoring times.

The variance estimation is not straightforward with WPL since the controls enter
the likelihood at all event times whenever they are at risk. Samuelsen (1997) proposed
a variance estimator for his weights. Chen (2001) has a different variance estima-
tor for the local averaging weights, but the variance estimator for post-stratification
in Samuelsen et al. (2007) may also be used. However for GAM-weights, to our
knowledge, there has not yet been derived a variance estimator. A possibly conser-
vative solution is to use robust variance (Lin and Wei 1989; Barlow 1994). This
is also applicable with the other weights and is what we have used in our simula-
tions.

2.4 Full likelihood

Another way of dealing with NCC data and multiple outcomes is a full maximum
likelihood approach (MLE) where the entire cohort is used in the estimation, treating
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individuals not included in the subcohort as missing data (Saarela et al. 2008). We now
specify the baselines α0k(ti ) = α0k(ti ; ψk) parametrically. Then θk = (βk, γk, ψk)

are the parameters characterizing the hazard functions αk(ti |Zi , xi ; θk) and all the
parameters are summarized by θ = (θ1, . . . , θK ). Since Zi is not fully observed,
we model it as a random variable with a parametric distribution characterized by
parameters μ. Saarela et al. (2008) showed that the full likelihood can be written
as

L(θ, μ) ∝
∏

i∈O

p(Ti , Ei |Zi , xi ; θ)p(Zi |xi ; μ)

×
∏

i∈C \O

∫

p(Ti , Ei |z, xi ; θ)p(z|xi ; μ)dz (5)

with p(Ti , Ei |Zi , xi ; θ) being the distribution of (Ti , Ei ) conditional on (Zi , xi ),

p(zi |xi ; μ) is the distribution of Zi conditional on xi , and the integral is over all
possible values z of Zi . The likelihood is made up of two parts. This is due to the fact
that we have different information about the fully observed subset of the cohort; O ,
and non-sampled individuals; C \O . Saarela et al. (2008) state two assumptions; (i)
the random vectors (Ti , Ei , xi , Zi ) for i ∈ C are independent, and (ii) the condi-
tional distribution of the indicator of being sampled, p(O|T, E, x, Z), only depend
on data observed for all i ∈ C , hence p(O|T, E, x, Z) = p(O|T, E, x). They
then prove that under assumptions (i) and (ii) the likelihood expression is the same
regardless of the sampling procedure, hence the sampling distribution can be disre-
garded.

The likelihood (5) is based on more modeling assumptions than the WPL (2). First,
we have to specify a parametric baseline. Then, the conditional distribution of (Ti , Ei )

given (Zi , xi ) takes the form

p(Ti , Ei |Zi , xi ; θ)

∝
K∏

k=1

[αk(Ti |Zi , xi ; θ)]I (Ei =k) exp

⎧
⎨

⎩
−

Ti∫

0

K∑

k=1

αk(t |Zi , xi ; θ)dt

⎫
⎬

⎭
. (6)

Secondly, we have to assume a parametric conditional distribution for Z given x .
Another problem is that the integral in (5) may be hard or even impossible to evaluate
analytically. Therefore one often has to resort to approximation methods like Monte
Carlo integration/importance sampling or Markov Chain Monte Carlo methods.

Optimization of the full likelihood can be very time consuming since the integrals
in (5) need to be evaluated for every individual in C \O . However, the integrals only
differ with respect to the xi and the Ti , and often there will be several individuals with
(approximately) equal xi and Ti . Assume that there are Q = (1, . . . , j, . . . , q) such
patterns and that there are S j individuals with pattern (x j , Tj ). Then the last term in
(5) can be written as
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q∏

j=1

[∫

p(Tj , E j |z, x j ; θ)p(z|x j ; μ)dz

]S j

and there will only be q integrals to evaluate.
Often it will not matter much whether follow-up time is measured in days or weeks

or if a somewhat cruder scale is being used for covariates. It can therefore be sen-
sible to group follow-up time and covariates to increase the number of equal likeli-
hood contributions. Then substantial reduction in computation time can be achieved.
After follow-up times and covariates have been grouped, a sensitivity analysis can be
done by, for instance, fitting a WPL to both grouped and non-grouped data. Addi-
tionally, one could fit the MLE using only fully observed covariates both with orig-
inal and grouped data. If considerable difference is observed, the grouping is too
coarse.

Scheike and Juul (2004) have, by a somewhat different argument, arrived at the
same likelihood as Saarela et al. (2008). However, instead of modeling the distribu-
tion of Z parametrically, they model it non-parametrically through strata defined by
the fully observed covariates. They thereby manage to keep the baseline unspec-
ified as in a Cox-likelihood. The likelihood is difficult to optimize directly, but
they suggest using the Expectation-Maximization algorithm instead. We have not
included this likelihood in our simulations due to the extensive programming it would
require.

2.5 WPL and full likelihood with left truncated survival times

Since left truncation is a common situation with survival data, we need to be able to
deal with this when estimating sampling probabilities. It turns out that all estimat-
ing methods described above can be modified to deal with left truncation. Samuelsen
(1997) noted that the only modification needed for his weights was to restrict the
product to the event times when the subject was at risk,

p j = 1 −
∏

i∈E , l j<ti ≤t j

{

1 − m

n(ti )− 1
)

}

.

