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Abstract Proportional hazards (PH) regression is a standard methodology for
analyzing survival and time-to-event data. The proportional hazards assumption of
PH regression, however, is not always appropriate. In addition, PH regression focuses
mainly on hazard ratios and thus does not offer many insights into underlying
determinants of survival. These limitations have led statistical researchers to explore
alternative methodologies. Threshold regression (TR) is one of these alternative meth-
odologies (see Lee and Whitmore, Stat Sci 21:501–513, 2006, for a review). The
connection between PH regression and TR has been examined in previous published
work but the investigations have been limited in scope. In this article, we study the
connections between these two regression methodologies in greater depth and show
that PH regression is, for most purposes, a special case of TR. We show two methods
of construction by which TR models can yield PH functions for survival times, one
based on altering the TR time scale and the other based on varying the TR boundary.
We discuss how to estimate the TR time scale and boundary, with or without the PH
assumption. A case demonstration is used to highlight the greater understanding of
scientific foundations that TR can offer in comparison to PH regression. Finally, we
discuss the potential benefits of positioning PH regression within the first-hitting-time
context of TR regression.
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1 Introduction

Proportional hazards (PH) regression has been an established methodology for
analyzing survival and time-to-event data for almost four decades and has proven
its usefulness to practitioners in many different disciplines ranging from engineer-
ing to medicine (see Lee and Whitmore 2006, for a review). The methodology is
a standard module in major statistical software packages and a topic found in most
statistics courses dealing with survival data. It is easy to use and understand, rea-
sonably robust, and suited to diverse applications. The development of PH regres-
sion is usually attributed to Sir David Cox and, thus, often called Cox regression
(Cox 1972).

The proportional hazards assumption of PH regression, however, is not always
suitable and, thus, statistical researchers have explored many alternatives. Threshold
regression (TR) is one of these alternative methodologies. It has a long history but
only recently has begun to attract major interest (see Lee and Whitmore 2006, for a
review; also, Aalen et al. 2008). The connection between TR and PH regression has
been examined in previous published work but the investigations have been limited
in scope. For example, Lee et al. (2009b) use an observational case study to compare
empirically the benefits of TR over PH regression in understanding the influence of
smoking on lung cancer. Their analysis of the study data is cross-sectional and pro-
vides no theoretical connections between TR and PH regression. The same authors, in
a second investigation of the same data set, look at the application of TR with Markov
decomposition to handling the longitudinal features of the data. Their investigation
shows that PH regression is consistent with their decomposition procedure (Lee et al.
2009c).

In this article, we study the theoretical connections between these two regression
methodologies in greater depth and show that PH regression is, for most purposes,
a special case of TR. We then set out to explore various ways in which TR models
can be made to have the PH property. We discuss how to estimate the TR time scale
and boundary, with or without the PH assumption. A case demonstration, based on
a randomized clinical trial setting, is used to highlight the greater understanding of
scientific foundations that TR can offer in comparison to PH regression. Finally, we
discuss the potential benefits of positioning PH regression within the first-hitting-time
context of TR regression.

In our exposition, we will choose terminology that comes from the fields of health
and medicine. The reader will easily see, however, how the terms can be transformed
to another area of application, such as engineering. For example, we speak of subjects
rather than items, survival time rather than failure time, deteriorating health rather
than physical degradation, and so on.

2 Threshold and proportional hazards regression models

We first describe the two kinds of models and comment on their suitability for under-
standing scientific phenomena.

123



198 M.-L. T. Lee, G. A. Whitmore

2.1 Threshold regression model

The basic mathematical setting for threshold regression is the first hitting time of a
boundary by a stochastic process. If S, B and {Y (t), t ≥ 0} denote the first hitting
time, boundary and stochastic process, respectively, then their interconnection can be
expressed mathematically as follows:

S = inf{t : Y (t) ∈ B}, (1)

where initial level Y (0) /∈ B. In a medical context, the stochastic process {Y (t)}
describes the time trajectory of health or disease for a subject. The parameter t denotes
time. The boundary B is a critical health state, disease state or other medical end point,
such as death, a diagnosis of cancer, or hospital discharge. The first hitting time S is
the time for the sample path of the stochastic process to first reach the boundary
B. It is this first hitting time, or FHT for short, that is the time-to-event or survival
time of interest. As we will show later, definition (1) can be extended mathematically
in several important ways. For example, we will allow the boundary B to vary with
time rather than remain fixed.

