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Abstract The development of models and methods for cure rate estimation has
recently burgeoned into an important subfield of survival analysis. Much of the lit-
erature focuses on the standard mixture model. Recently, process-based models have
been suggested. We focus on several models based on first passage times for Wiener
processes. Whitmore and others have studied these models in a variety of contexts. Lee
and Whitmore (Stat Sci 21(4):501–513, 2006) give a comprehensive review of a vari-
ety of first hitting time models and briefly discuss their potential as cure rate models.
In this paper, we study the Wiener process with negative drift as a possible cure rate
model but the resulting defective inverse Gaussian model is found to provide a poor fit
in some cases. Several possible modifications are then suggested, which improve the
defective inverse Gaussian. These modifications include: the inverse Gaussian cure
rate mixture model; a mixture of two inverse Gaussian models; incorporation of het-
erogeneity in the drift parameter; and the addition of a second absorbing barrier to
the Wiener process, representing an immunity threshold. This class of process-based
models is a useful alternative to the standard model and provides an improved fit com-
pared to the standard model when applied to many of the datasets that we have studied.
Implementation of this class of models is facilitated using expectation-maximization
(EM) algorithms and variants thereof, including the gradient EM algorithm. Parame-
ter estimates for each of these EM algorithms are given and the proposed models are
applied to both real and simulated data, where they perform well.
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1 Background

1.1 The cure rate

This section is an overview of the commonly used methods in modeling populations
that contain immune individuals. Let T be a random variable representing survival time
to some event of interest. Let S(t) represent the survivor function for the population,
where S(t) = P(T > t). The cure rate p is then defined as p = limt→∞ S(t).

Note that, throughout this paper, we assume independent random censoring as
described by Lawless (2003, p. 54).

1.2 Common cure rate models

1.2.1 The Kaplan-Meier estimator

A nonparametric estimator of the cure rate is the minimum value of the Kaplan-Meier
curve; p̂ = min{Ŝ(t)}. This estimator of p is sometimes referred to as the Kaplan-
Meier cure rate estimator (KMCRE). The KMCRE is well known to give misleading
estimates of the cure rate (details in Maller and Zhou 1996).

1.2.2 Parametric cure rate mixture models

In the analysis of survival data with a possible immune proportion, parametric cure
rate mixture models are a natural method of analysis. Boag (1949), Berkson and Gage
(1952), Farewell (1982) and many others have extensively modeled populations with a
suspected immune proportion. The standard parametric cure rate mixture model takes
the form

Spop(t) = p + (1 − p)S0(t),

where S0(t) is a proper parametric survival distribution and Spop(t) is the population
survival function. Many choices for S0(t) are possible; common choices that have
been used in the literature are the Weibull distribution, the log-logistic distribution,
and the lognormal distribution. Peng et al. (1998) use a generalized F-distribution in a
cure rate mixture model. The generalized F-distribution is very flexible and includes
many of the commonly used survival time distributions as special cases. However, it
is quite complicated and its application is computationally intensive.

Parametric cure rate mixture models are not without their faults however. Farewell
(1982) discussed some of the problems involved and suggested that mixture models
not be used, unless there is strong scientific evidence of an immune proportion. When
the two populations (immune and susceptible individuals) are assumed to exist, the
inferences will be based on this assumption whether it is valid or not. Farewell (1982)
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also advocates careful inspection of the likelihood function, since in many applica-
tions it can be quite flat as the cure rate p changes. It can be difficult to distinguish
between a proportion of cured individuals and a long right tail of the distribution of
failure times for the susceptible proportion.

1.3 Alternatives to the standard cure rate mixture model

1.3.1 Yakovlev’s model

Yakovlev et al. (1993) discuss an alternative to the standard cure rate model that has
a strong appeal for its natural biological interpretation. Chen et al. (1999) discuss a
formulation of this model in a Bayesian framework. The model is often phrased in
terms of times to relapse of cancer, since it has a clear biological interpretation in that
context. In the formulation of Chen et al. (1999), an individual is assumed to have N
carcinogenic cells, where N has a Poisson distribution with mean θ .

Let Zi be the time that the i th carcinogenic cell produces an observable cancer
mass. The Zi are assumed to be independent and identically distributed with some
distribution function F(t). The time to relapse of the cancer is given by T = min{Zi :
1 ≤ i ≤ N }. The survival function for the population is

Spop(t) = P(no detectable tumour by time t) = e−θ +
∞∑

k=1

S(t)k θk

k! e−θ = e−θ F(t).

Note that Spop(∞) = e−θ > 0, which implies there are cured individuals present in
the population.

1.3.2 Proportional hazards cure models

The standard proportional hazards model (Cox 1972) as commonly used, does not
usually allow for a cured proportion. However, as a referee has pointed out, it is
possible to have S0(∞) > 0 in the baseline survival function. More commonly, in the
standard cure rate mixture model, a cured proportion is incorporated into the survival
function as follows:

S(t | x) = p(x) + (1 − p(x))S0(t)
exp(β ′x),

where p(x) typically has a logistic-linear link with the covariates and S0(∞) = 0.
Estimation of the model parameters can be more computationally difficult than in
the standard cure rate mixture model. Kuk and Chen (1992) used a Monte Carlo
simulation method to estimate the model parameters. Taylor (1995) implemented the
expectation-maximization algorithm (described in Sect. 3.1) on a version of the model
with no covariates. Sy and Taylor (2000) and Peng and Dear (2000) extended the
method to allow for inclusion of covariate information.
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1.3.3 Frailty models

In standard frailty models, a non-negative frailty random variable Y is introduced,
acting multiplicatively on the hazard rate (cf. Duchateau and Janssen 2008). The frailty
models can be adapted to allow for a cured proportion by choosing a distribution for
Y that has a point mass at 0.

Aalen (1992) considered a family of compound Poisson distributions. In this model,
the form of the frailty random variable Y is

Y =
{

X1 + X2 + . . . + X N if N > 0
0 if N = 0,

where N has a Poisson distribution and X1, X2, . . . , X N are independent, each having
a gamma distribution. Longini and Halloran (1996) also extend the standard frailty
model to allow for a cured proportion by using a frailty mixture model in which the
frailty is 0 with probability p, and has a continuous distribution with probability 1− p.