The logistic regression models can be modified as

E(O j |t j , l j ) = exp(ξ + f (t j , l j ))

1 + exp(ξ + f (t j , l j ))

for some smooth function f (t j , l j ). As a simplification we have used f (t j , l j ) =
ft (t j ) + fl(l j ). If f (t j , l j ) is a linear function of t and l, we are back to a standard
logistic regression model. Let 0 = l0 < l1 < · · · < l A be a partition of the left
truncation times, then the local averaging weights (Chen 2001) can be extended to
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wab =
∑n

j=1 I (l j ∈ Ja, t j ∈ Ib, E j = 0, j ∈ C )
∑n

j=1 I (l j ∈ Ja, t j ∈ Ib, E j = 0, j ∈ O)
,

where Ib is defined as before and Ja = (la−1, la]. A subject with an entry time in
Ja and a censoring time in Ib will be given weight wab. The intervals need to be
chosen with some caution in order not to get too few individuals in an interval.

To deal with left truncation in the full likelihood we need to condition on Ti > li ,
and Saarela et al. (2008) point out that the full likelihood is given by

L(θ, μ) ∝
∏

i∈O

p(Ti , Ei |Zi , xi ; θ)p(Zi |xi ; μ)∫
p(Ti ≥ li |z, xi ; θ)p(z|xi ; μ)dz

×
∏

i∈C \O

∫
p(Ti , Ei |z, xi ; θ)p(z|xi ; μ)dz

∫
p(Ti ≥ li |z, xi ; θ)p(z|xi ; μ)dz

.

As before the integrals are over all possible values z of Zi , while p(Ti ≥ li |zi , xi ; θ) =
S(li |zi , xi ; θ) is the survival function up to the entry time, and p(Ti , Ei |Zi , xi ; θ)
is given by (6).

3 Generalization of calibration to NCC

3.1 Two-phase stratified sampling

Assume that n individuals are sampled from an infinite population. These individu-
als constitute the cohort and are referred to as the Phase 1 sample. Furthermore, let
the cohort be classified into K strata with nk individuals in stratum k. The strata are
defined through information known for everyone, and n = n1 + n2 + · · · + nK . At
Phase 2 we use stratified sampling, i.e. we sample mk ≤ nk individuals at random
without replacement from the kth stratum. It is natural to let the cases be an additional
stratum where the whole stratum is sampled with probability 1. Additional covariates
are then obtained from the Phase 2 individuals.

CC studies with stratified sampling are two-phase studies. NCC can also be seen
as a two-phase sampling design, even though the Phase 2 sampling is a bit more
complicated since the controls are matched on time. Thereby the sampling probabil-
ities/weights also depend on time. However, the local averaging (Chen 2001) deal
with this time dependence by assigning all subjects censored in the same time interval
the same weight. The NCC sampling is then approximated by stratified random sam-
pling where the subjects are stratified according to censoring times (Samuelsen et al.
2007).

3.2 Calibration in general

Let us introduce some additional notation: With pi = Pr(i ∈ O) being the sampling
probabilities, let now di = 1/pi be the corresponding weights. Further letwi = di gi be
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the so-called calibrated weights (Breslow et al. 2009a,b), and let Ai = (Ai1, . . . , Aip)

be auxiliary variables known for the entire cohort and correlated with the regression
covariates.

The calibration technique (Deville and Särndal 1992) originate from survey sam-
pling as a method to improve the Horvitz–Thompson estimator ŷH–T = ∑

i∈O di yi

of a population total ytot = ∑n
i=1 yi . The improvement is obtained by using auxiliary

variables A, to obtain weights that satisfy the calibration equation

Âtot =
∑

O

wi Ai =
n∑

i=1

Ai = Atot. (7)

It states that the total of some auxiliary variables should be estimated exactly. Intui-
tively, if A and y have high correlation, ŷtot = ∑

i∈O wi yi will probably be closer to
ytot than ŷH–T.

Using the same line of thought we want to estimate β from a suitable regression
model with individual score contributions Ui and information matrix I . From a first
order Taylor approximation of the score function around β0, the true value of β, we
can write

β̂ ≈ β0 +
∑

O

di I −1(β0)Ui (β0)

both within a CC- and a NCC design with a WPL. We therefor want to calibrate with
respect to auxiliary variables correlated with I −1(β0)Ui (β0) (see below for a good
choice of auxiliary variables).

Breslow et al. (2009a,b) and Lumley (2010) have suggested calibration as a way of
reducing the variability due to the sampling in stratified CC designs, and we conjecture
that this property will carry over to the NCC design. The key point is that when some
information is known for the entire cohort, weights that do not take this into account
are generally not efficient. Calibration of weights is a way to incorporate the additional
information in order to increase efficiency.

The restriction from the calibration equation (7) does not uniquely specify the
weights. It is thus required that they stay as close as possible to the original weights.
Consequently, wi are weights that make the estimates of the population totals of
the auxiliary variables exact, while they remain “as close as possible” to the original
weights (discussed in Sect. 2.3). The term “as close as” requires a measure of distance,
G(w, d). Breslow et al. (2009a) used two alternatives; G1(w, d) = (w−d)2/2d and
G2(w, d) = wlog(w/d)− w + d. See Deville and Särndal (1992) and Deville et al.
(1993) for more distance measures and a discussion of their properties.

3.3 Implementation of calibration for NCC studies with several outcomes

In order to do the calibration in practice, the survey package (Lumley 2010) in R
can be used. One way of incorporating time-dependent weights into the calibration
is to define strata according to follow-up time. Then we implicitly assume that the
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Fig. 1 Inclusion probabilities for controls estimated with calibration and local averaging from the model
in Simulation III without left truncation and with nine intervals based on censoring time. Chen correspond
to weights estimated with local averaging

original weights are constant within each interval, but vary between intervals. This
amounts to require the weights to be as close as possible to local averaging weights
(Chen 2001). One example is given in Fig. 1 where the sampling probabilities from
one simulation are plotted. It is also possible to explicitly specify the original weights,
or more precisely, the sampling probabilities when defining the two-phase design.
From simulations we have experienced that the two methods are similar with respect
to estimated regression coefficients and standard errors. We have chosen the method
based on defining strata because it fits more naturally into the originally framework
with stratified CC designs.