From the preceding model, it can be seen that a TR model has three building blocks:
(1) a stochastic process that describes the evolution of a subject’s underlying health
state; (2) a boundary or threshold that defines a critical level or condition that triggers
the event of interest when it is reached by the process for the first time; and (3) a time
scale on which the process unfolds. Each of these building blocks may have parameters
that depend on a covariate vector z through regression link functions. After a speci-
fication of the threshold regression model, the regression functions can be estimated
and various inferences can then be made using conventional statistical theory.

2.2 Proportional hazards regression model

The PH regression model assumes that the time to the event or endpoint of interest is
a positive random variable with a hazard function of the following form:

h(t) = h0(t) exp(zβ) (2)

Here h0(t) is a fixed baseline hazard function, z is a row vector of covariates, and
β is a column vector of regression coefficients that are to be estimated. We limit
our attention to fixed covariates in our investigation here but recognize that interest-
ing analytical extensions are offered by considering time-varying covariates of the
form z(t).

2.3 Suitability to real-world applications

The wide use of the proportional hazard model reflects more its mathematical con-
venience and ease of interpretation than its realism. The occurrence of proportional
hazard functions in nature, however, is actually rare, although the model specification
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may provide an adequate approximation in some applications. In contrast, first
hitting time models are ubiquitous. By using special constructions, the PH feature
can be embedded in TR models. Not surprisingly, because TR models have more
building blocks (a stochastic process, absorbing boundary, and process time scale),
one discovers that different TR models can produce the same family of proportional
hazard functions, as we discuss in the next section. In this paper, we will show that a
PH model might be viewed as a reduced mathematical form of a TR model, albeit a
highly specialized form. The reduced form discards features of the TR model and, as
a consequence, gives a more limited view of the underlying scientific phenomenon.

2.4 Time to infection in kidney dialysis: a TR demonstration

To demonstrate the TR approach in a typical medical setting, we present results for
a study reported in Klein and Moeschberger (2003, pp. 6–7) based on original data
reported in Nahman et al. (1992). The study looks at “time to first exit-site infection
(in months) in patients with renal insufficiency, 43 patients utilized a surgically placed
catheter (group 1) and 76 patients utilized a percutaneous placement of their catheter
(group 2).” We fit a model to the data based on the FHT of a Wiener diffusion process.
Time to infection is taken as the FHT of the zero level for the process starting at health
level y0 > 0. The model has two parameters: initial health level y0 and process mean
µ, which we link to an indicator variable percutaneous representing the catheter place-
ment method (surgical 0, percutaneous 1). The link functions are the natural logarithm
for y0 (i.e., ln y0) and an identity function for µ. For expository convenience, we do
not build an elaborate TR model. For example, we use the calendar time scale and
only one covariate (percutaneous). To estimate our TR model, we employ a software
package that is publicly available on a personal research website (Lee 2009).

Panel (a) of Fig. 1 shows the Kaplan-Meier (KM) plots for the two groups on the
left and the corresponding fitted TR survival curves on the right. The fitted model
appears plausible. The survival curves cross which suggests strongly that the propor-
tional hazards assumption doesn’t hold. The survival curve of the percutaneous group
approaches a plateau at a survival probability level well above zero which indicates
that a proportion of patients may be immune to infection. Both the crossing feature
and plateau feature are accommodated naturally by the first hitting time model.

Panel (b) presents the TR regression output from the software package. The covari-
ate percutaneous has a significant negative coefficient (−1.0731) with respect to ln y0
which suggests that the percutaneous patients have a lower health level at the start of
the study. The precipitous fall in the survival function within the first month illustrates
this effect. The covariate has a significant positive coefficient (.6377) for µ which
shows that these same patients progress to infection less slowly. In fact, the estimated
value of µ for percutaneous patients is positive (−.0959 + .6377 = .542), which
indicates that the Wiener diffusion process is tending to drift away from the boundary
at zero and, hence, the presence of the plateau in the survival curve that is seen in
panel (a).

Finally, panel (c) shows the hazard functions for these fitted survival curves. The
hazard for the percutaneous group is seen to drop sharply toward zero and that of
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Fig. 1 A TR demonstration for time to infection in kidney dialysis using two methods of catheter placement.
The TR model is the first hitting time of the zero level in a Wiener diffusion process. Process parameters are
the natural logarithm of the initial health level ln y0 and the process mean µ. Panel (a) shows Kaplan-Meier
plots and fitted survival curves for the TR model. Panel (b) shows TR regression output from a public
software. Panel (c) shows the hazard functions for the two methods and hazard ratios at two time points
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the surgical group first rises and then tends to level off at a high level. The hazard
functions are clearly not proportional. The hazard ratios for the percutaneous group
relative to the surgical group are calculated at 2 months and 20 months. The differing
ratios show the non-proportionality in sharp contrast.