1.3.4 Defective distributions

Defective distributions integrate to less than one for certain values of the parameters,
without explicitly including the parameter p. There are several choices of such dis-
tributions that lead to interesting possibilities for cure rate models. Haybittle (1959)
fits a Gompertz model to survival times for breast cancer. Cantor and Shuster (1992)
also used the Gompertz distribution to model times to death for patients with pedi-
atric cancer and in this model, the modified Gompertz hazard function is given by
λ(t) = αeβt , α > 0, β < 0. This yields a survival function for the population of
Spop(t) = exp

{
β−1α

(
1 − eβt

)}
, and a cure rate of p = eβ−1α . Gieser et al. (1998)

extended this model to include covariate information.
Note that the cure rate p is a function of the parameters of the failure time distribution

of the susceptibles. This could be a drawback to the use of defective distributions as
cure rate models. Of course, if the assumed relationship between the cure rate and
failure time distribution is correct, the assumption will aid in accurate estimation of
the parameters. However, if this assumption is not correct, then the estimates of the
cure rate and failure time distribution for the susceptibles will be biased.

Another choice of defective distribution that has been used in the literature is
the inverse Gaussian distribution; see, for example, Whitmore (1979). The inverse
Gaussian cure rate model and several related models will be discussed in Sect. 2.

2 Cure rate models based on the first passage time of a Wiener process

2.1 Introduction

In many situations, it is natural to view the survival event of interest as the end result
of an underlying process. For example, in cancer studies, death is the end result of the
progression of cancer in the body. Attempting to model the underlying process may
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aid in a more complete understanding of the nature of the event. Cox (1999) outlines
four different types of relations between such a process and failure; our models fall
under the first of those types. Aalen and Gjessing (2001) suggested that more attention
should be paid to survival models viewed from a process point of view. This section
views survival times as the first passage time of an underlying Wiener process. For
applications of first hitting times to survival analysis, see Lee and Whitmore (2004),
Whitmore et al. (1998) and Lee and Whitmore (2006). The inverse Gaussian distribu-
tion arises as the first passage time to an absorbing barrier in a Wiener process. Cure
rate models based on the inverse Gaussian distribution have seen limited use in the
literature; see, however, Whitmore (1979) and Lee and Whitmore (2006).

2.2 The inverse Gaussian distribution

The inverse Gaussian distribution was first derived by Schrödinger (1915), who dis-
covered it as the probability distribution of the first passage time in one dimensional
Brownian motion. Tweedie (1945) studied this distribution further and first proposed
the name inverse Gaussian distribution. Let Y (t) be a Wiener process with drift δ and
volatility ν starting at the origin. That is, let Y (t) have the following properties:

1. For any t1 < t2 < t3 < t4, Y (t2) − Y (t1) and Y (t4) − Y (t3) are independent.
2. Y (t2)−Y (t1) is normally distributed with mean δ(t2 − t1) and variance ν(t2 − t1).

The distribution of the first passage time to an absorbing barrier u > 0 units from
the origin is given by

f (t) = u√
2νπ t3

e−(u−δt)2/2νt , (1)

where δ > 0 and ν > 0. There are three parameters, but the density depends statisti-
cally on only two.

The popularity of the inverse Gaussian distribution as a lifetime model has also
increased since the review paper of Chhikara and Folks (1978). In more recent years,
it has been used for extensive application; examples include modeling labour turn-
over (Whitmore 1979), strike duration (Lancaster 1972) and times to task completion
(Desmond and Chapman 1993). Its origin as the first passage time in Brownian motion
is very appealing for a lifetime model. Lee and Whitmore (2006) give a review of gen-
eral first hitting time models and suggest their potential for use as cure rate models.
The inverse Gaussian distribution is also flexible, with shapes ranging from highly
skewed to symmetrical, depending on the value of the shape parameter φ = δ/ν.

2.3 The defective inverse Gaussian distribution

If δ > 0, then the underlying Wiener process will reach the barrier at Y = u with
certainty. The inverse Gaussian distribution has a property that is useful when mod-
eling situations where immune individuals may be present; for values of δ < 0, the
distribution is defective, that is S(∞) > 0. This is easy to visualize when viewed
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through the underlying process. If the mean drift is away from the absorbing barrier,
not all individuals will reach the barrier. Whitmore (1979) called the inverse Gaussian
distribution allowing for negative values of δ the ‘defective’ inverse Gaussian (DIG)
distribution.

For δ < 0, there is a point mass at infinity of 1 − e2δ/ν . When used as a cure rate
model, the proportion of immunes in the population is

p = S(∞) =
{

1 − e2δ/ν for δ < 0
0 for δ ≥ 0.

Another property of the DIG distribution easily yields the failure time distribution of
the susceptibles in the population. The distribution of first passage times, conditional
on reaching the barrier, is a proper inverse Gaussian distribution with drift parameter
|δ|.

The DIG model has the appealing property of a simple interpretation of the under-
lying process, but there are some disadvantages that may restrict its use as an effective
cure rate model. Both the cure rate, and the shape of the failure time distribution of the
susceptible proportion depend only on φ = δ/ν. If the actual underlying process is a
Wiener process with negative drift, this relationship will aid in the estimation of the
cure rate. The DIG model will be the best model in this situation, and more information
can be gained about p from the observed failure times. If the underlying process is a
Wiener process with positive drift (δ > 0) and the true value of p = 1 − e−2δ/ν , then
it is also the same situation. Since it will generally be impossible to know whether the
true process has negative drift, or has positive drift with p = 1 − e−2δ/ν , this may be
too restrictive an assumption in many practical cases.

Farewell (1986) suggests that one should be quite sure of the presence of a cured
proportion in the population before they are used, since these mixture models will
attempt to fit this proportion, whether or not it is truly different from zero. This may
not be as much of a problem with the DIG model, since the estimation procedure will
not necessarily seek to fit the model with δ < 0.