As already mentioned, we want to obtain auxiliary variables that are fully observed
and correlated with I −1(β0)Ui (β0). A natural choice would then be the dfbetas

Ai = I −1(β̃)Ui (β̃),

where β̃ is the cohort estimate. However, the cohort dfbetas are unknown and have to
be approximated.

The entire calibration procedure with one endpoint is as follows:

(1) Predict covariates that are not known for the entire cohort. Breslow et al.
(2009a,b) refer to the plug-in procedure of Kulich and Lin (2004) where the
prediction is done with a weighted regression with the fully observed covari-
ates as explanatory variables. Use weights estimated with one of the methods
described in Sect. 2.3.

(2) Do a Cox-regression on the full cohort where fully observed covariates are used
as they are recorded. The predicted values from the regression in step 1 are
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imputed for all cohort members for the partially observed covariates. Extract the
dfbetas from this Cox-regression.

(3) Either: make strata on the basis of follow-up time and left truncation time and
specify a stratified two-phase design. Or: specify a non-stratified two-phase
design where the sampling probabilities for the second phase are included.

(4) Carry out calibration with the dfbetas as auxiliary variables to obtain new weights
wi .

(5) Do a weighted Cox-regression on NCC data with calibrated weights to obtain
the final estimates.

The generalization to multiple endpoints is straight forward, only step 2, 4 and 5
need minor modifications: Instead of 2, do one Cox-regression for each endpoint and
obtain one set of dfbetas per endpoint. Instead of 4, do one calibration per endpoint with
the corresponding sets of dfbetas as auxiliary variables, and obtain one unique vector
of calibrated weights for each endpoint. Instead of 5, do one weighted Cox-regression
on NCC data per endpoint using the corresponding calibrated weights.

It is through the imputation that the information known for the entire cohort is used
to improve the weights. It is therefor important to choose a good prediction model. We
follow Breslow et al. (2009a,b) and recommend single imputation with a regression
model suited for the situation at hand.

The variance is estimated by the survey package. Since the NCC design can
be approximated with a stratified CC design, we believe that the variance should be
appropriate. Nevertheless, a theoretical justification is desirable, but it will likely be
even more complex than the justification for the CC design. Anyhow, the similarities
between the designs are large, so we think it is important to investigate calibration
within the NCC framework.

4 Simulation studies

4.1 Main simulation

In order to compare the MLE and the WPL approach with different weighing schemes,
we have done three simulation experiments with a cohort of size n = 2,000, two end-
points, one relatively common that about 10% experienced and another that only about
3% experienced. We sampled m = 1 control per case, matched only on time, and each
simulation was carried out 1,000 times. The focus here will be on the rare endpoint
since the advantage of WPL is greatest in this case.

The simulation model was as follows; the survival times were exponentially distrib-
uted with outcome specific hazards as defined in (1). We chose regression parameters
β = γ = 1 and by tuning the baseline hazards we controlled the number of cases.
The censoring times were drawn from a uniform distribution, which corresponds to
random censoring. We had two covariates, the fully observed x was uniformly distrib-
uted from zero to one in all three simulations. The partially observed Z was binary
distributed with E[Z |x] = 0.5 in Simulation I, E[Z |x] = x in Simulation II, and
E[Z |x] = F(x) in Simulation III, where F(x) is the cdf of a beta distribution with
parameters (50, 50). The difference between the simulations is how strong the cor-
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relation between x and Z are. In Simulation I, x and Z are independent, while in
Simulation II and III, Z and x are dependent with correlation coefficients of 0.577 and
0.850, respectively. We chose 10 time intervals for the Chen-weights. For calibration
we chose to use the stratification approach with nine strata based on censoring time
and one additional strata for cases. The partially observed covariate Z was predicted
with a weighted logistic regression, using GAM-weights. The remaining parts of the
calibration were carried out as explained in Sect. 3.3.

Table 1 displays the results of the simulations for the rare endpoint. A correspond-
ing table for the common endpoint is Table 4 in the Appendix. The first thing to notice
is the large efficiency improvements for any of the methods compared to the tradi-
tional estimator. This is because we get several additional controls by using both cases
experiencing the common endpoint and their controls, as extra controls. Note that the
traditional estimator has a larger bias than any of the other estimators. This is likely
due to small samples which could affect the traditional estimator more due to fewer
effective controls.

There is little difference between the four weighing schemes: The estimates are
almost identical and the standard errors, both the empirical and the robust, are very
similar except for the Chen-weights that have somewhat higher standard errors com-
pared to the other three. Furthermore, the robust standard errors are all in good agree-
ment with the empirical standard errors. Comparing the efficiency gains for WPL
between the common and the rare endpoint (Tables 1, 4) we see that there is more to
gain with WPL for the rare endpoint. This is natural since compared to the number
of cases there are fewer extra controls for cases of the common endpoint. However,
there are efficiency improvements for WPL for the common endpoint compared to the
traditional estimator as well.

