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Abstract Recurrent event data arise in many biomedical and engineering studies
when failure events can occur repeatedly over time for each study subject. In this
article, we are interested in nonparametric estimation of the hazard function for gap
time. A penalized likelihood model is proposed to estimate the hazard as a function of
both gap time and covariate. Method for smoothing parameter selection is developed
from subject-wise cross-validation. Confidence intervals for the hazard function are
derived using the Bayes model of the penalized likelihood. An eigenvalue analysis
establishes the asymptotic convergence rates of the relevant estimates. Empirical stud-
ies are performed to evaluate various aspects of the method. The proposed technique
is demonstrated through an application to the well-known bladder tumor cancer data.

Keywords Penalized likelihood · Recurrent event · Gap time hazard function ·
Asymptotic convergence rate · Bayesian confidence interval

1 Introduction

Recurrent event data arise in many biomedical and engineering studies when failure
events can occur repeatedly over time for each subject. Examples of such recurrent
event data include hospitalization of schizophrenia patients, infection occurrences
among people receiving transplants, tumor recurrences in bladder cancer patients,
repeated failures of a particular type of machines, and warranty claims for manu-
factured products. The development of statistical methods for analyzing such data is
therefore of considerable importance. Many existing procedures for recurrent event
data model survival and hazard as functions on the domain of calendar time, that is,

P. Du (B)
Department of Statistics, Virginia Tech, Blacksburg, VA 24061, USA
e-mail: pangdu@vt.edu

123



Lifetime Data Anal (2009) 15:256–277 257

time since the start of follow-up. One can find a rich literature review on this topic
in Kalbfleisch and Prentice (2002, Chapter 9). Also common in applications is the
investigators’ interest in the gap time between successive recurrences. See, e.g., Gail
et al. (1980). When the covariate is absent, various nonparametric models for the gap
time distribution have, among others, been developed by Lin et al. (1999), Wang and
Chang (1999) and Peña et al. (2001). In the presence of covariate, semiparametric
models have been studied. For example, Strawderman (2005) proposed an accelerated
gap time model where the role of the covariate is to accelerate or decelerate a baseline
gap time. What is lacking in the literature is a nonparametric model for gap time hazard
function in the presence of covariate, which will be explored here.

When modeling hazard function on the calendar time domain, the conventional
counting processes counting all the past recurrences have been widely used for asymp-
totic theory derivation. When the focus switches to hazard function of gap time, it is
more convenient to consider processes that restart the time clock every time a recur-
rence occurs. For example, a gap time counting process counts only the immediate
event after the last recurrence; see, e.g., Peña et al. (2001) and Strawderman (2005).
The proposed method involves only the gap time processes. Hence, the notation t in
this article refers always to the sojourn time, that is, the time since the last recurrence.
Being clean of calendar time processes also allows us to include recurrence-specific
covariates like the number of past recurrences into the model.

The nonparametric method we consider is based on penalized likelihood. The penal-
ized likelihood for estimating a function of interest η has the form L(η|data)+λJ (η),
where L(η), usually the negative log likelihood, measures the goodness-of-fit of η, J ,
often a quadratic functional, quantifies the smoothness of η, and the smoothing param-
eter λ(>0) controls the tradeoff. For single event data, penalized likelihood has been
used in hazard estimation by, e.g., O’Sullivan (1988a,b), Zucker and Karr (1990),
Gu (1996), and Joly et al. (1998). For recurrent event data, Rondeau et al. (2007) used
penalized likelihood to develop semiparametric joint frailty models of recurrences and
death on both the calendar time and the gap time domains.

In modeling recurrent event data, the history of a subject before each recurrence
often conveys information for that recurrence. To incorporate the variation between
subjects due to their different individual history, a popular approach is to introduce a
subject-wise random effect called frailty. Proposed by Vaupel et al. (1979) and popu-
larized by Aalen (1988) and Aalen and Husebye (1991), frailty model with parametric
or semiparametric hazard function has been studied extensively in the past decades;
see, e.g., Hougaard (2000) for earlier references and Zeng and Lin (2007) for more
recent ones. However, in nonparametric estimation by penalized likelihood, the inclu-
sion of random effects can dramatically increase the computational cost and make
asymptotic theory elusive; see, e.g., Wang (1998), Karcher and Wang (2001), Gu and
Ma (2005a,b) for nonparametric Gaussian and non-Gaussian regression problems with
random effects. In this paper, we consider a simpler way to incorporate part of the
history by including historical recurrence-wise covariates such as the number of past
recurrences, into the analysis. This simplification allows both a faster computation
and a thorough investigation of the asymptotic properties of the hazard estimates.

In this paper, we propose a nonparametric model of the gap time hazard function for
recurrent event data using penalized likelihood. We first derive a score for smoothing
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parameter selection through delete-one-subject cross-validation and properties of the
gap-time scale counting processes. Then for inference purpose, point-wise confidence
intervals of gap time hazard function are developed from the Bayes model associated
with penalized likelihood. The asymptotic convergence rates for our estimates are
also proved assuming an eigenvalue analysis with suitable properties. Our simulations
investigate several aspects of the proposed method. Combined with the model selec-
tion tool developed in Gu (2004) for penalized likelihood estimation, we then apply
the proposed method to the well-known bladder tumor cancer data in Byar (1980).

The rest of the article is organized as follows. Section 2 illustrates the penalized
likelihood method for estimating gap time hazard function in recurrent event data,
with Sect. 2.1 introducing the model, Sect. 2.2 giving estimation details, Sect. 2.3
deriving the cross-validation score for smoothing parameter selection, Sect. 2.4 devel-
oping point-wise confidence intervals, and Sect. 2.5 showing the convergence rates of
the estimates. Section 3 devotes to numerical studies, where the smoothing parameter
selection and the confidence intervals are examined. In Sect. 4, we apply the proposed
method to the well-known bladder tumor cancer data in Byar (1980). Remarks in the
last section conclude the article.

2 Penalized likelihood method

2.1 Model

Consider n independent subjects. Of each one observes a sequence of events at times

0 < Si1 < Si2 < · · · < Si Ki ≤ Ci ,

where Ci is the right censoring time independent of Sik’s. The inter-occurrence gap
times are denoted by

Ti1 = Si1, Ti2 = Si2 − Si1, . . . , Ti Ki = Si Ki − Si, Ki −1.

Assume each gap time Ti j depends only on a covariate Ui j such that the Ti j |Ui j

are a random sample of the random variable T |U with survival function S(t, u) =
Prob(T > t |U = u). A similar semiparametric gap-time-covariate dependence struc-
ture is available in Strawderman (2005). Also note that our covariate, which may
change only at recurrences, is specific to each recurrent event rather than each subject.
This is necessary for us to incorporate part of a subject’s history by including covari-
ates like the number of past recurrences. Of interest is the estimation of the gap time
hazard function

h(t, u) = −∂ log S(t, u)/∂t.