3 Generating PH functions using the TR model

We now present two methods of constructing TR models that possess the PH feature.
As will be seen from the methods, every family of proportional hazard functions for
fixed covariates can be generated by a suitable TR model under mild regularity condi-
tions. The first construction method varies the time scale of a TR model. The second
varies the boundary of a TR model. It might seem that a third method, namely, varying
the stochastic process itself, is also available. As we discuss in Sect 3.3, this third
option is not so accessible.

3.1 Generation by varying process time

Consider an increasing function r(t |z), with r(0|z) = 0. Here r(t |z) denotes a pro-
cess time r expressed as a function of calendar time t . The function is shown as being
dependent on the covariate vector z. Process time r is sometimes referred to as oper-
ational time, running time or analysis time. In a health context, process time will be
some time-like measure that describes progression of disease, cumulative exposure to
a toxin, or the like, much as cumulative mileage might serve as process time for an
automobile. The requirement that r(t |z) be an increasing function in t is adopted for
expository convenience. The requirement can and should be relaxed to ‘non-decreas-
ing’ in some applications where a process is occasionally interrupted in calendar time.
For example, a copy machine component may deteriorate only when the machine
is copying and not when it is idle. As a health example, a subject’s knee joint may
deteriorate only when it is in use and not when it is at rest. The condition of the joint
remains unchanged during intervals of rest. We do not consider this extension.

We start by choosing an FHT survival function defined in terms of process time
r . We denote this function by F0(r) and refer to it as our reference FHT survival
function. For technical convenience, we limit our attention to cases where F0(r) is a
continuous decreasing function of r , leaving the non-increasing case to later studies.
We present illustrations of reference FHT survival functions after explaining the gen-
eral construction technique. Given a process time r(t |z), the survival function F(t |z)
in calendar time is obtained by substituting r(t |z) for r in F0(r), i.e.,

F(t |z) = F0[r(t |z)]. (3)

If survival function F(t |z) is also to possess the PH feature then by definition

F(t |z) ≡ exp

⎡
⎣− exp(zβ)

t∫

0

h0(u)du

⎤
⎦ = exp

[− exp(zβ)H0(t)
]
, (4)
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where H0(t) defines the cumulative baseline hazard function. Correspondence (3) fol-
lows from the fact that r(t |z) is an increasing function. Correspondence (4) is the
definition of the PH model, operating in calendar time t . Equating (3) and (4) and
solving for r(t |z), as shown next, gives a family of process time functions for the
reference FHT survival function.

r(t |z) = F
−1
0

{
exp

[− exp(zβ)H0(t)
]}

(5)

Function F
−1
0 (·) denotes the inverse of the reference survival function. The process

time functions in (5) generate proportional hazard functions for survival time that have
the desired cumulative baseline hazard function.

A special case arises if the cumulative baseline hazard function H0(t) is chosen to
be that of the reference survival function F0(t) defined in calendar time t . In this case,
setting z = 0 in Eq. 5 and using the fact that F0(t) = exp[−H0(t)] gives the identity:

r(t |0) = F
−1
0 [F0(t)] = t. (6)

In this case, the baseline process time is identical to calendar time. Equation 5 also
yields another interesting relationship, namely,

F0[r(t |z)] = F0(t)
exp(zβ). (7)

Equation 7 shows that the family of PH survival functions form a power distribution
family in this case where the power coefficient is hazard ratio exp(zβ).

We now present two illustrations of this construction method:

Example: Poisson process. A Poisson process generates a simple family of FHT dis-
tributions. We now show that an arbitrary family of proportional hazard functions
can be generated by considering the time to the first event in a non-homogeneous
Poisson process. We choose a Poisson process operating at a unit rate to define the
reference FHT survival function. The survival probability corresponding to process
time r for this reference Poisson case is P = F0(r) = exp(−r). The inverse function

is r = F
−1
0 (P) = − ln(P). Solving for r(t |z) in (5) gives a process time scale defined

by:

r(t |z) = exp(zβ)H0(t). (8)

Thus, the Poisson version of the PH family is one in which the event of interest occurs
randomly in a non-homogeneous Poisson process. The occurrence rate function in this
process has the form r(t |z) in (8). The effect of covariate vector z is simply to shrink
or expand the rate at which time runs. Specifically, if the baseline time increment is
denoted by d H0, the corresponding increment for a subject with covariate vector z is
dr = exp(zβ)d H0.