When estimating β, Saarela’s full likelihood gives impressive efficiency gains. This
is very natural since x is known for the entire cohort and the full likelihood utilizes this.
When estimating γ we see that when x and Z are independent there is almost nothing
to gain by using the full likelihood compared to WPL. However, when we induce
correlation between x and Z the efficiency increases and it becomes close to fully
efficient. It should be noted that in Simulations II and III we have modeled, somewhat
unrealistic, the distribution of Z without any parameters μ. In practice it is natural to
model the dependence between Z and x with some type of regression model, as is done
in the data example in the next section. Our simulation results show higher efficiency
gains for the full likelihood than reported by Saarela et al. (2008) for the partially
observed covariate. This is likely due to the correlation we have induced between x
and Z , as we saw that there was little to gain when x and Z were independent.

We see similar results with calibration as for MLE, it is more efficient than WPL
when estimating β, which is natural since it utilize that x is known for the entire cohort,
although maybe in a more indirect way. One might also expect that the calibration
should be more efficient than WPL when Z is correlated with x . However, this is only
the case in Simulation III where the correlation is 0.850, which means that a high
correlation is needed before the calibration improves the efficiency. Breslow et al.
(2009b) have experienced that an R2 between x and Z of at least 0.5 is needed to
substantially decrease the variance.
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Table 1 Results from Simulation I–III for the rare endpoint

β γ

Mean Mean Emp. Eff. Mean Mean Emp. Eff.
Method est. est. se se est. est. se se

Simulation I

Cox cohort 0.986 0.438 0.439 – 1.016 0.288 0.299 –

Trad. NCC 1.032 0.698 0.725 0.367 1.077 0.438 0.483 0.383

Samuelsen 0.995 0.490 0.494 0.790 1.018 0.312 0.319 0.879

GAM 0.996 0.490 0.494 0.790 1.017 0.313 0.320 0.873

GLM 0.996 0.490 0.495 0.787 1.018 0.312 0.319 0.879

Chen 0.999 0.492 0.497 0.780 1.018 0.314 0.322 0.862

MLE 1.000 0.440 0.439 1.000 1.017 0.309 0.316 0.889

Calibration 0.993 0.453 0.452 0.796 1.018 0.316 0.321 0.868

Simulation II

Cox cohort 1.031 0.565 0.571 – 1.030 0.355 0.352 –

Trad. NCC 1.027 0.906 0.957 0.356 1.090 0.545 0.564 0.390

Samuelsen 1.033 0.630 0.649 0.774 1.039 0.382 0.387 0.827

GAM 1.031 0.631 0.650 0.772 1.039 0.383 0.388 0.823

GLM 1.034 0.631 0.650 0.772 1.040 0.383 0.388 0.823

Chen 1.034 0.634 0.651 0.769 1.040 0.384 0.390 0.814

MLE 1.028 0.570 0.575 0.990 1.019 0.362 0.358 0.967

Calibration 1.033 0.593 0.603 0.897 1.041 0.386 0.391 0.810

Simulation III

Cox cohort 1.005 0.882 0.838 – 1.040 0.551 0.528 –

Trad. NCC 1.015 1.477 1.513 0.307 1.101 0.878 0.921 0.329

Samuelsen 1.000 0.996 0.985 0.724 1.045 0.605 0.605 0.762

GAM 1.001 0.997 0.989 0.718 1.045 0.606 0.606 0.759

GLM 1.001 0.996 0.985 0.724 1.045 0.605 0.605 0.762

Chen 1.001 1.002 0.995 0.710 1.045 0.608 0.611 0.747

MLE 1.001 0.887 0.844 0.986 1.043 0.555 0.533 0.981

Calibration 1.014 0.924 0.886 0.894 1.043 0.579 0.567 0.867

β is the log-relative risk connected to x , observed for the entire cohort, γ is log-relative risk connected to
Z only observed for the cases and controls
MLE maximum likelihood estimation, Mean est. mean of estimates, Mean est. se mean of estimated stan-
dard error, Emp. se empirical standard error, Eff. efficiency compared to Cox-regression on the full cohort,
calculated with the empirical variance. Efficiency for MLE is calculated by comparing empirical se with
empirical se from MLE on full cohort

4.2 Left truncation

Table 2 displays the result of a second simulation where also left truncation is taken
into account. These results are for the rare endpoint and as in Sect. 4.1 the results for
the common endpoint are reported in Table 5 in the Appendix. The entering times l
are drawn from U [0, 0.05], the censoring times are then drawn from U [l, 0.13] and
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Table 2 Results for the rare endpoint from simulation with left truncated survival times