Let’s first introduce some auxiliary symbols to simplify our future notation. For
each i , let

�i =
{

Ki + 1 if Si Ki = Ci (censored),
Ki if Si Ki < Ci (uncensored).
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When subject i is censored such that Si Ki = Ci , let Si,Ki +1 be the unobserved
(Ki + 1)-st event time for the subject. Then Ti,Ki +1 = Si,Ki +1 − Si Ki would be the
(Ki + 1)-st gap time. Now, Ci j , defined by

Ci j
def= Ci − Si, j−1 = Ci −

j−1∑
k=1

(Sik − Si,k−1) = Ci −
j−1∑
k=1

Tik,

acts like a “right censoring” time for Ti j . Indeed, Ci j is independent of Ti j (but not
of Tik, k ≤ j − 1). Although the only gap time that is possibly “censored” is Ti,Ki +1,
the model may now be restated as a right-censored data problem, as follows. For
i = 1, 2, . . . , n, we observe

Xi j = min(Ti j , Ci j ) and δi j = I {Ti j ≤ Ci j }, j = 1, . . . , �i .

A simple but informal approach in Sect. 3 of Aalen and Husebye (1991) expresses
the contribution of subject i to the likelihood function as

Ki∏
j=1

P{ j th recurrence at Ti j |Ui j , Uik, Xik, k < j}

× [P{(Ki + 1)st recurrence censored at Ci |Ci , Uik, Xik, k = 1, . . . , Ki }]1−δi,�i ,

(1)

which are really hybrids of probability densities for the uncensored recurrences and
a genuine probability for the censored recurrence. Although a more precise measure-
theoretic framework is not used in (1), its meaning should be intuitively clear. By our
conditional independence assumptions on Xi j ’s, the contribution of each uncensored
recurrence Xi j (= Ti, j ), j = 1, . . . , Ki is simply f (Xi j , Ui j ) with f (t, u) being the
density function of T |U . A censored recurrence Xi,Ki +1 (= Ci,Ki +1) gives

P{(Ki + 1)-st recurrence time > Ci,Ki +1|Ci,Ki +1, Uik, Xik, k = 1, . . . , Ki }
= P{(Ki + 1)-st recurrence time > Xi,Ki +1|Ui Ki } = S(Xi,Ki +1, Ui Ki ).

Note that f (t, u) = h(t, u)S(t, u) and S(t, u) = exp(− ∫ t
0 h(s, u)ds). Then the con-

tribution of subject i to the likelihood function is

�i∏
j=1

h(Xi j , Ui j )
δi j exp

⎛
⎜⎝−

Xi j∫
0

h(t, Ui j )dt

⎞
⎟⎠,

where Ui,Ki +1 = Ui,Ki for the censored gap time Xi,Ki +1. Let N = ∑n
i=1 �i . Thus,

the penalized likelihood estimate of η0(t, u) = log h(t, u) is defined to be the mini-
mizer of
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− 1

N

n∑
i=1

�i∑
j=1

⎧⎪⎨
⎪⎩δi jη(Xi j , Ui j ) −

Xi j∫
0

eη(t,Ui j )dt

⎫⎪⎬
⎪⎭+ λ

2
J (η), (2)

in a Hilbert space H of functions on the product domain T × U of gap time and
covariate. Here the double sum term is the negative log likelihood, J is a roughness
penalty functional, and the smoothing parameter λ > 0 controls the tradeoff between
the goodness-of-fit and smoothness of the estimate.

Most recurrent event data contain covariate, so η is often a function of gap time
and covariate. With a generic covariate u that can be a vector of continuous and/or
discrete covariates, a functional ANOVA decomposition of η is

η(t, u) = η0 + ηt (t) + ηu(u) + ηt,u(t, u), (3)

where η0 is a constant like the grand mean, ηt is the main effect of time t, ηu is
the main effect of covariate u, and ηt,u(t, u) is the interaction effect between time
and covariate. When ηt,u = 0, (3) reduces to an additive model for η, or the well-
known proportional hazards model. Various side conditions through averaging opera-
tors, such as the side conditions

∫
T ηt (t)dt = 0,

∫
U ηu(u)du = 0,

∫
T ηt,u(t, u)dt = 0

and
∫
U ηt,u(t, u)du = 0 on ηt , ηu and ηt,u , are needed to ensure the identifiability of

the terms in (3); see Wahba (1990) and Gu (2002).

2.2 Estimation

The minimization of (2) is performed in a Hilbert space H ⊂ {η : J (η) < ∞} on the
product domain T × U of gap time and covariate, in which J is a square semi-norm.
The evaluation functional [(t, u)] f = f (t, u) is assumed to be continuous in H, which
is necessary for (2) to be continuous in its argument η. A Hilbert space H in which
the evaluation functional is continuous is called a reproducing kernel Hilbert space
(RKHS). It possesses a reproducing kernel R(·, ·), a nonnegative definite function with
the reproducing property that 〈R((t, u), ·), f (·)〉 = f (t, u) for any f ∈ H, where 〈·, ·〉
is the inner product in H. The null space NJ of J in H is finite dimensional to prevent
interpolation, the conceptual equivalent of a delta sum. Then H can be decomposed
into a tensor sum NJ ⊕ HJ , with HJ possessing a reproducing kernel RJ (·, ·). See
Aronszajn (1950), Wahba (1990) and Gu (2002) for more details on RKHS.

Example 1 (Cubic Spline) In the absence of covariate, U decays to a singleton. One
only has the gap time domain T , say [0, 1]. A choice of J (η) is

∫ 1
0 (η′′)2dt , which

yields the popular cubic splines. If the inner product in NJ is (
∫ 1

0 f dt)(
∫ 1

0 g dt) +
(
∫ 1

0 f ′ dt)(
∫ 1

0 g′ dt), then HJ = {η : ∫ 1
0 ηdt = ∫ 1

0 η′dt = 0, J (η) < ∞} and the
reproducing kernel RJ (t1, t2) = k2(t1)k2(t2) − k4(|t1 − t2|), where kν(t) = Bν(t)/ν!
are scaled Bernoulli polynomials for t ∈ [0, 1]. The null space NJ has a basis
{1, k1(t)}, where k1(t) = t − 0.5 for t ∈ [0, 1]. See Gu (2002, Sect. 2.3.3). 	


In the presence of covariate, one needs to estimate a multivariate function η. To
incorporate the functional ANOVA structure in (3), we consider the univariate function
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η∗ ∈ H〈∗〉, where ∗ stands for t or u. H〈∗〉 is a RKHS with tensor sum decomposition
H〈∗〉 = H0〈∗〉 ⊕ H1〈∗〉. H0〈∗〉 is the finite dimensional “parametric” subspace consist-
ing of parametric functions, and H1〈∗〉 is the “nonparametric” subspace consisting of
nonparametric smooth functions. This yields a tensor product space

H = H〈t〉 ⊗ H〈u〉
= (H0〈t〉 ⊗ H0〈u〉) ⊕ (H1〈t〉 ⊗ H0〈u〉) ⊕ (H0〈t〉 ⊗ H1〈u〉) ⊕ (H1〈t〉 ⊗ H1〈u〉),

(4)

where the components of the tensor sum are all on the product domain T × U , and
parallel to the components in the functional ANOVA decomposition (3).