2.4 The inverse Gaussian cure rate mixture model

For values of δ > 0, the inverse Gaussian is a proper distribution, and an ordinary cure
rate mixture model can be fitted using standard techniques. The likelihood function is

L(p∗, δ, ν | t) =
∏

i∈D

(1 − p∗) f (ti )
∏

i∈C

[p∗ + (1 − p∗)S(ti )],

where f (t) is defined as in (1) and

S(t) = 1 −
[
	

(−1 + δt√
νt

)
+ e2δ/ν	

(
−1 + δt√

νt

)]
,

for δ > 0, ν > 0. The parameter p∗ represents the proportion of individuals not
subject to the Wiener process, or subject to a different process that will never reach the
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absorbing barrier. If δ is restricted to positive values, p∗ = p, which is the cure rate.
A modification to this standard cure rate model involves allowing values of δ < 0, as
in the DIG, but still including a parameter p∗. In this case, the cure rate is

p =
{

p∗ + (1 − p∗)(1 − e2δ/ν) for δ < 0
p∗ for δ ≥ 0.

In the absence of covariate information, allowing δ < 0 in the inverse Gaussian cure
rate mixture is redundant, as the proportion of immune individuals accounted for
by negative drift can simply be absorbed into the parameter p∗. For models involving
covariates, there may be differences between the two choices of mixture model. Allow-
ing δ < 0 values in the inverse Gaussian cure rate mixture is somewhat of a hybrid
between the DIG and the standard inverse Gaussian cure rate mixture. It results in
a more difficult interpretation of the parameter estimates, but a more flexible model.
The inverse Gaussian cure rate mixture model with unrestricted δ, will be referred
to (somewhat loosely) as the inverse Gaussian cure rate mixture (IGCRM) herein
and, in the absence of covariate information, δ will be restricted to positive values.
The added parameter makes the IGCRM model a more flexible model than the DIG
model. Maximum likelihood estimates of the parameters in the IGCRM can be found
through maximization techniques applied directly to the likelihood function, or via
the expectation-maximization (EM) algorithm and its variants, discussed in Sect. 3.

2.5 A Wiener process with two absorbing barriers

The addition of a second absorbing barrier to the underlying Wiener process results
in another cure rate model. Consider a Wiener process with drift δ and variance ν,
with absorbing barriers at u, and −l, where u, l > 0. The process terminates when
it reaches either barrier. The distribution of the first passage time to one of the barri-
ers, conditional on not first reaching the other barrier, can be found in many texts on
stochastic processes; for example, see Feller (1986).

This distribution has strong potential for use as a cure rate model, with a simple,
natural interpretation. Let the upper barrier represent the survival event of interest, and
the lower barrier −l represent an immunity threshold. Figure 1 illustrates two sample
paths of a Wiener process, with absorbing barriers at u and −l.

In Fig. 1, Sample 2 is absorbed into the upper barrier at time t2 and since the upper
barrier represents the event of interest, t2 will be an observed failure time. Sample 1
is absorbed into the lower barrier at time t1. The individual corresponding to Sample
1 achieves immunity at time t1, and will therefore never reach the upper barrier. This
individual will never experience the event of interest and will eventually result in a
censored observation.

An uncensored event time corresponds to the first passage time to the upper bar-
rier, conditional on having never reached the lower barrier. The density function of
the first passage time to the upper barrier depends on four parameters: δ, ν, u, and l,
only three of which are free, in a statistical sense. For the sake of consistency with
the other models discussed herein, the upper barrier u is set at 1. This is equivalent to
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Fig. 1 Two samples of a Wiener process with two absorbing barriers

starting with a two barrier Wiener process with parameters δ′, ν′, u′, and l ′, and letting
δ = δ′/u′, ν = ν′/(u′)2, u = u′/u′ = 1, l = l ′/u′. Under this parameterization,
the density function of the time to reach the upper barrier before reaching the lower
barrier is given by

f (t | δ, ν, l) = eδ/ν ν

(1 + l)2

∞∑

k=1

ezk t kπ sin

(
kπ

(1 + l)

)
,

where

zk = −1

2

(
δ2

ν
+ k2π2ν

(1 + l)2

)
.

This expression is well known in the theory of Brownian motion; for example, see
Knight (1981). Note that this distribution is defective, since not all individuals will
reach the upper barrier. The probability of not being absorbed in the upper barrier by
time t is given by

S(t | δ, ν, l) = 1 − eδ/ν

⎡

⎣ sinh( δl
ν
)

sinh
(

δ(1+l)
ν

) − ν

(1 + l)

∞∑

k=1

e−λk t

λk
kπ sin

(
kπ

1 + l

)⎤

⎦ ,
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where

λk = 1

2

[
δ2

ν
+ k2π2ν

(1 + l)2

]

(Pelsser 2000). The proportion of individuals that will never be absorbed by the upper
barrier (the cure rate) is given by

p = S(∞ | δ, ν, l) = 1 − eδ/ν sinh
(

δl
ν

)

sinh
(

δ(1+l)
ν

) .

Right censored times imply that the process has not been absorbed in the upper barrier
by time t . Thus right censored times contribute a likelihood factor of S(t). The likeli-
hood function is the standard likelihood for right censored survival times; L(δ, ν, l |
t) =∏i∈D f (ti )

∏
i∈C S(ti ). Both the density function and survivor function involve

an infinite sum. Maximum likelihood procedures involve truncating the sum when the
contribution of the terms becomes negligible.

Covariates can be included in a similar fashion as the previously discussed models,
letting the drift parameter have a linear relationship with the covariates. The value of
the lower barrier may also be allowed to depend on the covariates. Note that the two
barrier model reduces to the DIG model for l = ∞ and so the two barrier model is a
generalization of the DIG model, yet still preserves the interpretation of the underlying
process. The two barrier model has an advantage over the inverse Gaussian cure rate
mixture model in that the cure rate is determined completely by the process and is
not modelled as a separate quantity. The two barrier Wiener process cure rate model
is a natural extension of the inverse Gaussian distribution to incorporate a cure rate.
The major drawback of the two barrier model is that the density and survival func-
tions are much more complicated, resulting in the analysis being significantly more
computationally intensive.

2.6 Mixture of two inverse Gaussian distributions

An alternative Wiener process model arises if the population is a mixture of individuals
subject to one of two different Wiener processes. Whitmore and Su (2007) considered
such models in a study of fetal birth weight. Let π represent the proportion of individ-
uals that are subject to a process with positive drift, while the remaining proportion
1 −π are subject to a Wiener process with possibly negative drift. Individuals subject
to positive drift will experience the event of interest with certainty and only those
individuals that experience negative drift are potentially immune. For this model, the
density function of time to failure for the population is fpop(t) = π f1(t)+(1−π) f2(t),
where f1(t) is the inverse Gaussian density with parameters δ1, ν1 > 0, and f2(t) is
the DIG density with parameters −∞ < δ2 < ∞, and ν2 > 0. This model reduces to
the DIG model for π = 0. The cure rate is given by
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p =
{

(1 − π)(1 − e2δ2/ν2) for δ2 < 0
0 for δ2 ≥ 0.