Example: Brownian motion process. Consider the FHT to a fixed boundary for a
Brownian motion process {Y (t)}. As the reference case in this family, we take the
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FHT of Brownian motion with unit variance that starts at Y (0) = y0 > 0 and has a
boundary B at zero. The reference FHT survival function is:

F0(r) = 1 − 2�(−y0/
√

r) (9)

and, thus,

F(t |z) = 1 − 2�(−y0/
√

r(t |z)). (10)

Here � denotes the standard normal c.d.f.. Inverting the reference survival function
and solving (5) for process time function r(t |z) gives:

r(t |z) =
⎛
⎝ y0

�−1
{

1
2

(
1 − exp[−ezβ H0(t)]

)}
⎞
⎠

2

. (11)

The construction that we have just described is intimately linked to the canonical
formulation of collapsible survival models where r(t |z) in the notation here corre-
sponds to ideal time in the collapsible model. The basic idea of an ideal time scale
is that a patient’s survival prospects going forward are completely characterized by
the patient’s current position r on the ideal time scale. In other words, ideal time r
measures the patient’s state of cumulative wear and tear, in health terms. Refer to Cox
and Oakes (1984), Oakes (1995), Kordonsky and Gertsbakh (1997), Duchesne and
Lawless (2000), and Duchesneand Rosenthal (2003) for more details.

3.2 Generation by varying boundaries

Proportional hazard functions can also be constructed by varying boundaries in FHT
contexts. Figure 2 shows an illustration of the basic framework for this construction
method. The figure shows a typical sample path of a stochastic process {Y (t)} and a
boundary b(t |z) that varies with time t and depends on the covariate vector z. The
sample path starts at the origin Y (0) = 0. To reach a level above the boundary b(t |z)
at any given time t , say level y(t |z), the sample path must make a first transition to
the boundary at some intermediate time s and then proceed in time interval (s, t] from
the boundary to level y(t |z).

Let Pr [b(t |z)] denote the probability that a sample path, starting at the origin, will
lie above the boundary b(t |z) at time t . Let F(s|z) denote the c.d.f. for the FHT S of
the boundary by the sample path. Note that the sample path will intersect the boundary
at b(s|z) where S = s. Finally, let Pr [b(t |z) − b(s|z)] denote the probability that the
sample path will move from level b(s|z) at time s to a level above b(t |z) at time t > s.

The construction assumes the stochastic process has stationary independent incre-
ments. Translating the previous description into mathematical notation gives the fol-
lowing identity.
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Fig. 2 Constructing boundaries
in an FHT context that generate
proportional hazard functions
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Time 

Process
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y

0

0

y(t|z)

Pr [(b(t |z)] =
t∫

0

Pr [b(t |z) − b(s|z)]d F(s|z) (12)

The framework in Fig. 2 and the identity (12) will now be applied in two examples.

Example : Brownian motion process. In this illustration, the boundary of a standard
Brownian motion is varied to produce a family of FHT distributions that have the PH
property. Identity (12) has the form (13) in this case.

�

[
−b(t |z)√

t

]
=

t∫

0

�

[
−b(t |z) − b(s|z)√

t − s

]
d F(s|z) (13)

Here b(t |z) is the boundary associated with covariate vector z and F(s|z) is the c.d.f.
of the FHT time (i.e., survival time). Recall that Brownian motion has independent
stationary normal increments and, hence, the standard normal c.d.f. � is involved. The
sample path of Brownian motion is continuous so the visual representation in Fig. 2
applies exactly to this case. This method of boundary construction and the identity
(13) for Brownian motion was first proposed by Whitmore (1986).

Now, to obtain boundaries that generate a family of PH functions, the following
PH variant of the distribution function F(s|z) is used in (13):

F(s|z) ≡ 1 − exp[− exp(zβ)H0(s)]. (14)

The integral equation in (13) is numerically solved for b(t |z) for each z of interest. A
case demonstration presented later illustrates the method in this context.

Example: Gamma process. A gamma process offers a second example of how a bound-
ary might be varied to produce a family of FHT distributions that have the PH property.
We choose a gamma process with a unit scale parameter and shape parameter α. The
gamma process has stationary independent gamma increments but does not possess
continuous sample paths. The situation is illustrated in Fig. 3 which shows a simulated
gamma sample path crossing a boundary.
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Fig. 3 A boundary crossing for
a gamma process which
illustrates how the sample path
overshoots the boundary at the
first hitting time S = s
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Identity (12) has the following form in this case:

G [b(t |z)] =
t∫

0

G
+

[b(t |z) − b(s|z)] d F(s|z). (15)

Here G(·) denotes the complementary incomplete gamma function:

G(w) =
∞∫

w

uα−1

�(α)
exp(−u)du. (16)

Observe that the shape parameter α is suppressed in the G notation. The function
G

+
(·) in (15) is a related function that we define in a moment. As in the preceding

example with Brownian motion, identity (15) is used in this construction by replacing
function F(s|z) by the PH c.d.f. in (14). The identity is then solved numerically for
b(t |z) for any specified z.