Example 2 (tensor product spline) When the covariate is a categorical variable with l
levels, the covariate domain becomes U = {1, . . . , l}. Functions on U are essentially
vectors in Rl , so the RKHS H〈u〉 = Rl .

For nominal covariate, let η̄ = ∑l
x=1 f (x)/ l. Equipped with the roughness penalty

J〈u〉(η) = ∑l
x=1[η(x) − η̄]2 and inner product 〈 f, g〉 = ∑l

x=1 f (x)g(x), the RKHS
H〈u〉 decomposes as

H〈u〉 = H0〈u〉 ⊕ H1〈u〉 = {η : η(1) = · · · = η(l)} ⊕
{

η :
l∑

x=1

η(x) = 0

}

with reproducing kernels R0〈u〉(u1, u2) = 1/ l, R1〈u〉(u1, u2) = I[u1=u2] − 1/ l.
For ordinal covariate, a natural alternative roughness penalty is J〈u〉(η) =∑l
x=2[η(x) − η(x − 1)]2 which yields the same decomposition of H〈u〉 but with

reproducing kernels R0(u1, u2) = (I − B)+u1,u2
and R1(u1, u2) = B+

u1,u2
. Here M+

i, j
is the (i, j)-th entry of the Moore–Penrose inverse of a matrix M and

B =

⎛
⎜⎜⎜⎜⎜⎝

1 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 1

⎞
⎟⎟⎟⎟⎟⎠

l×l

.

On the other hand, the construction in Example 1 gives a decomposition of the
RKHS H〈t〉 on the gap time domain

H〈t〉 =
⎧⎨
⎩η :

1∫
0

(η′′)2dx < ∞
⎫⎬
⎭ = H0〈t〉 ⊕ H1〈t〉

= span{1, k1(x)} ⊕
{

η :
1∫

0
ηdx =

1∫
0

η′dx = 0,
1∫

0
(η′′)2dx < ∞

}
,
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with reproducing kernels R0〈t〉(t1, t2) = 1 + k1(t1)k1(t2), and R1〈t〉(t1, t2) = k2(t1)
k2(t2)−k4(|t1 − t2|). The tensor product of H〈t〉 and H〈u〉 yields four tensor sum terms
Hν,µ = Hν〈t〉 ⊗ Hµ〈u〉 on T × U , ν = 0, 1 and µ = 0, 1, with reproducing kernels
Rν,µ(x1, x2) = Rν(t1, t2)Rµ(u1, u2), where xi = (ti , ui ). The subspace with ν = 0
and µ = 0 becomes the null space NJ . The other three subspaces form HJ with the
reproducing kernel

RJ = θ0,1 R0〈t〉,1〈u〉 + θ1,0 R1〈t〉,0〈u〉 + θ1,1 R1〈t〉,1〈u〉,

where θν,µ are a set of extra smoothing parameters adjusting the relative weights of
the roughness of different components. See Gu (2002, Chapter 2). 	


Since H is usually of infinite dimensions, the minimization of (2) in H is gener-
ally uncomputable. To circumvent the problem, one can perform the minimization in
a data-adaptive finite dimensional space Hn = NJ ⊕ span{RJ ((Xi j , Ui j ), ·) : j =
1, . . . , Ki ; i = 1, . . . , n}. Under mild conditions, the minimizers in Hn can be shown
to share the same asymptotic convergence rates as the minimizers in H; see Sect. 2.5.

Let’s re-index the set {(Xi j , Ui j ) : j = 1, . . . , Ki ; i = 1, . . . , n} as {vk : k =
1, . . . , Nn} with Nn = ∑n

i=1 Ki such that v1 = (X11, U11), v2 = (X12, U12), and so
on. Write ξk = RJ (vk, ·) and let {φν}m

ν=1 be a basis of NJ . By definition, a function
in Hn has an expression

η(t, u) =
m∑

ν=1

dνφν(t, u) +
Nn∑

k=1

ck RJ (vk, (t, u)) = φT d + ξ T c, (5)

where φ and ξ are vectors of functions and d and c are vectors of coefficients. Substi-
tuting (5) into (2), one calculates the minimizer of (2) in Hn by minimizing

Aλ(c, d) = − 1

N

n∑
i=1

Ji∑
j=1

{
δi j (φ

T
i j d + ξ T

i j c)

−
∫ Xi j

0
exp(φ(t, Ui j )

T d + ξ(t, Ui j )
T c)dt

}
+ λ

2
cT Qc (6)

with respect to d and c, whereφi j is m×1 with the νth entry φν(Xi j , Ui j ), ξ i j is Nn ×1
with the kth entry ξk(Xi j , Ui j ) and Q is Nn × Nn with the ( j, k)th entry RJ (v j , vk).

Write µ f (g) = (1/N )
∑n

i=1
∑�i

j=1

∫ Xi j
0 g(t, Ui j )e f (t,Ui j )dt , V f (g, h) = µ f (gh),

and e( f ) = (1/N )
∑n

i=1
∑Ki

j=1 f (Xi j , Ui j ). The minimization of (6) is carried out
by two nested loops. For fixed smoothing parameters, the inner loop minimizes (6)
through the Newton–Raphson procedure, which updates the coefficients from the cur-
rent iterate η̃ = φT d̃ + ξ T c̃ through

(
Vφ,φ Vφ,ξ

Vξ,φ Vξ,ξ + λQ

)(
d
c

)
=
(

eφ − µφ + Vφ,η

eξ − µξ + Vξ,η

)
, (7)
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where Vφ,φ = Vη̃(φ,φT ), Vφ,ξ = V T
ξ,φ = Vη̃(φ, ξ T ), Vξ,ξ = Vη̃(ξ , ξ

T ), µφ = µη̃(φ),

µξ = µη̃(ξ), eξ = e(ξ), eφ = e(φ), Vφ,η = Vη̃(φ, η̃), and Vξ,η = Vη̃(ξ , η̃). The selec-
tion of the smoothing parameters can be done through an outer-loop optimization
of a cross-validation score derived in Sect. 2.3.

2.3 Smoothing parameter selection

With varying smoothing parameters λ (and θν,µ’s), the minimizers of (2) define an
array of possible estimates. To choose an optimal estimate, one must select λ through
a data-adaptive approach; see, e.g., Gu (1996) and Joly et al. (1998).