This five parameter model has much more flexibility than the two parameter DIG
or three parameter IGCRM and can provide a substantially better fit to some data
sets. The added parameters can result in difficulty fitting the model, as widely varying
parameter values can result in similar values of the likelihood function. The likelihood
for this model is given by

L(δ1, δ2, ν1, ν2, π | t) =
∏

i∈D

[π f1(t) + (1 − π) f2(t)]
∏

i∈C

[π(1 − F1(t))

+ (1 − π)(1 − F2(t))] ,

where Fj (t) is the cumulative distribution function of the inverse Gaussian distribution
with parameters δ j and ν j , for j = 1, 2. Parameter estimates can be found by max-
imizing the likelihood function. A method based on the EM algorithm is discussed
in Sect. 3. This defective inverse Gaussian-inverse Gaussian mixture model will be
called the DIGIGMIX model hereafter.

2.7 Heterogeneity in the drift parameter

In many practical cases, it may be reasonable to think that some individuals have
higher drift than others. This may be accounted for by measured covariates, but there
may also be unexplained individual heterogeneity in the population. Whitmore (1986)
extended the defective inverse Gaussian model by deriving a mixture model allowing
for heterogeneity in both δ and ν. Whitmore also derived a restricted version of this
model, allowing only for heterogeneity in δ. In the restricted model, the drift param-
eter was assumed to have a normal distribution. This section will discuss this latter
model, allowing for heterogeneity in δ only. Desmond and Chapman (1993) modelled
times to task completion at a large automobile plant using this mixture distribution.
However, neither Whitmore (1986) nor Desmond and Chapman (1993) acknowledge
explicitly the defective nature of this model. Aalen and Gjessing (2001) point out the
defective nature of this model and hence its potential as a cure rate model; they also
point out the connection with frailty.

Consider (1) and assume that the drift parameter is normally distributed with mean
d and variance ντ . Then the marginal distribution of the time to failure is,

f (t | d, ν, τ ) = 1√
2πνt3(τ t + 1)

exp

{
− (td − 1)2

2νt (τ t + 1)

}
.

As δ can take on negative values in the conditional normal distribution, the marginal
distribution of T is defective. Note that for τ = 0, there is no heterogeneity in δ and
this distribution reduces to the DIG distribution. Score tests for H0 : τ = 0 were stud-
ied by Desmond and Yang (2006). Likelihood ratio tests and Wald tests were studied
by Desmond and Chapman (1992).
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To construct the likelihood function and estimate the model parameters, the survivor
function is needed. The survivor function is given by

S(t | d, ν, τ ) = 	

(
1 − dt√

ν(t2τ + t)

)
− e2(d+τ)/ν	

(
−1 + t (2τ + d)√

ν(t2τ + t)

)
.

The cure rate p is given by the limiting value of the survivor function:

p = 	

(
− d√

ντ

)
− e2(d+τ)/ν	

(
−2τ + d√

ντ

)
.

This inverse Gaussian-normal mixture model will be called the IGNMIX for the
remainder of this work.

3 Parameter estimation in cure rate mixture models

3.1 The expectation-maximization algorithm

The analysis of cure rate data often involves finding maximum likelihood estimates
of the model parameters. The likelihood function for the various models rarely has
closed form solutions for the maximum likelihood estimators, necessitating the use
of numerical techniques. The expectation-maximization (EM) algorithm (Dempster
et al. 1977) is an iterative technique used to obtain maximum likelihood estimates
for a likelihood function L(θ | t) where data is either incomplete or is treated as
incomplete. This latent data, denoted z, together with the observed data t, is called the
complete-data (t, z) and it is the complete-data likelihood function Lc(θ | t, z) that is
maximized. For simplicity of notation, these likelihoods will be written as L(θ) and
Lc(θ) herein.

The algorithm alternates between an expectation (E) step and a maximization (M)
step. In its most general setting, the E-step involves finding the expected value of the
complete-data log-likelihood, conditional on the observed data, denoted Q(θ | θ (k)),
where θ (k) is the estimated value of θ at iteration k. In the M-step, the value of θ that
maximizes this expected complete-data log-likelihood is computed. Applications of
the EM algorithm to cure rate models can be found in Kuo and Peng (1995) and Peng
and Dear (2000). Herein, EM algorithms are used to estimate parameters of the DIG,
IGCRM and DIGIGMIX cure rate models.

3.2 Generalized EM algorithms

In some situations, even with the addition of the latent data, the solution to the M-step
is not available in closed form. In these situations, a generalized EM (GEM) algorithm
is often used. A GEM algorithm increases the expected complete-data log-likelihood
at each iteration. Dempster et al. (1977) show that this condition is sufficient to ensure
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that L(θ (k+1)) ≥ L(θ (k)). Further properties of GEM algorithms and an excellent
overview of EM algorithms and their variants is given by McLachlan and Krishnan
(2008).

In order to implement a GEM algorithm, a method of updating parameter esti-
mates that results in an increase in the incomplete-data likelihood is required. One
simple method is to perform one step of a Newton-Raphson iteration scheme at each
maximization step. Lange (1995a) considers this method and calls it the gradient EM
algorithm. The use of a full Newton step does not guarantee an increase in the incom-
plete-data likelihood, and there may be boundary crossing problems for the parameter
estimates.

More generally, Lange (1995a) and Rai and Matthews (1995) consider estimators
of the form

θ (k+1) = θ (k) + s(k)S0(θ
(k))I −1

0 (θ (k)), (2)

where

S0(θ
(k)) =

[
∂ log Lc(θ)

∂θ

]

θ=θ (k)

, I0(θ
(k)) =

[
−∂2 log Lc(θ)

∂θ2

]

θ=θ (k)

,

and 0 < s(k) ≤ 1. Since the maximization step is replaced by one step of a maximiza-
tion procedure, Rai and Matthews (1995) call this the EM1 algorithm. When s(k) = 1
the EM1 algorithm reduces to the gradient EM algorithm. The step fraction s(k) is
chosen such that the incomplete-data likelihood function increases at each iteration.