β γ

Mean Mean Emp. Eff. Mean Mean Emp. Eff.
Method est. est. se se est. est. se se

Simulation I

Cox cohort 1.012 0.466 0.463 – 1.018 0.289 0.290 –

Trad. NCC 1.078 0.751 0.806 0.332 1.067 0.446 0.459 0.400

Samuelsen 1.041 0.524 0.530 0.763 1.025 0.315 0.317 0.837

GAM 1.039 0.526 0.532 0.757 1.026 0.316 0.318 0.831

GLM 1.044 0.526 0.530 0.763 1.028 0.316 0.317 0.837

Chen 1.042 0.531 0.539 0.738 1.033 0.318 0.321 0.816

MLE 1.048 0.470 0.467 0.979 1.025 0.310 0.314 0.853

Calibration 1.047 0.487 0.492 0.886 1.045 0.321 0.333 0.758

Simulation II

Cox cohort 1.003 0.585 0.600 – 1.017 0.367 0.385 –

Trad. NCC 1.080 0.949 0.998 0.361 1.057 0.564 0.612 0.396

Samuelsen 1.013 0.652 0.664 0.817 1.019 0.396 0.421 0.836

GAM 1.013 0.655 0.666 0.812 1.019 0.398 0.423 0.828

GLM 1.015 0.655 0.667 0.809 1.021 0.398 0.422 0.832

Chen 1.025 0.662 0.673 0.795 1.024 0.401 0.426 0.817

MLE 1.018 0.584 0.590 1.065 1.028 0.372 0.384 1.021

Calibration 1.003 0.620 0.652 0.847 1.026 0.402 0.426 0.817

Simulation III

Cox cohort 1.027 0.890 0.894 – 1.011 0.543 0.549 –

Trad. NCC 1.134 1.493 1.547 0.334 1.012 0.868 0.908 0.366

Samuelsen 1.027 1.007 1.008 0.787 1.017 0.600 0.604 0.826

GAM 1.026 1.011 1.013 0.779 1.019 0.602 0.604 0.826

GLM 1.029 1.012 1.014 0.777 1.020 0.602 0.605 0.823

Chen 1.040 1.022 1.021 0.767 1.020 0.607 0.607 0.818

MLE 0.979 0.897 0.905 0.971 1.046 0.549 0.555 0.978

Calibration 1.020 0.936 0.924 0.936 1.035 0.575 0.574 0.915

β is the log-relative risk connected to x , observed for the entire cohort, γ is log-relative risk connected to
Z only observed for the cases and controls
MLE maximum likelihood estimation, Mean est. mean of estimates, Mean est. se mean of estimated stan-
dard error, Emp. se empirical standard error, Eff. efficiency compared to Cox-regression on the full cohort,
calculated with the empirical variance. Efficiency for MLE is calculated by comparing empirical se with
empirical se from MLE on full cohort

individuals with an event time smaller than the left truncation time are excluded. The
baseline hazards are tuned to obtain approximately 10 and 3% cases that survive their
truncation time. The rest of the simulation setup is the same as in Sect. 4.1.

When the survival times are left truncated we need to make intervals both with
respect to censoring times and left truncation times to calculate Chen-weights. In
order to get enough subjects in each interval we had to decrease the number of inter-
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vals based on censoring times to 4 and we chose 3 intervals based on left truncation
time, resulting in 12 intervals in total.

The calibration was done by first carrying out a weighted logistic regression with
the fully observed covariate as explanatory variable to predict the partial observed
covariate. Then one Cox-regression per endpoint was done on the full cohort where
the partially observed covariate was imputed. The dfbetas were extracted from the
Cox-regressions and used as auxiliary variables in the calibration. Finally, the cali-
brated weights were used in the Cox-regressions to obtain coefficients of interest. In
order to obtain weights that depended on the follow-up time and left truncation time,
we specified the design to be a stratified two-phase design where the stratification was
based on the same intervals as we used when calculating Chen-weights.

Again we see that the weighing methods are far more efficient than the traditional
estimator which also here is biased. Apart from in Simulation I all the other estimators
are practically unbiased. Without truncation we saw that there was nothing to gain with
MLE for the partially observed covariate when it was independent of the fully observed
covariate, now we see that MLE is slightly more efficient than WPL in this situation
as well. Calibration show similar improvement as it did without left truncation.

4.3 Misspecified models

The full likelihood has two additional modeling assumptions compared to WPL; (a) the
distribution of Z |x has to be specified and (b) parametric specification of the baselines
has to be given. We wanted to test how vulnerable the likelihood is for misspecifica-
tion of (a) and (b), and in addition how misspecification of the linear expression of the
covariates (c) will affect the estimates and variances. To test (a) we used Simulation III,
but specified p(z|x) = μz(1 − μ)(1−z) in the likelihood, hence specified Z indepen-
dent of x . To check the parametric assumption on the baseline we simulated survival
times from a Weibull with a decreasing baseline, but specified an exponential baseline
in the likelihood. Finally, we added a square term in the relative risk expression in the
simulation, but ignored it when fitting the models to check how that would affect the
likelihood.

The results for the rare endpoint can be found in Table 6 in the Appendix. The
results for the common endpoint are not shown, but are similar to those for the rare
endpoint. We see that correct specification of Z |x is important for the MLE. Both γ̂
and β̂ are biased and β̂ seriously so, which means that a misspecified p(Z |x) does
not only affect the estimate connected to Z , but can also highly affect the estimate
connected to x . In addition we see that the variances are seriously underestimated
for both parameters. However, the misspecification of baseline did not affect the full
likelihood much and when the parametric expression was wrongly specified the full
likelihood did not do much worse than any of the other estimators.

5 Application to data

Samuelsen et al. (1998) investigated how gestational age and other covariates influ-
enced childhood mortality. The data set consisted of all children born in Norway
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between 1967 and 1989 who survived their first year and had a gestational age
≥16 weeks (n = 1,186,655). The children were originally followed to death, age
15 years or end of 1991, but we are going to limit our selves to follow-up time
≤10 years. We do this to make the parametric baseline hazard assumption we need
in MLE more valid. Their analysis was cause specific with five different causes, but
we are only going to use two; death of cancer, endpoint 1, and death of all other
causes, endpoint 2. With follow-up time until 10 years a Weibull baseline hazard
was a reasonable choice. We excluded subjects with missing covariates or covari-
ates that were obviously wrongly coded. Because of computational time we needed
to reduce to data set further and we therefor only used first born boys in the analysis.
We then ended up with a cohort of size n = 254,572. The study was originally a
cohort study and therefor we have all information on every individual, but we are
going to do synthetic case–control studies and sample m = 1 control per case 200
times.

Childhood mortality is low in Norway, out of 254,572 subjects 868 died, 125 chil-
dren died of cancer while 743 died from other causes. This means that the subcohort
belonging to the cancer endpoint will only consist of 250 subjects, but if we also use
cases and controls sampled for endpoint 2, the subcohort increases to 1,736.