Let ηλ be the minimizer of the penalized likelihood (2). Define the Kullback–
Leibler distance between the true log hazard η0 (not to be confused with the MLE
ηλ|λ=0) and ηλ to be

KL(η0, ηλ)

= E

[∫
T

Y (t)
{
(η0(t, U ) − ηλ(t, U ))eη0(t,U ) − (eη0(t,U ) − eηλ(t,U ))

}
dt

]
, (8)

where Y (t) = I[X≥t] is the at-risk process and the expectation is with respect to X
and U . Let SKL(η0, ηλ) = KL(η0, ηλ) + KL(ηλ, η0) be the symmetrized Kullback–
Leibler distance between η0 and ηλ as defined in (12). Under general conditions, we
will show, in Sect. 2.5, SKL(η0, ηλ) → 0 as N → ∞. Estimating (8) through a com-
bination of the gap time counting processes and a delete-one-subject cross-validation,
one ends up with the score

Vα(λ) = − 1

N

n∑
i=1

�i∑
j=1

⎧⎪⎨
⎪⎩δi jηλ(Xi j , Ui j ) −

Xi j∫
0

eηλ(t,Ui j )dt

⎫⎪⎬
⎪⎭

+α · 1

N

{
1T (I/N − D)Q̆T H−1 Q̆1 + tr(DQ̆T H−1 Q̆)

}
, (9)

where Q̆ = (
∑K1

j=1 ψ(X1 j , U1 j ), . . . ,
∑Kn

j=1 ψ(Xnj , Unj )) with ψ = (ξ T ,φT )T ,

I is the identity matrix and D = diag
(

1
N−�1

, . . . , 1
N−�n

)
. See Appendix A for

detailed derivation. In (9), the constant α > 1 is added to prevent occasional severe
under-smoothing typically suffered by cross-validation methods. For hazard estima-
tion of single event data, an α around 1.4 was suggested by Gu (2002) to ensure little
loss of effectiveness. A similar range is indicated by our empirical studies in Sect. 3.

2.4 Bayesian confidence intervals

Due to the lack of parametric sampling distribution, a rigorously justified interval
estimate is a rarity in nonparametric function estimation. An example in point is the
Bayesian confidence intervals of Wahba (1983), which are derived from the Bayes
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model of smoothing splines. Following this direction, interval estimates of hazard
function in single event survival data were developed in, e.g., Joly et al. (1998) and
Du and Gu (2006). In this section, we shall derive the Bayesian confidence intervals
for the hazard estimate of (2). Empirical coverage properties of the intervals will be
investigated in Sect. 3.2.

Consider η = η0 + η1, where η0 has a diffuse prior in NJ and η1 has a mean 0
Gaussian process prior with the covariance function

E[η1(x1)η1(x2)] = bRJ (x1, vT )Q+ RJ (v, x2),

where x1, x2 ∈ T × U and Q+ is the Moore–Penrose inverse of Q = RJ (v, vT );
one may parameterize η0 = ∑m

ν=1 dνφν with dν diffuse and η1 = ∑Nq
k=1 ckξk with

c ∼ N (0, bQ+). Setting b = (Nλ)−1, the minimizer ηλ of (2) in Hn is seen to be
the posterior mode under this prior. The Bayesian confidence intervals are based on a
quadratic approximation of the log likelihood at this posterior mode.

Recall the expression η = φT d + ξ T c in (5). To simplify the notation, let’s write
ψ = (ξT ,φT )T and c̆ = (dT , cT )T . Through a second order Taylor expansion of the
integral terms of (6), its quadratic approximation at η̃ = ηλ is seen to be

1

2N
(c̆ − c̆λ)

T (N H)(c̆ − c̆λ) + C, (10)

where H is the left-hand side matrix in (7), c̆λ is the coefficient vector of ηλ, and C
is a constant. Note that (5) and (6) are the negative log posterior divided by N , so the
approximate posterior of c̆ = (dT , cT )T through (10) is Gaussian with mean c̆λ and
covariance H+/N . It follows that given a point x = (t, u), the approximate posterior
mean of η(x) is ηλ(x) = φT (x)dλ + ξ T (x)cλ = ψT (x)c̆λ and the approximate pos-
terior variance is s2(x) = ψT (x)H+ψ(x)/N . Then the Bayesian confidence interval
at x = (t, u) is ηλ(x) ± zα/2s(x).

Note that the Bayesian confidence interval is point-wise. Although Nychka (1988)
has shown certain across-the-function coverage property for smoothing splines in
Wahba (1983), it is unclear whether this can be extended to our case.

2.5 Asymptotic convergence

In this section we shall look at the asymptotic convergence properties of the penalized
likelihood estimates. Define V ( f ) = V ( f, f ) with

V ( f, g) =
∫
U

m(u)

∫
T

f (t, u)g(t, u)eη0(t,u)S(t, u)dt, (11)

where m(u) is the density function of U . Denote the symmetrized Kullback–Leibler
distance between η and η0 by

SKL(η0, η) =
∫
U

m(u)

∫
T

(eη(t,u) − eη0(t,u))(η(t, u) − η0(t, u))S(t, u)dt. (12)
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The convergence rates for an estimate η will be established in terms of V (η − η0) and
SKL(η0, η) through an eigenvalue analysis. The following smoothness and regular-
ity conditions are assumed for the main result; see Gu (2002, Chapter 8) for similar
conditions for hazard estimation of single event survival data.

Condition 1: V is completely continuous with respect to J .
Condition 2: For ν sufficiently large and some β > 0, the eigenvalues πν of J with

respect to V satisfy πν > βνr , where r > 1.
Condition 3: Let η̂ and η̂∗ be respectively the minimizers of the penalized likeli-

hood functional (23) in H and Hn . For η in a convex set B0 around
η0 containing η̂, η̂∗ and two other intermediate estimates to be defined
below, assume c1eη0(t,u) ≤ eη(t,u) ≤ c2eη0(t,u) holds uniformly for
some c1 > 0 and c2 < ∞ on {(t, u) : S(t, u) > 0}.

Condition 4:
∫
U m(u)

∫
T ζ 2

ν ζ 2
µekη0 Sdt ≤ c3 for some c3 < ∞, k = 1, 2,∀ν, µ.

Condition 5:
∑

ν π
p
ν η2

ν,0 < ∞ for some p ∈ [1, 2].
One can refer to Weinberger (1974) for the exact definition of one quadratic func-
tional being completely continuous with respect to another quadratic functional. Here,
Condition 1 is to bound λJ for fixed λ such that the effective model space dimension
can be kept finite to achieve noise reduction in estimation. Also, the effective model
space dimension should be expandable as data become available. This is achieved
by letting λ → 0 as n → ∞. Condition 2 essentially dictates how fast λ should
approach 0 by restricting the growth rate of the eigenvalues πν . The constant r
there quantifies the smoothness imposed by J (η) : r = 4 for the cubic spline of
Example 1, and r = 4 − δ,∀δ > 0 for the tensor product cubic spline
of Example 2. By the mean value theorem, Condition 3 implies the equivalence of
V (η − η0) and SKL(η0, η) for η in B0. When η0 is bounded, Condition 4 essentially
requires a uniform bound on the fourth moments of ζν . Condition 5 describes the
smoothness of η0: when p = 1,

∑
ν πνη

2
ν,0 = J (η0) < ∞ is equivalent to say that

η̈0 is square integrable; p = 2 means that η
(4)
0 is square integrable or η0 is “super-

smooth”.