We now return to the function G
+
(·). As mentioned earlier, the sample path of

a gamma process is not continuous. It happens to be a series of random steps of
random size as shown in Fig. 3. It follows therefore that the sample path will over-
shoot the boundary b(s|z) at the FHT S = s. If we let u denote the overshoot distance,
i.e., the difference y(s|z) − b(s|z) as marked in the figure, v denote the difference
y(t |z) − b(s|z), and w denote the difference b(t |z) − b(s|z) then we have:

G
+
(w) =

∞∫

w

v∫

0

q(u)g(v − u)dudv. (17)

The notation in (17) suppresses the dependence on z. The function g(·) is the gamma
p.d.f. The function q(u) is the limiting p.d.f. of u, which is shown in the Appendix to
have the following form:
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q(u) =
∞∫

u

1

h
exp(−h)dh for u > 0. (18)

The inner integral in (17) is a convolution of y(s|z)−b(s|z) and y(t |z)− y(s|z) which
are probabilistically independent variates.

We observe that if α is large and overshoot is ignored then G
+
(w) may be approx-

imated by G(w), the complementary c.d.f. of a gamma distribution.
We now present one demonstration to illustrate the preceding methods of construc-

tion. We choose to vary the boundary in a Brownian motion. Figure 4 shows three
boundaries in Brownian motion that generate proportional hazard functions for three
levels of a covariate z. These proportional hazard functions appear in Fig. 5. The figures
were produced by numerically solving (13) using the PH c.d.f. in (14) with a gamma
cumulative baseline hazard function H0(s) corresponding to a shape parameter 2 and
mean parameter 10. The PH regression parameter for z was set at β = 0.3 so that the
hazard increases with z.
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3.3 Generation by varying the stochastic process

One might anticipate that proportional hazard functions can be generated in a FHT
context by holding the boundary and time scale fixed and letting the stochastic pro-
cess vary over some parametric family. It appears difficult, however, to produce a
family of PH functions in this manner because most stochastic processes do not have
sufficient parametric flexibility for the task. Indeed, so far we have found only the
Poisson process, among common stochastic process families, is capable of generating
proportional hazard functions and, in this trivial case, they are constant functions. The
outstanding question of whether any parametric family of stochastic processes exists
that can produce an arbitrary family of PH functions while keeping the boundary and
time scale fixed is left as an open question for future research.

4 Estimation methods for a boundary and process time

The preceding developments have demonstrated the theoretical connection between
TR and PH models and shown that many kinds of TR models can produce a given
family of PH functions. The theoretical connection takes on practical interest when we
consider estimation of these models. The topic can be approached from two perspec-
tives. First, if an investigator feels that the PH model is plausible (and perhaps tests do
not reject this hypothesis) then the investigator may wish to explore the PH structure
within a TR context. Second, the investigator may wish to estimate the boundary or
process time function within the context of a TR model without imposing the PH
requirement.

4.1 Estimation while retaining the PH property

In this estimation procedure the following estimated survival function from the PH
regression model is substituted into the TR model in place of F(t |z):

F P H (t |z) = exp
[
− exp(zβ̂)Ĥ0(t)

]
. (19)

Here the subscript PH on the survival function designates the estimated function; β̂

denotes the estimated vector of regression coefficients and Ĥ0(t) is the estimated
cumulative baseline hazard function—both standard computer output in PH regres-
sion routines. After the substitution of F P H (t |z) for the true survival function for
various z, the corresponding family of boundary functions or process time functions
are estimated, as the case may be. For example, an investigator may feel that the PH
time-to-event data in his or her study arise as FHTs of a zero-boundary in Brown-
ian motion. Thus, the investigator may wish to estimate the family of process time
functions that correspond to the family of estimated PH functions using (11).
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4.2 Estimation without imposing the PH property

The second estimation procedure uses Kaplan-Meier (KM) estimates of the survival
function, denoted by F K M (t |z), for selected values of the covariate vector z. These
functions can provide estimates of process time functions r(t |z) or boundary functions
b(t |z). The procedure simply replaces F(t |z) in earlier formulas by F K M (t |z). For the
preceding demonstrations involving Brownian motion, for example, the substitutions
are made in expression (10) or expression (13), according to whether the process time
function or boundary function is desired. To elaborate a little on the procedure for esti-
mating the boundary, we observe that the KM estimator yields the following discrete
approximation to the integral equation in (13):