The covariates we have used is Z , a dummy for birth weight >3 kg, and x ,
gestational age in days. As the notation implies, we pretend that birth weight is
only known for cases and controls, while gestational age is known for the entire
cohort. For a real case–control study this may be considered artificial. However,
in our example, gestational age is a natural predictor for birth weight. The corre-
lation between gestational age and birth weight has to be taken into account when
p(Z |x, μ) is specified. We chose a probit model for μi = P(Zi = 1|xi ), since
birth weight conditional on gestational age is approximately normally distributed.
Therefore

g(μi ) = 	−1(μi ) = ξ0 + ξ1xi

p(Zi |xi ; μi ) = μ
Zi
i (1 − μi )

1−Zi

where g(·) is the link function and 	 is the cumulative probability function for the
standard normal distribution.

Table 3 displays the results of the analysis. Birth weight has opposite effect on
the endpoints; birth weight above 3 kg. increases the risk of death of cancer while it
decreases the risk of death of all other causes. However, it is only significant for other
deaths endpoint. The opposite effect of birth weight on our two endpoints is along the
findings in the original study of Samuelsen et al. (1998). The effects of gestational
age are very small and not significant, but it is interesting to see that, nevertheless, all
estimates stay at the same side of zero.

The estimates of gestational age for the cancer endpoint are in good agreement,
while for other deaths the ML-estimates both on the full cohort and on the NCC data
are smaller than the rest. With birth weight on the other hand, the traditional estima-
tor and WPL seems to add some bias for both endpoints, while the MLE is in better
agreement with the cohort analysis.
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Table 3 Result from synthetic NCC on birth weight and mortality data

Cancer endpoint Other deaths endpoint

Gest. Birth Gest. Birth
Method age weight age weight

Estimate Cohort Cox −0.0033 0.4813 2.9 × 10−4 −0.4513

Cohort MLE −0.0035 0.4960 0.4 × 10−4 −0.4380

Trad. NCC −0.0036 0.4342 1.9 × 10−4 −0.4682

Samuelsen −0.0033 0.4652 2.7 × 10−4 −0.4698

GAM −0.0032 0.4645 2.7 × 10−4 −0.4703

Calibration −0.0033 0.4657 2.9 × 10−4 −0.4662

MLE −0.0035 0.4969 0.0 × 10−4 −0.4406

MLE agg. −0.0045 0.5152 3.7 × 10−4 −0.4405

Standard Cohort Cox 0.0070 0.3141 0.0027 0.0977

error Cohort MLE 0.0067 0.3136 0.0026 0.0976

Trad. NCC 0.0106 0.4256 0.0038 0.1489

Samuelsen 0.0073 0.3343 0.0041 0.1440

GAM 0.0073 0.3343 0.0041 0.1442

Calibration 0.0068 0.3342 0.0032 0.1440

MLE 0.0069 0.3304 0.0028 0.1402

MLE agg. 0.0067 0.3296 0.0028 0.1399

Simulation Trad. NCC 0.0105 0.4071 0.0037 0.1592

based Samuelsen 0.0075 0.3331 0.0038 0.1476

standard GAM 0.0075 0.3333 0.0038 0.1485

error Calibration 0.0071 0.3285 0.0031 0.1367

MLE 0.0067 0.3137 0.0027 0.0987

MLE agg. 0.0066 0.3138 0.0025 0.0983

Controls are sampled 200 times
MLE maximum likelihood, Cohort MLE MLE on cohort

We also report what we call simulation based standard error,
√

S2 + V 2, as a com-
parison of the estimated standard error. Here S2 is the empirical variance over the 200
regression estimates and V 2 is the estimated variance from the cohort analysis. The
estimated standard errors seems to be in good agreement with this, perhaps except for
the MLE for birth weight with the other deaths endpoint where the simulation based
standard error is somewhat smaller. Standard errors for WPL and MLE on the cancer
endpoint are very close to the cohort standard errors. This is quite natural since the
number of controls per case is quite high. However for the other deaths endpoint there
is a difference between WPL and MLE, and especially the much lower standard error
of birth weight shows us that there is efficiency to gain when the partially observed
covariate depend on a fully observed covariate. It is a bit worrying that the standard
error from the calibrated weights for gestational age with cancer endpoint is actually
smaller than the cohort standard error, but this is probably due to chance since the
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sampling was carried out only 200 times and at least the simulation based standard
error is somewhat higher.

The optimization of the full likelihood with these data was time consuming. It took
about 11 min to optimize the likelihood once, even though there was no integration
involved. This is therefor a situation where the aggregation technique can be useful.
We grouped follow-up time into months and gestational age into weeks and ended
up with 9,125 groups. The computational time for one optimization then decreased
to about 30 s. Furthermore, the simulations also showed that using follow-up time in
months instead of days and gestational age in weeks instead of days only changed the
estimates slightly, and the standard errors were unaffected.

6 Discussion

We have looked at two main methods for reusing controls from a NCC study; WPL
and MLE, both with and without left truncation. In addition we have suggested how
to generalize calibration for the NCC design with competing risks, and presented an
aggregation technique that may reduce the complexity of the full likelihood.

When two or more endpoints are of interest, being able to use controls sam-
pled for one endpoint as additional controls for another endpoint can improve effi-
ciency quite a lot compared to the traditional estimator. It can especially increase the
efficiency if one of the endpoints is quite common and another is rare, or if there
has been sampled quite a lot of controls for one endpoint and just one or two for
another endpoint. However, if both endpoints are relatively common, or more than
three or four controls per case are sampled, the efficiency gain will usually be mod-
est.