Theorem 1 Let η̂ and η̂∗ be respectively the minimizers of the penalized likelihood
functional (23) in H and Hn. Under Conditions 1–5, as λ → 0 and Nλ2/r → ∞,

(V + λJ )(η̂ − η0) = Op(N−1λ−1/r + λp),

SKL(η0, η̂) = Op(N−1λ−1/r + λp), and

(V + λJ )(η̂∗ − η0) = Op(N−1λ−1/r + λp),

SKL(η0, η̂
∗) = Op(N−1λ−1/r + λp),

where constants r and p are defined as above.

The technical proof is put in Appendix B. In the proof, we further assume that the
gap times for each subject are distinct, i.e., the gap time counting processes satisfy
Ni j (t)Ni j ′(t) ≡ 0 for any i and j �= j ′.
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3 Empirical studies

In this section, we shall carry out some numerical experiments to evaluate the pro-
posed methods. In all the simulations below, W(a, b) denotes the Weibull distri-
bution with density function f (t) = a

ba ta−1e−(t/b)a
and thus log hazard function

η(t) = log a + (a − 1) log t − a log b.

3.1 Performance of cross validation

To gauge the performance of the cross validation score developed in Sect. 2.3, we
tested the method on data with gap times generated from W(1.5, 0.7) and censoring
time from Uniform (0, 3.5). For sample sizes n = 100, 200, one hundred replicates
each were generated and cubic splines in Example 1 were calculated with λ on a grid
log10(λ) = (−8)(0.1)(−2). This grid is wide enough to cover most common choices
of λ. For a fixed λ, the Kullback–Leibler loss

KL(η0, ηλ) = 1

N

n∑
i=1

�i∑
j=1

Xi j∫
0

{
(η0(t) − ηλ(t))e

η0(t) − (eη0(t) − eηλ(t))
}

dt, (13)

represents the closeness between the estimate ηλ and the true η0. With a varying λ,
(13) defines a set of losses KL(η0, ηλ). The minimum in the set is thus the minimum
attainable loss through the minimization of the penalized likelihood (2). Hence the
corresponding smoothing parameter λ is the best one. To evaluate the performance of
a cross-validation score Vα(λ) in smoothing parameter selection, we first identified the
λ that minimizes Vα(λ), computed the loss KL(η0, ηλ) of the corresponding estimate
ηλ, and then compared it with the minimum attainable loss. These comparisons for
α = 1, 1.2, 1.4, 1.6, 1.8 are summarized in Fig. 1. Plotted in the left and center frames
are the KL(η0, ηλ) corresponding to the modified (α = 1.4) and unmodified (α = 1)
CV scores for sample sizes n = 100, 200 versus the minimum attainable KL(η0, ηλ)

on the grid. Clearly, the wild failures of Vα(λ) were effectively reduced with α=1.4.
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Fig. 1 Performance of cross-validation scores Vα(λ). Left: Loss achieved by Vα(λ) with α = 1 (faded)
and α = 1.4 for n = 100. Center: Loss achieved by Vα(λ) with α = 1 (faded) and α = 1.4 for n = 200.
Right: Relative efficacy of Vα(λ) with α = 1, 1.2, 1.4, 1.6, 1.8, for n = 100 (fatter boxes) and n = 200
(thinner boxes)
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The relative efficacies of all the five CV scores in both simulations, defined as the
ratios of the minimum attainable KL(η0, ηλ) to the KL(η0, ηλ) corresponding to
the CV scores, are shown in the right frame in box plots. These box plots show that the
best performance of Vα(λ) was achieved with α in the range 1.2 ∼ 1.4. Our empirical
studies (not reported here) with other distribution configurations also suggest an α

value in this range.

3.2 Coverage properties

We now assess the coverage properties of the point-wise intervals derived in Sect. 2.4.
We simulated one hundred data replicates mimicking the bladder tumor data to be
studied in Sect. 4. Each data replicate has n = 150 simulated patients. Each tumor
recurrence is associated with three covariate (U〈t〉, U〈n〉, U〈r〉), representing respec-
tively the treatment, the number of initial tumors, and the number of up-to-date
recurrences. U〈t〉 was simulated to take value 0 or 1 with equal probability, and
U〈n〉 took value from 1 to 8 with probability weights (50, 11, 10, 4, 5, 2, 0, 3), which
are the actual counts of the patients with the specified numbers of initial tumors in
the bladder tumor study. Given U〈t〉 = u〈t〉, U〈n〉 = u〈n〉, and the number u〈r〉 of
past recurrences, the tumor recurrence time T was generated from W(a(u), b(u))

with

a(u) = (0.3 + 0.05u〈r〉)1/(1+u〈t〉) and b(u) = 50/
√

1 + u〈n〉.

Note that under this setting, the log hazard function η(t, u) is non-additive in u〈t〉 and
u〈r〉 but additive in u〈n〉. The censoring time was generated from Uniform(30, 60). For
each data replicate, the log hazard was estimated using the tensor product splines in
Example 2 and the model (15) to be applied to the bladder tumor study. The smoothing
parameters were selected using α = 1.4.

To examine the point-wise coverage, we first fixed the covariates at (u〈t〉, u〈r〉,
u〈n〉) = (0, 1, 1). Then for each time point t on the grid (5)(0.5)(50), we computed the
empirical coverage of the true log hazard η at the point (t, (0, 1, 1)) as the percentage
of the 100 replicates whose 95% confidence interval estimates cover the true value
η(t, (0, 1, 1)). The empirical point-wise coverage is then plotted in the left frame of
Fig. 2. We can see the coverage starts low when t is small (<10), which is expected since
there are only a small number of recurrence times falling below 10. As t increase, the
point-wise coverage goes up and stays close to the nominal value 0.95. To assess the
width of the confidence intervals, we selected two replicates that have the lowest and
the highest across-replicate average coverage (= percentage of the grid points where
the interval estimates from the data replicate cover the true values). Then the hazard
fits (solid lines) for the two replicates are plotted, together with the true hazard (dotted
lines) and the connected 95% point-wise confidence intervals (dashed lines), in the
middle (worst) and the right (best) frames of Fig. 2. Both plots show a proper scale for
the fit and the interval estimates. We also tried the simulations on covariate settings
(u〈t〉, u〈r〉, u〈n〉) = (0, 3, 1), (0, 1, 3), (0, 3, 3), (1, 1, 1), (1, 3, 1), (1, 1, 3), (1, 3, 3).
The results, though not shown here, were similar.
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Fig. 2 Coverage property of Bayesian confidence intervals. Left: Point-wise coverage over 100 data repli-
cates. The faded line is the nominal level 0.95. Center and right: Hazard fits and confidence intervals for the
replicates with the lowest (center) and the highest (right) coverage. The solid lines are the fits, the dashed
lines 95% confidence intervals, and the dotted lines the test hazard

4 Application: bladder tumor cancer data

In this section, we shall illustrate the proposed methods using the well-known bladder
tumor cancer data reported by Byar (1980). The data were from a randomized clin-
ical trial conducted by the Veterans Administration Co-operative Urological Group
between 1971 and 1976 and consisted of 118 patients with superficial bladder tumors.
The tumors were removed transurethrally, and patients were then randomly assigned
to one of three treatments: placebo, pyridoxine or thiotepa. Patients were examined
every 3 months for recurrence of tumor and any new tumors were removed. The avail-
able data are for the placebo and the thiotepa groups. There were 47 patients in the
placebo group with a total of 87 observed recurrences and 38 patients in the thiotepa
group with a total of 45 observed recurrences. Besides the treatment and number of
months to the event since last tumor occurrence, the number of initial tumors and
diameter of the largest initial tumor were also recorded for each patient. Particularly,
the number of initial tumors ranged from 1 to 8 with the respective counts of patients
equal to (50, 11, 10, 4, 5, 2, 0, 3). In our analysis, we will also include the number of
past tumor recurrences as a covariate for each gap time.