�

[
− b j√

t j

]
=

j∑
i=1

pi�

[
− b j − bi√

t j − ti

]
, (20)

where the pairs (t j , 1 − ∑ j
i=1 pi ), j = 1, 2, . . . , define the KM estimator of the sur-

vival function F(t |z). The quantity �
[−(b j − bi )/

√
t j − ti

]
on the right-hand side

is taken to be 1/2 when i = j . Solving (20) by numerical iteration for the quanti-
ties b j , j = 1, 2, . . . , gives the corresponding KM estimator of the boundary (see
Whitmore 1984, 1986). For applications having continuous covariates, a generalized
KM estimator of F K M (t |z) for a fixed covariate z might be used. This generalized
estimator employs a kernel function modification of the standard KM estimator (Beran
1981). Its application in this setting remains to be developed.

Estimating a boundary function from the PH or KM estimator in the case of a
gamma process is numerically more challenging. The procedure is straightforward in
principle but requires the numerical evaluation of the double integral in (17).

5 Benefits of having a TR interpretation of PH functions

We have shown that any family of proportional hazard functions can be generated by
varying the time scales or boundaries of a TR model, subject to only mild regulatory
conditions. We have also shown that different TR models can produce the same family
of PH functions. This fact has several implications. First, knowledge of the applicable
TR model represents more fundamental knowledge about the real phenomenon under
study because it is a more refined or detailed statistical model than the PH model.
Second, as a rule, the true TR model will not be identifiable from time-to-event and
covariate data alone. A full identification usually requires subject matter knowledge
that can help choose the correct TR model in terms of its component boundary, sto-
chastic process or time scale. Third, many (indeed, most) TR models encountered in
the real world will not correspond to PH families. The PH regression model is not
suitable for these cases. The latter fact is one of the strongest arguments for having
threshold regression in the statistical toolbox.

Given the pervasive use of PH regression, it is interesting to consider the potential
benefits of interpreting PH regression results using a TR context. Our basic scenario for
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this discussion is the following. Assume that an investigator has chosen to use the PH
regression approach, has exercised due diligence and is satisfied that the proportional
hazards assumption is plausible. We now pick up the story at this point and ask the
question, What additional insights are offered by embedding the PH regression results
in a TR context? The answer begins by considering the shape of the proportional
hazard functions and studying the possible TR models that might have generated the
family. Probing the causal forces behind the hazard function is a worthwhile endeavor
in its own right.

Aalen and Gjessing (2001, p. 1), make the telling point that the “hazard rate is
really an elusive concept, especially when one tries to interpret its shape considered as
a function of time.” These authors are highlighting the important point that the hazard
function is only a derivative feature that may lie on the pathway to understanding but
is not the end of the journey itself. A deeper understanding will be obtained if the risk
mechanism behind the hazard pattern is probed by the investigator. The TR model
provides an investigator with a general conceptual framework for this kind of probe.

To illustrate the issue, suppose a disease is characterized by recurrent infections
that require medical intervention (such as treatment with an antibiotic). The factors
affecting the recurrence time for an infection can be studied by PH regression and
results may suggest that the PH assumption is acceptable. There are (at least) two
competing models for the occurrence of the infections. The first model assumes that
infections for a patient arise from random exposures to the infective organism (a
Poisson-type process). The second model assumes that the infection results when the
preceding infection, that is already established in the patient, begins to rebound and
gradually reaches a threshold where intervention is called for (a deterioration process,
such as Brownian motion with drift). These two models can produce similar looking
families of hazard functions for the recurrence intervals and these may appear almost
proportional. Yet, the causal dynamics are clearly not the same. To distinguish the
two models, clinicians would need to monitor infection levels over time for a patient.
It may happen, in fact, that both models are correct, but in different circumstances
or on different occasions - sometimes a new infection, sometimes a worsening of an
existing infection. Studying PH regression results alone, however, does not encourage
a search for greater insight and, in any case, does not provide the requisite insight.

We now present a case illustration that demonstrates the importance of looking
beyond PH in investigating event time data and, in particular, the kinds of insights that
can be obtained from an application of TR.