WPL (excluding calibration) is easy to use, once you have estimated the sampling
probabilities, a regular weighted Cox-regression can be carried out and the choice of
weights does not seem to matter much. It is also quite robust for model misspecifica-
tion since the relative risks obtained with WPL reproduce the cohort results (Scott and
Wild 1986, 1991). A slight disadvantage is the variance estimation. An easy, but maybe
conservative solution is to use robust variance estimation (Lin and Wei 1989; Barlow
1994), but for some of the weights there exists other possibilities as well (Samuelsen
1997; Chen 2001; Samuelsen et al. 2007).

The MLE approach is more cumbersome since more modeling assumptions and
more programming are needed. The extra modeling assumptions make it more vul-
nerable to model misspecification. We also experienced that it was sometimes hard
to optimize the likelihood; different starting values gave slightly different estimates
even with a very strict convergence criterion. In addition, if the full cohort is large
compared to the subcohort it can sometimes result in convergence and identifi-
ability problems (Saarela and Kulathinal 2007). However, because the full likeli-
hood utilizes all available information it can sometimes estimate regression coef-
ficients connected to fully observed covariates virtually efficiently. The efficiency
gain can also be large if there are partially observed covariates correlated with the
fully observed covariates. In most optimization programs the information matrix
is calculated as a byproduct to find the optimum. The variance estimates from
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the MLE approach of Saarela et al. (2008) are therefor directly obtained as the
inverse of the information matrix. In addition, the aggregation technique can in
some situations, when the number of covariates is not too large, reduce the com-
putation time substantially; in our data example the computation time went down
from 11 min to 30 s with only slightly changed estimates and unaffected standard
errors.

The calibration technique does not rest on more modeling assumptions than WPL
with estimated weights. However, one needs to find good prediction models for the
partially observed covariates to utilize as much of the information in the fully observed
covariates as possible. In our simulations, we also noticed that the calibration seemed
to need higher correlation than MLE between fully and partially observed covariates
before the efficiency was increased for the partially observed covariate. However, our
simulation results are promising and a more formal justification of this approach would
be a natural next step.

Salim et al. (2009) considered a competing risks situation where controls are
matched on more than follow-up time and are drawn from two partly overlapping
cohorts. They suggested weights that are similar to Samuelsen (1997), but modified
to accommodate their situation. When all controls are drawn from the same cohort,
there is no additional matching and the product is interpreted to be over event times,
Salim’s weights are equal to Samuelsen’s and therefor they have not been considered
here.

In a recent paper by Liu et al. (2010) another way of incorporating auxiliary infor-
mation into the Cox-regression is presented. As with the calibration, the auxiliary
information has to be known for the entire cohort and these auxiliary covariates should
be correlated with the covariates of interest to improve the efficiency.

In epidemiologic studies matching is often used to try to adjust for confounding
effects and to increase efficiency. Controls are then not only sampled so that they are
at risk at the event time of the case, but they also have the same values as the case on
the matching variables. This will affect the sampling probabilities and the estimation
procedures need to be generalized to this situation. If there are not too many matching
variables with too many levels, a solution is to calculate the sampling probabilities
separately for each value of the matching variable. However, as the number of levels
increase the weights may become more and more unstable since less and less data are
used to estimate them. Saarela et al. (2008) state that their full likelihood approach
can be used with all kinds of sampling schemes as long as the two conditions stated
in Sect. 2.4 are fulfilled.

Appendix

The appendix contain Tables 4, 5, 6.
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Table 4 Results from Simulation I–III for the common endpoint

β γ

Mean Mean Emp. Eff. Mean Mean Emp. Eff.
Method est. est. se se est. est. se se

Simulation I

Cox cohort 1.008 0.242 0.234 – 1.006 0.158 0.158 –

Trad. NCC 1.030 0.375 0.373 0.394 1.015 0.231 0.235 0.452

Samuelsen 1.015 0.322 0.320 0.535 1.008 0.196 0.201 0.618

GAM 1.017 0.323 0.320 0.535 1.007 0.197 0.202 0.612

GLM 1.016 0.322 0.321 0.531 1.008 0.197 0.201 0.618

Chen 1.019 0.325 0.323 0.525 1.008 0.198 0.203 0.606

MLE 1.022 0.246 0.236 0.992 1.007 0.193 0.199 0.630

Calibration 1.014 0.263 0.256 0.836 1.009 0.199 0.204 0.600

Simulation II

Cox cohort 1.026 0.311 0.309 – 0.992 0.193 0.192 –

Trad. NCC 1.009 0.483 0.488 0.401 1.015 0.285 0.287 0.448

Samuelsen 1.028 0.413 0.405 0.582 1.002 0.239 0.237 0.656

GAM 1.027 0.414 0.405 0.582 1.002 0.240 0.237 0.656

GLM 1.029 0.413 0.405 0.582 1.002 0.239 0.237 0.656

Chen 1.029 0.417 0.408 0.574 1.003 0.241 0.239 0.645

MLE 1.022 0.318 0.312 0.987 0.982 0.204 0.196 0.960

Calibration 1.023 0.352 0.339 0.830 1.003 0.242 0.239 0.645

Simulation III

Cox cohort 1.000 0.476 0.480 – 1.011 0.295 0.292 –

Trad. NCC 1.004 0.771 0.815 0.347 1.029 0.454 0.462 0.399

Samuelsen 0.992 0.653 0.677 0.503 1.017 0.383 0.387 0.569

GAM 0.993 0.655 0.680 0.498 1.017 0.384 0.388 0.566

GLM 0.993 0.654 0.678 0.501 1.017 0.384 0.387 0.569

Chen 0.993 0.661 0.688 0.487 1.018 0.387 0.393 0.552

MLE 0.996 0.484 0.489 0.964 1.013 0.301 0.299 0.954

Calibration 1.004 0.532 0.546 0.773 1.010 0.337 0.343 0.725

β is the log-relative risk connected to x , observed for the entire cohort, γ is log-relative risk connected to
Z only observed for the cases and controls
MLE maximum likelihood estimation, Mean est. mean of estimates, Mean est. se mean of estimated stan-
dard error, Emp. se empirical standard error, Eff. efficiency compared to Cox-regression on the full cohort,
calculated with the empirical variance. Efficiency for MLE is calculated by comparing empirical se with
empirical se from MLE on full cohort
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Table 5 Results for the common endpoint from simulation with left truncated survival times