Let η(t, u) be the log hazard for gap times between tumor recurrences of a patient
when t months has passed since the last tumor occurrence, given that the covariate
value of the patient is u. Here u = (u〈t〉, u〈n〉, u〈r〉, u〈s〉) consists of the treatment u〈t〉
as a categorical variable with two levels (placebo or thiotepa), the number of initial
tumors u〈n〉, the number of past tumor recurrences u〈r〉 and the size of the largest
initial tumor in diameter u〈s〉 as continuous variables. The tensor product splines in
Example 2 were used in our following analysis. We first fitted a model with all the
two-way gap-time-covariate interactions,

η(ti j , ui j ) = η∅ + η1(ti j ) + η2(ui〈t〉) + η3(ui〈n〉) + η4(ui j〈r〉) + η5(ui〈s〉)
+ η1,2(ti j , ui〈t〉) + η1,3(ti j , ui〈n〉) + η1,4(ti j , ui j〈r〉)
+ η1,5(ti j , ui〈s〉), (14)

where i is the index for subject and j is the index for event. The model was fitted with
α = 1.4 for smoothing parameter selection. After applying the model selection tool
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developed in Gu (2004) for penalized likelihood estimation, the terms η5(ui〈s〉), η1,3
(ti j , ui〈n〉) and η1,5(ti j , ui〈s〉) were found to be negligible. Eliminating these terms
from (14), our final model is

η(ti j , ui j ) = η∅ + η1(ti j ) + η2(ui〈t〉) + η3(ui〈n〉) + η4(ui j〈r〉) + η1,2(ti j , ui〈t〉)
+ η1,4(ti j , ui j〈r〉). (15)

First, note that both of the terms involving u〈s〉 in (14) are not included in the final
model (15). It indicates that the size of the largest initial tumor is not associated with
tumor recurrences. This is a common finding in many of the previous studies on the
data. Second, model (15) indicates a violation of hazard proportionality. The signifi-
cance of the two interactions η1,2(ti j , ui〈t〉) and η1,4(ti j , ui j〈r〉) suggests that the effects
of treatment and number of recurrences experienced vary with gap time.

Then with model (15) fitted, Bayesian confidence intervals can be constructed by
the formula in Sect. 2.4. Plotted in Fig. 3 are 8 slices of the hazard fit along with their
95% Bayesian confidence intervals, at the covariate level combinations (u〈t〉, u〈n〉,
u〈r〉)= ("p", 1, 1), ("p", 1, 3), ("p", 3, 1), ("p", 3, 3), ("t", 1, 1), ("t", 1, 3),

("t", 3, 1), ("t", 3, 3), where u〈t〉 = "p" and u〈t〉 = "t" correspond to placebo
and thiotepa respectively, and 1 and 3 are the lower and upper quartiles of u〈n〉 and
u〈r〉 in the data. An observation from these plot is that when fixing other covariate
components at the specified levels, a patient treated with placebo has higher tumor
recurrence hazard than one treated with thiotepa, a patient with three initial tumors
has higher tumor recurrence hazard than one with only one initial tumor, and a patient
with three past tumor recurrences has higher tumor recurrence hazard than one with
only one tumor recurrence.

For the record, the final model (15) took 7.7 CPU minutes to compute, on a Dell
PowerEdge 2950 workstation with dual Xeon dual core 3.0 GHz CPUs and 16 GB
RAMs running openSUSE 11.0 and R 2.7.1.

5 Discussion

In this article, we have proposed a nonparametric penalized likelihood approach to
estimating the gap time hazard function in recurrent event data. Delete-one-subject
cross-validation is used to select smoothing parameter. Point-wise confidence inter-
vals of hazard function are developed for inference purpose. Asymptotic convergence
rates of the estimates are also established. The empirical studies have evaluated the
effectiveness of smoothing parameter selection and the coverage property of the pro-
posed confidence intervals. An interactive analysis of the well-known bladder tumor
cancer data demonstrates the usefulness of the proposed techniques.

In many studies, the covariate is associated only with each subject. This article
only focuses on processes on gap time domain. Thus the proposed techniques allow a
covariate U that changes at (and only at) each recurrence of a subject. This can clearly
apply to more general cases when diagnostic measurements are taken at each recur-
rence. Another possible application of this generalization can be letting Ui j represent
part of the history for subject i up to recurrence j . For example, let Ui j be the number
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Fig. 3 Hazard estimates for bladder tumor cancer data. Left: Placebo (u〈t〉 = "p"). Right: Thiotepa
(u〈t〉 = "t"). From top to bottom: (u〈n〉, u〈r〉) = (1, 1), (1, 3), (3, 1), (3, 3). The hazard fit is in solid line
and the 95% Bayesian confidence intervals are in dotted lines; superimposed are the other hazard fits whose
covariate values differ from those of the solid line only in u〈t〉 (dashed line), u〈n〉 (faded dashed line), or
u〈r〉 (faded solid line)
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of recurrences experienced by subject i up to recurrence j as in our analysis of the
bladder tumor cancer data.

For simplicity, in this article we only consider independent right censoring at the last
event. However, in some situations each recurrence can subject to left truncation and
right censoring. An example of such recurrent event data appeared in an AIDS study
on the effect of drug ribavirin described in Wei et al. (1989), where each of the three
potential events for a patient could be right censored. A more common situation is that
the first recurrence can be left truncated. In these situations, one can simply modify
the proposed method by replacing (0, Xi j ) with the corresponding left truncation and
right censoring times in (2).

Acknowledgements The author is grateful to his advisor Chong Gu and the referees for their helpful
comments that have significantly improved the paper.

Appendix A: derivation of cross-validation score

In this section, we shall derive the cross-validation score (9) from the Kullback–Lei-
bler distance (8). Dropping the terms that do not involve ηλ, one can estimate the
remaining part of (8) by

1

N

n∑
i=1

�i∑
j=1

Xi j∫
0

eηλ(t,Ui j )dt − 1

N

n∑
i=1

�i∑
j=1

Xi j∫
0

ηλ(t, Ui j )e
η0(t,Ui j )dt. (16)

The first term of (16) is directly computable. But the second term µη0(ηλ) involves
the unknown η0(t, u) and has to be estimated.