One drawback of the EM algorithm is that the rate of convergence can be quite slow,
especially when the fraction of missing information is large. Lange (1995b) suggests a
quasi-Newton alternative to speed the rate of convergence of the algorithm; replacing
(2) with

θ (k+1) = θ (k) + s(k)S0(θ
(k)){I0(θ

(k)) + B(k)}−1, (3)

where B(k) is chosen so that {I0(θ
(k)) + B(k)} is closer to the Hessian of the incom-

plete-data likelihood than I0(θ
(k)). Lange (1995b) suggests a choice of B(k) that can

provide a significant improvement in the rate of convergence.
The EM and EM1 algorithms will be applied to the IGCRM model in Sect. 3.4,

the EM1 algorithm and the quasi-Newton algorithm (Lange 1995b) will be applied to
the DIG model in Sect. 3.5 and the EM1 algorithm will be applied to the DIGIGMIX
model in Sect. 3.6.

3.3 The EM algorithm applied to cure rate mixture models

The likelihood function of the standard cure rate mixture model can be written as

L(θ | t) =
∏

i∈D

(1 − p) f (ti | θ)
∏

i∈C

[
p + (1 − p)S(t∗i | θ)

]
,
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where ti represents the uncensored failure time for the i th individual, and t∗i repre-
sents a right censoring time for the i th individual. The vector t contains the failure
and censored times. In a more general setting, a logistic link is often used for p and
covariates are often included in some form. Even in this simplest case, however, the
survival function S(t) is often not in closed form and typically there will not be closed
form solutions for the maximum likelihood estimators of θ .

Kuo and Peng (1995) considered simplifying the likelihood by introducing two
latent variables: one variable representing whether an individual is immune or suscep-
tible, the other representing unknown failure times for censored susceptible individu-
als. Achcar and de Araujo Pereira (1999) used two latent variables in a Gibbs sampler
of a (non-cure rate) mixture model. Peng and Dear (2000) used a simplified version,
introducing a single latent variable representing whether an individual is immune or
susceptible.

To implement the algorithm, let γ = 1 for susceptible individuals and γ = 0
for cured individuals. An uncensored failure time for the i th individual implies that
γi = 1. The value of γ is unobserved for right censored individuals. The second
latent variable represents the failure times. Let ti be the (unknown) failure time for
the right-censored i th individual conditional on that individual being susceptible. For
uncensored individuals, ti is the observed failure time. Let tc be a vector containing the
values of ti for the observed and censored times. Incorporating these latent variables,
the complete-data likelihood is

Lc(θ | γ , tc) =
n∏

i=1

[(1 − p) f (ti )]
γi

n∏

i=1

p1−γi .

This yields a straightforward application of the EM algorithm. The complete-data
log-likelihood is

log Lc(θ | γ , tc) =
n∑

i=1

γi log(1 − p) +
n∑

i=1

(1 − γi ) log(p) +
n∑

i=1

γi log( f (ti | θ)).

Then,

Q(θ | θ (k)) = log(1 − p)

n∑

i=1

E (k)(γi ) + log(p)

n∑

i=1

[
1 − E (k)(γi )

]

+
n∑

i=1

E (k)(γi )E (k)(log f (ti )),

where γi = 1 for observed failure times and

E (k)(γi ) = E(γi | θ (k), t∗i ) = P(γi = 1 | θ (k), t∗i ) = (1 − p(k))S(t∗i | θ (k))

p(k) + (1 − p(k))S(t∗i | θ (k))
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for censored values. The maximization step maximizes Q(θ | θ (k)). For any standard
cure rate mixture model, where p is not a parameter in the failure time distribution of
the susceptible proportion, the value of p that maximizes the expected complete-data
likelihood at the next iteration is

p(k+1) = 1 −
∑n

i=1 E (k)(γi )

n
.

Since E (k)(γi ) represents the estimated probability that the i th individual is a suscep-
tible at the kth iteration, this estimator of p is a natural estimator of the cure rate at
the (k + 1)st iteration. Note that since 0 ≤ E (k)(γi ) ≤ 1, 0 ≤ p(k+1) ≤ 1.

3.4 The EM algorithm applied to the inverse Gaussian cure rate mixture model

Assume a standard cure rate mixture model with the inverse Gaussian distribution as
the distribution of the failure times of the susceptibles:

f (t | δ, ν) = 1√
2νπ t3

e−(1−δt)2/2t ,

for δ, ν > 0. Consider first the case where there are no covariates present, as the
algorithm is considerably simpler in this case. Given the parameter estimates at the
kth iteration, θ (k) = (δ, ν, p)(k), the expectation step involves finding

Q(θ | θ (k)) =
n∑

i=1

E (k)(γi ) log(1 − p) +
n∑

i=1

[
1 − E (k)(γi )

]
log(p)

+
n∑

i=1

E (k)(γi )E (k)(log f (ti )).

By solving ∂ Q(θ | θ (k))/∂θ = 0 for p, δ, and ν, then at the next iteration,

p(k+1) = 1 −
∑n

i=1 E (k)(γi )

n
,

δ(k+1) =
∑n

i=1 E (k) (γi )∑n
i=1 E (k)(γi )E (k)(ti )

,

ν(k+1) =
∑n

i=1 E (k) (γi ) E (k)(1/ti ) −
(∑n

i=1 E (k)(γi )
)2

∑n
i=1 E (k)(γi )E (k)(ti )∑n

i=1 E (k)(γi )
.

For the expectation step, E (k)(γi ), E (k)(ti ), and E (k)(1/ti ) are required. For right
censored times,

E (k)(γi ) = E(γi |θ (k), t∗i ) = (1 − p(k))S(t∗i | θ (k))

p(k) + (1 − p(k))S(t∗i | θ (k))
.
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Whitmore (1979) derived the following results:

E (k)[ti ] = E(ti | θ (k), t∗i ) = 1 − S(1/t∗i (δ(k))2)

δ(k)S(t∗i )
, (4)

E (k)[1/ti ] = E(1/ti | θ (k), t∗i ) = ν(k) + (δ(k))2 E(ti | θ (k), t∗i )

−2t∗i ν(k) f (t∗i | θ (k))

S(t∗i | θ (k))
. (5)

To illustrate the speed of convergence, the EM algorithm was used to find the max-
imum likelihood estimates for the inverse Gaussian cure rate mixture model, using a
data set of 100 observations simulated from this distribution. The assumed parameter
values for the simulated data set are δ = 0.005, ν = 0.05 and p = 0.3. The individ-
uals were subject to exponential censoring, resulting in 43 censored values, and 57
uncensored values. Starting values for δ and ν in the iteration scheme were found by
treating the censored values as observed failure times and calculating the maximum
likelihood estimates for this uncensored sample.