β γ

Mean Mean Emp. Eff. Mean Mean Emp. Eff.
Method est. est. se se est. est. se se

Simulation I

Cox cohort 1.002 0.251 0.247 – 1.013 0.155 0.164 –

Trad. NCC 1.033 0.389 0.387 0.407 1.019 0.230 0.233 0.495

Samuelsen 1.031 0.335 0.331 0.557 1.020 0.195 0.201 0.666

GAM 1.029 0.338 0.332 0.554 1.021 0.196 0.204 0.646

GLM 1.034 0.338 0.332 0.554 1.023 0.196 0.203 0.653

Chen 1.033 0.347 0.343 0.418 1.027 0.200 0.206 0.634

MLE 1.039 0.257 0.251 0.961 1.026 0.191 0.198 0.678

Calibration 1.006 0.277 0.278 0.789 1.020 0.202 0.202 0.659

Simulation II

Cox cohort 1.003 0.317 0.320 – 1.002 0.197 0.203 –

Trad. NCC 0.997 0.490 0.492 0.423 1.010 0.288 0.289 0.493

Samuelsen 1.013 0.420 0.418 0.586 1.003 0.244 0.246 0.681

GAM 1.012 0.424 0.419 0.583 1.003 0.246 0.246 0.681

GLM 1.015 0.424 0.421 0.578 1.006 0.246 0.247 0.675

Chen 1.024 0.434 0.430 0.554 1.009 0.250 0.252 0.649

MLE 1.017 0.325 0.322 1.012 1.013 0.211 0.208 0.953

Calibration 0.994 0.367 0.364 0.773 1.014 0.252 0.255 0.634

Simulation III

Cox cohort 1.005 0.479 0.487 – 1.004 0.291 0.307 –

Trad. NCC 1.007 0.775 0.799 0.372 1.026 0.449 0.476 0.416

Samuelsen 1.013 0.656 0.688 0.501 1.005 0.378 0.397 0.598

GAM 1.013 0.662 0.694 0.492 1.006 0.381 0.399 0.592

GLM 1.016 0.663 0.694 0.492 1.007 0.381 0.400 0.589

Chen 1.028 0.680 0.712 0.468 1.008 0.390 0.406 0.572

MLE 0.957 0.492 0.497 0.952 1.038 0.300 0.313 0.950

Calibration 1.014 0.541 0.545 0.798 1.012 0.336 0.353 0.756

β is the log-relative risk connected to x , observed for the entire cohort, γ is log-relative risk connected to
Z only observed for the cases and controls
MLE maximum likelihood estimation, Mean est. mean of estimates, Mean est. se mean of estimated stan-
dard error, Emp. se empirical standard error, Eff. efficiency compared to Cox-regression on the full cohort,
calculated with the empirical variance. Efficiency for MLE is calculated by comparing empirical se with
empirical se from MLE on full cohort
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Table 6 Results from misspecified models for the rare endpoint

β γ

Mean Mean Emp. Mean Mean Emp.
Method est. est. se se est. est. se se

Misspecification (a)

Cox cohort 1.010 0.891 0.893 1.018 0.545 0.565

Cohort MLE 1.010 0.890 0.891 1.019 0.545 0.564

Trad. NCC 1.080 1.492 1.533 1.031 0.866 0.902

Samuelsen 1.024 1.011 1.020 1.016 0.602 0.622

MLE 2.098 0.520 0.460 1.128 0.352 0.343

Misspecification (b)

Cox cohort 0.993 0.854 0.858 1.022 0.518 0.525

Cohort MLE 0.908 0.853 0.846 0.980 0.518 0.521

Trad. NCC 1.040 1.445 1.557 1.091 0.837 0.914

Samuelsen 0.988 0.957 0.976 1.035 0.566 0.581

MLE 0.898 0.862 0.858 0.985 0.524 0.527

Misspecification (c)

Cox cohort 0.274 0.922 0.938 0.893 0.542 0.538

Cohort MLE 0.273 0.922 0.938 0.893 0.542 0.539

Trad. NCC 0.142 1.461 1.553 0.992 0.856 0.909

Samuelsen 0.291 1.042 1.048 0.890 0.589 0.598

MLE 0.248 0.933 0.955 0.908 0.549 0.546

Misspecification (a): Z simulated as in Simulation III, but modeled as being independent of x . Misspeci-
fication (b): true baseline linearly decreasing (Weibull) while modeled as constant (exponential). Misspe-
cification (c): true risk function exp(1 ∗ Z − 1 ∗ x + 1 ∗ x2) modeled as exp(1 ∗ Z + 1 ∗ x). β is the
log-relative risk connected to x , observed for the entire cohort, γ is log-relative risk connected to Z only
observed for the cases and controls
MLE maximum likelihood estimation, Mean est. mean of estimates, Mean est. se mean of estimated standard
error, Emp. se empirical standard error
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