Let N (t) = I[X≤t,δ=1] be the event process and Y (t) = I[X≥t] the at-risk process.
Write A(t) = ∫ t

0 Y (s)eη0(s,U )ds and M(t) = N (t) − A(t). Although M(t) is not a
martingale due to the lack of a filtration, Gill (1980), (27) showed that like a martingale,

E

[∫
T

f (s)d M(s)

]
= 0 (17)

for a predictable function f (t). Then for f (t, u) continuous in t , ∀u ∈ U , and
independent of X, E[∫T f (t, U )d M(t)] = 0. “Estimating” 0 by the sample mean

N−1∑n
i=1

∑Ki +1
j=1

∫
T f (t, Ui j )d Mi j (t), one has

0 ≈ 1

N

n∑
i=1

Ki +1∑
j=1

{∫
T

f (t, Ui j )d Ni j (t) −
∫
T

f (t, Ui j )Yi j (t)e
η0(t,Ui j )dt

}

= 1

N

n∑
i=1

Ki +1∑
j=1

{
δi j f (Xi j , Ui j ) −

∫ Xi j

0
f (t, Ui j )e

η0(t,Ui j )dt

}
, (18)

123



272 Lifetime Data Anal (2009) 15:256–277

Setting f (t, Ui j ) = η
[i]
λ,η̃

(t, Ui j ) yields an estimate

µ̃η0(ηλ) = 1

N

n∑
i=1

Ki +1∑
j=1

Xi j∫
0

η
[i]
λ,η̃

(t, Ui j )e
η0(t,Ui j )dt ≈ 1

N

n∑
i=1

Ki∑
j=1

η
[i]
λ,η̃

(Xi j , Ui j ),

(19)

of µη0(ηλ) in (18), where η
[i]
λ,η̃

minimizes the delete-one-subject version of the qua-
dratic approximation of (2) at η̃ = ηλ:

− 1

N − Ki − 1

n∑
l=1
l �=i

Kl∑
j=1

η(Xl j , Ul j ) + µη̃(η) − Vη̃(η̃, η) + 1

2
Vη̃(η, η) + λ

2
J (η).

(20)

Set η̃ = ηλ and write ψ = (ξ T ,φT )T and c̆ = (cT , dT )T . Rewrite (7) as H c̆ =
Q̆1/N + g, where H = Vη̃(ψ,ψT ) + diag(λQ, 0), Q̆ = (

∑K1
j=1 ψ(X1 j , U1 j ), . . . ,∑Kn

j=1 ψ(Xnj , Unj )), and g = Vη̃(ψ, η̃) − µη̃(ψ). Similarly, the coefficient vector of

η
[i]
λ,η̃

, the minimizer of (20), is

c̆[i] = H−1

(
Q̆1 −∑Ki

j=1 ψ(Xi j , Ui j )

N − Ki − 1
+ g

)

= c̆ − 1

N
H−1 Q̆1 + 1

N − Ki − 1
H−1 Q̆1

− 1

N − Ki − 1
H−1

⎛
⎝ Ki∑

j=1

ψ(Xi j , Ui j )

⎞
⎠. (21)

Note that η
[i]
λ,η̃

(Xi j , Ui j ) = ψ(Xi j , Ui j )
T c̆[i]. Combining (16), (19) and (21) yields

the unadjusted cross-validation score

− 1

N

n∑
i=1

�i∑
j=1

⎧⎪⎨
⎪⎩δi jηλ(Xi j , Ui j ) −

Xi j∫
0

eηλ(t,Ui j )dt

⎫⎪⎬
⎪⎭

+ 1

N

{
1T (I/N − D)Q̆T H−1 Q̆1 + tr(DQ̆T H−1 Q̆)

}
. (22)

Appendix B: proof of asymptotic convergence

In this section, we shall prove the asymptotic convergence rates of the estimates in
three steps through an eigenvalue analysis. Let η̂ and η̂∗ be the minimizers of (2) in
H and Hn .
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Write the gap time processes as Ni j (t) = I[Xi j ≤t,δi j =1], Yi j (t) = I[Xi j ≥t], and

Ai j (t) = ∫ t
0 Yi j (s)eη0(s,Ui j )ds. Although Mi j (t) = Ni j (t) − Ai j (t) is not a martin-

gale, it has a martingale-type property as in (17). The penalized likelihood functional
(2) can be written as

1

N

n∑
i=1

�i∑
j=1

{∫
T

ηi j d Ni j (t) −
∫
T

Yi j e
ηi j dt

}
+ λ

2
J (η), (23)

where ηi j (t) = η(t, Ui j ).
From Condition 1, there exist eigenvalues πν (as in Condition 2) and the associated

eigenfunctions ζν such that V (ζν, ζµ) = δν,µ and J (ζν, ζµ) = πνδν,µ, where δν,µ is
the Kronecker delta. And any function f satisfying J ( f ) < ∞ can be expressed as a
Fourier series expansion f = ∑

ν fνζν with the Fourier coefficients fν = V ( f, ζν).
See, e.g., Weinberger (1974) and Gu (2002). Simple calculus manipulations then yield
the following lemma.

Lemma 1 Under Condition 2, as λ → 0, the sums
∑

ν
λπν

(1+λπν)2 ,
∑

ν
1

(1+λπν)2 , and∑
ν

1
1+λπν

are all of order O(λ−1/r ).

Step 1: Linear Approximation.
A linear approximation η̃ to η̂ is the minimizer of a quadratic approximation to (2),

− 1

N

n∑
i=1

�i∑
j=1

{∫
T

ηi j d Ni j (t) −
∫
T

ηi j Yi j e
η0,i j dt

}
+ 1

2
V (η − η0) + λ

2
J (η), (24)

after dropping the terms not involving η. Plugging the Fourier series expansions η =∑
ν ηνζν and η0 = ∑

ν ην,0ζν in (24), one obtains the Fourier coefficients

η̃ν = (βν + ην,0)/(1 + λπν)

of η̃, where βν = N−1∑n
i=1

∑�i
j=1

∫
T ζν,i j d Mi j (t) with ζν,i j (t) = ζν(t, Ui j ). Fur-

ther assuming that gap times for each subject are distinct, one has Ni j (t)Ni j ′(t) ≡ 0
for any i and j �= j ′. Hence E[βν] = 0 and E[β2

ν ] = N−1, which then give

E[V (η̃ − η0)] = 1

n

∑
ν

1

(1 + λρν)2 + λ
∑
ν

λρν

(1 + λρν)2 ρνη
2
ν,0,

E[λJ (η̃ − η0)] = 1

n

∑
ν

λρν

(1 + λρν)2 + λ
∑
ν

(λρν)
2

(1 + λρν)2 ρνη
2
ν,0. (25)

Combining Lemma 1 and (25), we obtain that (V + λJ )(η̃ − η0) = Op(N−1λ−1/r +
λp), as N → ∞ and λ → 0.