The starting value for p was chosen to be the proportion of censored values in the
sample. Since there are closed form solutions for the updated parameter estimates,
there is no need to implement one of the hybrid EM-Newton methods, but for com-
parison purposes the gradient EM was applied to the same data. Not surprisingly,
the EM algorithm achieves near optimal likelihood much faster than the gradient EM
algorithm.

In most cure rate applications, one of the major points of interest is to examine the
effect of covariates on the cure rate and on the distribution of susceptibles. When covar-
iates are present, the implementation of the EM algorithm is not as straightforward.
Recall that the maximization step involves maximizing

Q(θ | θ (k)) =
n∑

i=1

−E (k)(γi ) log

(
pi

1 − pi

)
+

n∑

i=1

log(pi )

+
n∑

i=1

E (k)(γi )E (k)(log f (ti )).

The cure rate p is commonly allowed to have a logistic-linear link with the covariates

log

(
pi

1 − pi

)
= τ ′xi ,

where pi is the probability that the i th individual is immune, τ ′ = (τ0, τ1, . . . , τr ) is
a vector of (r + 1) parameters and x′

i = (1, xi1, xi2, . . . , xir ) is a vector of covariates
corresponding to the i th individual. Then,
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Q(θ | θ (k)) =
n∑

i=1

−E (k)(γi )τ
′xi +

n∑

i=1

log

(
eτ ′xi

1 + eτ ′xi

)

+
n∑

i=1

E (k)(γi )E (k)(log f (ti )). (6)

And ∂ Q(θ | θ (k))/∂τ j = 0 implies that

n∑

i=1

[1 − E (k)(γi )]xi j =
n∑

i=1

eτ j xi j

1 + eτ j xi j
xi j ,

and there are no closed form solutions for the elements of τ . Note that the third sum-
mation term in (6) involves only parameters associated with the assumed failure time
distribution, and not τ .

In the maximization step, estimation of the parameters of the failure time distri-
bution can proceed separately from the estimation of τ . Depending on the assumed
distribution for the susceptible proportion, there may be closed form solutions for the
parameters of the failure time distribution in the M-step. Numerical techniques may
be needed only to update the elements of τ . But since at each iteration of the EM
algorithm a full M-step would require an iterative technique, it may be more efficient
to use a hybrid (EM-Newton) method.

Consider the IGCRM with covariate information, where the drift parameter for the
i th individual has a linear relationship with the covariates δi = β ′xi , where β =
(β0, β1, . . . , βr )

′ is a vector of (r + 1) parameters. The IGCRM defined in Sect. 2.4
does not restrict δ to positive values for models involving covariates. In the case of
no covariates, δ is restricted to positive values for the sake of simplicity, as any pro-
portion of immunes accounted for by negative δ can simply be absorbed into the
parameter p∗. However, when covariates are included, imposing the restriction δ > 0
can be unnecessarily restrictive. A small disadvantage to allowing negative values of
δ in the IGCRM is that the application of an EM-Newton algorithm is slightly more
complicated. The application to the IGCRM of two EM-Newton algorithms based on
different latent variables is discussed below.

The incomplete-data likelihood for the IGCRM is given by

L(β, τ , ν | t) =
∏

i∈D

[(1 − p∗
i ) f (ti | δi , ν)]

∏

i∈C

[p∗
i + (1 − p∗

i )(1 − F(t∗i | δi , ν))],

where p∗
i = eτ ′x j /(1 + eτ ′x j ) is the probability that the i th individual is not subject

to the Wiener process. For δi > 0, p∗
i = pi is the probability that the i th individual is

immune.
With the addition of the latent variables γ and t defined above, the complete-data

likelihood function is given by
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Lc(β, τ , ν | γ , tc) =
n∏

i=1

[(1 − p∗
i ) f (ti | δi , ν)]γi [p∗

i

+ I (δi < 0)(1 − p∗
i )(1 − e2δi /ν)]1−γi ,

where the indicator function I (δi < 0) takes on the values

I (δi < 0) =
{

1 for δi < 0
0 for δi ≥ 0.

The expected complete-data log-likelihood is given by

Q(θ | θ (k)) =
n∑

i=1

E (k)(γi )E (k)
(
log
{
(1 − p∗

i ) f (ti | δi , ν)
})

+
n∑

i=1

E (k)(1 − γi ) log[p∗
i + I (δi < 0)(1 − p∗

i )(1 − e2δi /ν)].

For uncensored failure times, γi = 1. For censored times,

E (k)(γi ) = E
(
γi | ν(k), δ

(k)
i , p∗(k)

i , t∗i
)

= 1 − p∗(k)
i + I (δ

(k)
i < 0)(1 − p∗(k)

i )(1 − e2δ
(k)
i /ν(k)

)

1 − (1 − p∗(k)
i )F(t∗i | δi , ν)

.

Calculation of E(log f (ti )) requires E(ti ) and E(1/ti ), and proceeds as above. The
presence of the log[p∗

i + I (δi < 0)(1− p∗
i )(1−e2δi /ν)] term in the Q(θ | θ (k)) function

results in somewhat lengthy derivative terms, and they are not presented here.
Alternatively, a further simplification of the likelihood can be achieved with an

additional latent variable α. Let αi = 0 if individual i is subject to the Wiener pro-
cess, and αi = 1 if individual i is not subject to the process. Then the complete-data
likelihood simplifies to

Lc(β, τ , ν | γ ,α, tc) =
n∏

i=1

[(1 − p∗
i ) f (ti )]γi (1−αi ) p∗

i
(1−γi )(αi )

×[(1 − p∗
i )(1 − e2δi /ν)](1−γi )(1−αi ).