6 Case illustration

This illustration compares TR and PH regression results for two scenarios based on
a simulated randomized clinical trial with two study arms and n = 200 subjects on
each arm. The applicable TR model in this simulation is a Wiener diffusion model
(see, for example, Lee and Whitmore 2006). The response variable on each arm is an
inverse Gaussian survival time S with two parameters, namely, an initial health level
y0 and mean health change µ. Survival time is assumed to be measured in, say, years.
The scenarios have no censoring. The regression structure for the TR model adopts a
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Fig. 6 Stylized description of two scenarios for a simulated clinical trial with two arms. Scenario 1 has y0
twice as large on the treatment arm as on the control arm (2 versus 1), with a common value of µ (equal
to −1). Scenario 2 has a value for µ that is half as large on the treatment arm as on the control arm (−0.5
versus −1) with a common value of y0 (equal to 1)

logarithmic link function ln(y0) = α0 + α1arm for y0 and an identity link function
µ = β0 + β1arm for µ, where arm is an indicator variable with values 0 and 1 for the
control and treatment arms, respectively.

Scenario 1 in our simulation has y0 twice as large on the treatment arm as on the
control arm, with a common value of µ. Thus, the treatment effects for this scenario
are α1 = ln(2) = .6931 and β1 = 0. Scenario 2 has a value for µ that is half as
large on the treatment arm as on the control arm with a common value of y0. Thus,
the treatment effects for this scenario are α1 = ln(1) = 0 and β1 = 0.5. Figure 6
illustrates the two scenarios graphically. The mean survival time on an arm is given
by E(S) = y0/|µ|. Thus, both scenarios have the same mean survival times on cor-
responding arms, namely, a mean of 1 year on the control arm and 2 years on the
treatment arm. The difference in the two scenarios is that the first scenario describes
a medical context in which the treatment doubles initial health level y0 of a patient at
the outset of the study (relative to control) but leaves the rate of decline of health µ

unchanged on both study arms. Such a treatment effect might correspond, for exam-
ple, to a favorable surgical intervention carried out at the outset of the study, such as
a successful heart transplant. The second scenario describes a context in which the
treatment slows the rate of decline in health µ to half its previous value from the
start of the study but leaves the initial health level y0 unchanged on both study arms.
Such a treatment effect might be found, for example, with ongoing drug therapy for a
debilitating chronic disease, such as heart disease.

Table 1 presents TR and PH regression results for the two scenarios. The TR results
show the true treatment effects α1 and β1 for each of the TR model parameters ln(y0)

and µ and the corresponding estimates, together with P-values. The PH results show
the hazard ratio, its P-value, as well as the P-value for a global test of the PH property.
Of course, by construction, the TR model is the true model.

In scenario 1, an analyst using PH regression would discover a significant hazard
ratio of .4579 with P-value <.0001, indicating that the treatment risk is 46% of the
control risk. The global test of the PH property, however, shows that the PH assump-
tion is untenable (P-value <.0001). The analyst would then need to proceed to some
other model. If the analyst happened upon the true TR model (possibly following

123



Proportional hazards and threshold regression 211

Table 1 A comparison of TR and PH regression results for two scenarios based on a simulated randomized
clinical trial with two arms and n = 200 cases on each arm

Proportional hazards Threshold regression

Haz. ratio P-value PH test Reg. Coeff. True Est. P-value

Scenario 1a

.4579 <.0001 <.0001 α1 in ln(y0) .6931 .7752 <.0001

β1 in µ 0 −.1247 .252
Scenario 2b

.5581 <.0001 .458 α1 in ln(y0) 0 .0844 .232

β1 in µ .5 .4282 <.0001

The response variable is an inverse Gaussian survival time with two parameters: initial health level y0 and
mean health change µ. The scenarios have no censoring. Scenario 1 has y0 twice as large on the treatment
arm as on the control arm, with a common value of µ. Scenario 2 has µ half as large on the treatment arm
as on the control arm with a common value of y0. Both scenarios have the same mean survival time
a Control arm: y0 = 1, µ = −1.0, Treatment arm: y0 = 2, µ = −1.0
b Control arm: y0 = 1, µ = −1.0, Treatment arm: y0 = 1, µ = −0.5

discussions with the principal investigator) then the TR regression results shown in
the top righthand panel of Table 1 would be obtained. The table shows a significant
positive treatment effect for ln(y0) but an insignificant effect for µ (as expected). Thus,
importantly, the analyst would see that the treatment elevates the initial health of a
subject but leaves the rate of subsequent health decline unchanged. The significant
coefficient for α1 translates into an estimated exp(.7752) = 2.2 multiplier for initial
health level y0 (the true value is exp(.6931) = 2).