Step 2: Approximation Error.
We now investigate the approximation error η̂ − η̃ and prove the convergence rate

of η̂. Define A f,g(α) and B f,g(α) respectively as the resulting functionals from setting
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η = f + αg in (23) and (24). Differentiating them with respect to α and then setting
α = 0 yields

Ȧ f,g(0) = − 1

N

n∑
i=1

�i∑
j=1

{∫
T

gi j d Ni j (t) −
∫
T

gi j Yi j e
fi j dt

}
+ λJ ( f, g), (26)

Ḃ f,g(0) = − 1

N

n∑
i=1

�i∑
j=1

{∫
T

gi j d Ni j (t) −
∫
T

gi j Yi j e
η0,i j dt

}

+ V ( f − η0, g) + λJ ( f, g). (27)

Set f = η̂ and g = η̂ − η̃ in (26), and set f = η̃ and g = η̂ − η̃ in (27). Then
subtracting the resulted equations gives

1

N

n∑
i=1

�i∑
j=1

∫
T

(η̂ − η̃)i j (e
η̂ − eη̃)i j Yi j dt + λJ (η̂ − η̃)

= V (η̃ − η0, η̂ − η̃) − 1

N

n∑
i=1

�i∑
j=1

∫
T

(η̂ − η̃)i j (e
η̃ − eη0)i j Yi j dt. (28)

The following lemma is needed to proceed.

Lemma 2 Under Conditions 1, 2, and 4, as λ → 0 and Nλ2/r → ∞,

1

n

n∑
i=1

�i∑
j=1

∫
T

fi j gi j e
η0,i j Yi j dt = V ( f, g) + op({(V + λJ )( f )(V + λJ )(g)}1/2),

where fi j = f (t, Ui j ) and gi j = g(t, Ui j ).

Proof First, repeated uses of the Cauchy–Schwartz inequality can easily show that

E
[{∫

T ζνζµeη0 Y dt − V (ζν, ζµ)
}2
]

< ∞. Let f = ∑
ν fνζν and g = ∑

µ gµζµ be

the Fourier series expansion of f and g. Then from the Cauchy–Schwartz inequality
and Lemma 1,

∣∣∣∣∣∣
1

N

n∑
i=1

�i∑
j=1

∫
T

fi j gi j e
η0,i j Yi j dt − V ( f, g)

∣∣∣∣∣∣

=
∣∣∣∣∣∣
∑
ν

∑
µ

fνgµ

⎧⎨
⎩

1

N

n∑
i=1

�i∑
j=1

∫
T

ζν,i jζµ,i j e
η0,i j Yi j dt − V (ζν, ζµ)

⎫⎬
⎭
∣∣∣∣∣∣

≤
⎧⎨
⎩
∑
ν

∑
µ

1

1 + λρν

1

1 + λρµ
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×
⎧⎨
⎩

1

N

n∑
i=1

�i∑
j=1

∫
T

ζν,i jζµ,i j e
η0,i j Yi j dt − V (ζν, ζµ)

⎫⎬
⎭

2
⎫⎪⎬
⎪⎭

1/2

×
{∑

ν

∑
µ

(1 + λρν)(1 + λρµ) f 2
ν g2

µ

}1/2

= Op(N−1/2λ−1/r ){(V + λJ )( f )(V + λJ )(g)}1/2. 	


By the mean value theorem, Condition 3, Lemma 2, and (28),

(c1V + λJ )(η̂ − η̃)(1 + op(1))

≤ {(|1 − c|V + λJ )(η̂ − η̃)}1/2 Op({(|1 − c|V + λJ )(η̃ − η0)}1/2)

for some c ∈ [c1, c2]. Then the convergence rate of η̂ in Theorem 1 follows from that
of η̃ proved in the previous step.

Step 3: Semiparametric Approximation.
Our last goal is the convergence rate for the minimizer η̂∗ in the space Hn =

NJ ⊕ span{RJ ((Xi j , Ui j ), ·) : j = 1, . . . , Ki ; i = 1, . . . , n}.
For any h ∈ H � Hn , one has δi j h(Xi j , Ui j ) = δi j J (RJ ((Xi j , Ui j ), ·), h) = 0,

so
∑n

i=1
∑�i

j=1

∫
T h2

i j d Ni j (t) = ∑n
i=1

∑�i
j=1 δi j h2(Xi j , Ui j ) = 0, where hi j (t) =

h(t, Ui j ). Hence, by the same arguments used in the proof of Lemma 2,

V (h) =
∣∣∣∣∣
1

n

n∑
i=1

∫
T

h2
i d Ni (t) − V (h)

∣∣∣∣∣
= Op(n

−1/2λ−1/r )(V + λJ )(h) = op(λJ (h)). (29)

Let η∗ be the projection of η̂ in Hn . Setting f = η̂ and g = η̂ − η∗ in (26), some
algebra yields

λJ (η̂ − η∗) = 1

N

n∑
i=1

�i∑
j=1

∫
T

(η̂ − η∗)i j d Mi j (t)

− 1

N

n∑
i=1

�i∑
j=1

∫
T

(η̂ − η∗)i j (e
η̂ − eη0)i j Yi j dt; (30)

Note that J (η∗, η̂ − η∗) = 0 and βν = N−1∑n
i=1

∑�i
j=1

∫
T φν,i j d Mi j (t). An appli-

cation of the Cauchy–Schwartz inequality shows that the first sum in (30) is of order
{(V + λJ )(η̂ − η∗)}1/2 Op(N−1/2λ−1/2r ). By the mean value theorem, Condition 3,
Lemma 2, and (29), the second sum in (30) is of order op({λJ (η̂ − η∗)(V + λJ )(η̂ −
η0)}1/2). These, combined with (30) and the convergence rates of η̂, yield λJ (η̂−η∗) =
Op(N−1λ−1/r + λp) and V (η̂ − η∗) = op(N−1λ−1/r + λp).
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Set f = η̂∗ and g = η̂∗ − η∗ in (26), and set f = η̂ and g = η̂ − η̂∗ in (26).
Subtracting the resulted equations yields

1

N

n∑
i=1

�i∑
j=1

∫
T

(η̂∗ − η∗)i j (e
η̂∗ − eη∗

)i j Yi j dt + λJ (η̂∗ − η∗) + λJ (η̂ − η∗)

= 1

N

n∑
i=1

�i∑
j=1

∫
T

(η̂ − η∗)i j d Mi j (t) + 1

N

n∑
i=1

�i∑
j=1

∫
T

(η̂ − η∗)i j (e
η0 − eη̂)i j Yi j dt

+ 1

N

n∑
i=1

�i∑
j=1

∫
T

(η̂∗ − η∗)i j (e
η̂ − eη∗

)i j Yi j dt. (31)

By the mean value theorem, Condition 3, and Lemma 2, the left-hand side of (31) is
bounded from below by

(c1V + λJ )(η̂∗ − η∗)(1 + op(1)) + λJ (η̂ − η∗).

For the right-hand side, the first and second terms are of the order Op(N−1λ−1/r +λp)

by similar arguments for (30), and the third term is of the order

{(V + λJ )(η̂∗ − η∗)}1/2op({λJ (η̂ − η∗)}1/2)

by Condition 3, Lemma 2, and (29). Putting things together, one obtains (V +λJ )(η̂∗−
η∗) = Op(N−1λ−1/r + λp). Then the convergence rate of η̂∗ in Theorem 1 follows.
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