The expected complete-data likelihood is given by

Q(θ | θ (k)) =
n∑

i=1

E (k)(γi )E (k)(1 − αi | γi = 1)E (k){log[(1 − p∗
i ) f (ti | δi , ν)]}
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+
n∑

i=1

E (k)(1 − γi )E (k)(αi | γi = 0) log p∗
i

+
n∑

i=1

E (k)(1 − γi )E (k)(1 − αi | γi = 0) log[(1 − p∗
i )(1 − e2δi /ν)].

The resulting first and second derivatives that are required for implementation of
a hybrid EM-Newton algorithm are much simpler in this case than for the method
including only γ and t as the latent variables. Calculation of E (k)(γi ), E (k)(ti ), and
E (k)(1/ti ) can proceed as above. All susceptible individuals are subject to the pro-
cess, implying E (k)(αi | γi = 1) = 0, which simplifies the first summation term in
Q(θ | θ (k)) above. For cured individuals:

E (k)(αi | γi = 0) = E
(
αi | ν(k), δ

(k)
i , p∗(k)

i , γi = 0
)

=
{

1 for δ
(k)
i > 0

p∗(k)
i /

[
p∗(k)

i + (1 − p∗(k)
i )(1 − e2δi /ν)

]
for δ

(k)
i < 0.

The algorithms for the two hybrid EM-Newton methods for the IGCRM model
with covariates will proceed identically if δ

(k)
i > 0 for all i, k. In most practical cases,

there will be little difference between the methods, as the drift parameter often remains
positive when the parameter p∗ is included in the model. To compare the speed of con-
vergence for these two methods for cases with some δi < 0, the EM1 algorithm was
applied to a simulated data set. The simulated data results from an assumed IGCRM
model with one covariate, measured at three levels. The slope β1 was assumed to be
negative, with resulting δ values of (0.101, 0.001,−0.099). The values of p∗ and ν

were assumed to be 0.2 and 2, respectively, for all levels. We observed that optimal
likelihood is achieved more quickly when the latent variable α is not included.

3.5 Hybrid methods for the DIG model

In this section, the hybrid maximization methods reviewed in Sect. 3.2 are applied to
the DIG model. For the DIG model, the complete-data likelihood is given by

Lc(θ |γ , tc) =
n∏

i=1

⎡

⎣ 1√
2πνt3

i

e−(1−δi ti )2/2νti

⎤

⎦
γi [

1 − e2δi /ν
]1−γi

.

This complete-data likelihood has no closed form solutions for the maximum like-
lihood estimators of δ and ν, even in the simple case of no covariates. Consider a
defective inverse Gaussian regression model where the drift parameter has a linear
relationship with the covariates, δi = β ′xi . To implement either the Newton or quasi-
Newton hybrid EM algorithms to find the maximum likelihood estimates of θ = (δ, ν),
expressions for
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∂ log Lc(θ)

∂θ
,
∂2 log Lc(θ)

∂θ2 ,

are required. To save space, the necessary expressions are not reproduced herein. In
the iteration scheme, γi and ti corresponding to censored values are replaced by their
conditional expected values. For censored values,

E (k)(γi ) = E(γi | ν(k), δ
(k)
i )

=
{

1 for δ
(k)
i > 0[

1 − F(t∗i | ν(k), δ
(k)
i ) − p(k)

i

]
/
[
1 − F(t∗i | ν(k), δ

(k)
i )
]

for δ
(k)
i < 0

where p(k)
i = 1 − e2δ

(k)
i /ν(k)

. For right censored values, the conditional expectations

of ti and 1/ti , given the individual is a susceptible, are simply Eqs. 4, and 5, with δ
(k)
i

replaced by |δ(k)
i |:

E (k)
(

ti | δ
(k)
i , ν

(k)
i , t∗i

)
= 1 − S(1/t∗i (δ

(k)
i )2 | ν(k), |δ(k)

i |)
|δ(k)

i |S(t∗i | ν(k), |δ(k)
i |)

E (k)
(

1/ti | δ
(k)
i , ν

(k)
i , t∗i

)
= ν(k) + (δ

(k)
i )2 E(ti | δ

(k)
i , ν

(k)
i , t∗i )

−2t∗i ν(k) f (t∗i | ν(k), |δ(k)
i |)

S(t∗i | ν(k), |δ(k)
i |)

.

To illustrate the speed of convergence for the different methods, the gradient EM and
the quasi-Newton algorithm were applied to the DIG model, using the cancer data that
was analyzed by Boag (1949). Figure 2 compares the observed data log-likelihoods at
each step of the iteration scheme.

Note that for iterations 0 and 1, the methods are identical, as the first step of the
quasi-Newton method is a one-step Newton. The results for this data set illustrate that
the quasi-Newton approach can yield a faster rate of convergence.

3.6 A hybrid method for the DIGIGMIX model

This section uses an EM-type algorithm to find the maximum likelihood estimates for
the DIGIGMIX model proposed in Sect. 2.6. The incomplete-data likelihood for the
DIGIGMIX model is given by

L(π, δ1, δ2, ν1, ν2 | t) =
∏

i∈D

[π f1(ti ) + (1 − π) f2(ti )]
∏

i∈C

[
π(1 − F1(t

∗
i ))

+ (1 − π)(1 − F2(t
∗
i ))
]
,

where f1(t) is the density function of a proper inverse Gaussian (δ1 > 0) and f2(t)
is the density function of a defective inverse Gaussian distribution (−∞ < δ2 < ∞).
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Fig. 2 Plot of log(L(θ (k))) versus k for the gradient EM and quasi-Newton algorithms applied to the DIG
model

Their respective cumulative distribution functions are represented by F1(t) and F2(t).
The form of the likelihood, as well as the non-closed form solutions for F1(t) and
F2(t), make this a complicated likelihood requiring numerical techniques to maxi-
mize. In a similar approach as for the DIG and IGCRM models, latent variables are
added to simplify the likelihood. Let the latent variable α represent whether an individ-
ual is in group one or two (α = 1 for group one, α = 0 for group two). Note that α is
unobservable for all individuals. Let t1i represent the failure time for the i th individual,
conditional on that individual being in group one (α = 1). Let t2i represent the failure
time for the i th individual, conditional on being in group two (α = 0). The latent
variables t1i and t2i are unobserved for censored times. For uncensored failure times,
t1i = t2i = ti . As above, let the latent variable γi represent the immunity of individ-
ual i (γi = 1 for susceptibles,γi = 0 for immunes). The complete-data likelihood is
given by

Lc(θ | t) =
n∏

i=1

[π f1(t1i )]αi [(1 − π) f2(t2i )](1−αi )γi [(1 − π)(1 − e2δ2/ν2)](1−αi )(1−γi ).