In scenario 2, an analyst using PH regression would discover a significant hazard
ratio of .5581, indicating that the treatment risk is 56% of the control risk. The global
test of the PH property shows that the PH assumption is tenable (P-value .458). The
analyst might then feel confident in reporting the finding. The principal investigator,
however, is not much enlightened by this finding. A significant treatment effect has
been found but the question of how the treatment is acting on the subject is not known
from the PH regression finding. Alternatively, if the analyst happened to employ the
true TR model then the regression results in the lower righthand panel of Table 1
show a significant positive treatment effect for µ but an insignificant effect for ln(y0).
Thus, the analyst would see that the treatment slows the decline is health but has an
insignificant effect on the initial health level ln(y0). The significant coefficient for β1
translates into an estimated .4282 rise in the value of µ. The investigator would thereby
have these extra insights into the treatment effect. These insights, when combined with
medical knowledge, would presumably deepen the investigator’s understanding of the
treatment mechanism.

The differing results for the two scenarios can be anticipated from the plots in Fig. 7.
The plot in the lefthand panel for each scenario shows the true inverse Gaussian hazard
functions for the two study arms. The righthand plot in each scenario shows the natural
logarithm of the ratio of the hazard functions for the two arms. For scenario 1, the two
hazard functions converge to the same hazard level and the log-hazard ratio declines
sharply to zero. The proportional hazard assumption is clearly untenable, as the PH test

123



212 M.-L. T. Lee, G. A. Whitmore

Scenario 1

Scenario 2

Control hazard
Treatment hazard

Log-hazard ratio

Control hazard

Treatment hazard
Log-hazard ratio

Time (years) Time (years)

Time (years) Time (years)

Fig. 7 Plots of the true inverse Gaussian hazard functions for the two study arms (the lefthand panel for
each scenario) as well as plots of the log-hazard ratio (the righthand panel for each scenario)

result in Table 1 shows. The rapid convergence of the hazard functions indicates that
the gains in risk from treatment come early in this scenario and gradually disappear.
At about five years, the treatment and control patients face indistinguishable risks. For
scenario 2, the two hazard functions are much closer to being proportional, although
their log-hazard ratio more than doubles (on the log-scale) within the time span of
the graph. The global test for the PH property does not detect this non-proportionality
with the sample sizes involved in the simulation.

7 Closing remark

We have studied the theoretical connections between TR and PH regression meth-
odologies to show that TR regression can encompass the PH property. Our wish is
to encourage researchers to consider TR as an alternative regression approach when
there is evidence or suspicions that the PH property does not hold. Even where the PH
feature does hold reasonably well, we recommend that investigators use a TR model-
ing framework to delve into the hazard structure to understand better the patterns of
risk being exhibited.

TR is a relatively new approach to analyzing event-time data but is gradually being
applied in a wide assortment of medical and health studies. In support of this expan-
sion, researchers are taking up theoretical and methodological investigations of TR
in order to understand the model better and to offer a richer assortment of tools that
are needed in practical statistical work. Recent publications include Whitmore and
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Su (2007) who use TR to model low birth weights, Tong et al. (2008) who con-
sider a bivariate TR model for joint analysis of current status and marker data, and
Lee et al. (2008) who use a mixture version of TR to model data from a multiple
myeloma clinical trial. More recently, Balka et al. (2009) implement cure models based
on first hitting times for Wiener processes, Lee et al. (2009a) analyze occupational
exposures to diesel exhaust using a TR model, Yu et al. (2009) investigate semi-
parametric variants of TR, and Pennell et al. (2009) incorporate random effects in TR.
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Appendix

We derive the overshoot density q(u) in (18) for a gamma process using limiting argu-
ments in the theory of renewal processes. In brief, consider any partition of the time
interval [0, t] into n small increments �t > 0 so t = n�t . The corresponding gamma
increments Y j (�t) for time increments j = 1, . . . , n, form a renewal process with
independent and identically distributed renewal intervals. We assume that the gamma
process {Y (t)} starts in equilibrium at t = 0. The excess U > 0 of the renewal interval
that contains the first hitting time of boundary b(s|z) has the following c.d.f. (see, for
example, Ross 1996, p. 116):

Q�t (u) = 1

µ

u∫

0

G�t (h)dh for u > 0, (21)

where G�t (h) is the complementary c.d.f. of the gamma renewal interval for a time
increment �t . The notation µ = α�t is the mean length of the renewal interval.
Taking the derivative of (21), the corresponding p.d.f. q�t (u) is found to be:

q�t (u) = 1

µ
G�t (u) = 1

α�t

∞∫

u

hα�t−1

�(α�t)
exp(−h)dh. (22)

Taking the limit as �t goes to zero and noting that lima→0+ a�(a) = 1, we obtain
the limiting p.d.f.:

q(u) =
∞∫

u

1

h
exp(−h)dh for u > 0. (23)

Observe that this function is not defined at zero but it does integrate to 1 in the following
limiting sense:
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lim
a→0+

∞∫

a

q(u)du = 1. (24)
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