The expected complete-data log-likelihood can be written as

Q(θ |θ (k)) =
n∑

i=1

E (k)(αi ) log(π) +
n∑

i=1

(1 − E (k)(αi )) log(1 − π)
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+
n∑

i=1

E (k)(αi )E (k)(log( f1(t1i ))|α = 1)

+
n∑

i=1

E (k)(1 − αi )E(γi |α = 0)E (k)(log f2(t2i )|α = 0, γ = 1)

+
n∑

i=1

(1 − e2δ2/ν2)E (k)((1 − αi ))E (k)(1 − γi |α = 0),

where E (k)(X) is the expected-value of X , conditional on the observed data, evaluated
at the parameter estimates at the kth iteration. The required conditional expectations
can be calculated as in the Appendix.

This section, and the supporting mathematical details in the Appendix, illustrate
that the EM algorithm and the hybrid EM-Newton extensions can be used to effectively
find maximum likelihood estimates in cure rate mixture models.

4 Data analysis

4.1 Introduction

This Section analyzes several data sets, with an emphasis on comparing the fit of the
different Wiener process cure rate models discussed in Sect. 2. The fit of these models
will also be compared to the more commonly used Weibull and lognormal cure rate
mixture models. Goodness-of-fit will be assessed using well-established methods. The
analysis will show that the Wiener process models can provide an improved fit when
compared to the Weibull and lognormal mixture models for some data sets.

4.2 Dataset I: time to infection for burn patients

4.2.1 Background

Ichida et al. (1993) investigated the effect of a change in disinfectant practices for the
time to infection for burn patients. Staphylococcus aureus infections are common in
burn patients and can contribute to increased length of stay in hospital and even death.
Not all patients experience such an infection and any survival analysis should incor-
porate the possibility of a cured proportion in the population. In the study, the time to
occurrence of a staphylococcus aureus infection was recorded for 154 burn patients.
One of the major interests of the study was to investigate the different rates of infection
for two disinfectant bathing practices. Let X1 be the disinfectant practice (X1 = 0 for
a 10% povidone-iodine solution, X1 = 1 for a 4% chlorhexidine gluconate solution).
Another important variable that affects staphylococcus infections is the percentage of
body area that is burned. Let X2 represent the percentage of body surface area burned.
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For the cure rate mixture models, the cure rate is assumed to have a logistic-linear
link with the covariates:

log

(
pi

1 − pi

)
= γ0 + γ1x1i + γ2x2i ,

where pi = P(i th individual is immune), x1i is the bathing method for the i th indi-
vidual and x2i is the percentage of body area burned for the i th individual. For the
Weibull mixture, the scale parameter λ was assumed to be a log-linear function of the
covariates: log λi = τ0+τ1x1i +τ2x2i . For the lognormal model (with median lifetime
eµ), µ was assumed to be a linear function of the parameters: µi = θ0 +θ1x1i +θ2x2i .
For the Wiener process models, the drift parameter δ was assumed to be a linear func-
tion of the covariates: δi = β0 +β1x1i +β2x2i . For the two barrier model, the absolute
value of the lower barrier l was assumed to be a log-linear function of the covariates:
li = exp{γ0 + γ1x1i + γ2x2i }.

4.2.2 Comparison of the different models

Table 1 illustrates the log-likelihood and the Akaike Information Criterion (AIC) for
the full models. As a group, the Wiener process models provide a good fit to the data,
under the full models. Judging by the AIC, they provide a better fit than either the
Weibull or lognormal cure rate mixtures. The two barrier model has the largest log-
likelihood of all the models, providing a better fit than the inverse Gaussian cure rate
mixture. The improvements in the fit of the IGCRM and two barrier models over the
DIG are fairly small, and the DIG results in the lowest value of the AIC.

Cox-Snell residual plots exhibit some curvature indicating imperfect fits for all of
the models. Plots of deviance residuals show no obvious trends and no major problems
with the fit of the models. There is one slight outlier, corresponding to an individual
with a low percentage surface area that experienced an infection earlier than expected.

Figure 3 compares the survivor functions for the different Wiener process models,
for the two different bathing methods. For each plot, the burn percentage is fixed at its
mean (24.69%). The curves for the Wiener process models are similar over the range
of the data.

Table 2 compares the estimates of the cure rate at different values of the covariates
for the models. The defective inverse Gaussian model results in an estimated cure

Table 1 Log-likelihood and Akaike information criteria for the time to infection for burn patients

Model Log-likelihood # of Parameters AIC

Weibull mixture −245.4131 7 504.8262
Lognormal mixture −242.1064 7 498.2129
IGCRM −241.1666 7 496.3332
DIG −241.4241 4 490.8481
Two barrier −239.8341 7 493.6868
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Fig. 3 Estimated survivor functions for the Wiener process models for the different bathing methods (burn
percentage fixed at the mean)

Table 2 Comparison of estimated cure rates

X1 = 0 X1 = 1

X2 = 10 X2 = 70 X2 = 10 X2 = 70

Weibull 0.577 0.191 0.767 0.362
Lognormal 0.547 0.198 0.736 0.363
DIG 0.494 0 0.734 0.401
IGCRM 0.470 0.105 0.686 0.549
TWOB 0.504 0.177 0.642 0.536

rate of 0 for patients with 70% of their body burned, under the 10% povidone-iodine
disinfectant method (X1 = 0). The estimated cure rate for the defective inverse Gauss-
ian model can be very different from the other models and a point estimate of 0 is
more common than for the other cure rate models.

As indicated by the AIC, the Wiener process models provide a good fit to this time
to infection data, compared to the Weibull and lognormal mixtures. The Wiener pro-
cess models provide similar fits over the range of the data, but they can differ a great
deal in the estimated cure rate.

4.3 Data set II: a two barrier simulation

This section analyzes a data set simulated from a two barrier Wiener process. A sim-
ple method is used which approximates a random sample from this distribution. The
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simulated data results from a Wiener process with δ = 0.005 and ν = 0.05, with an
upper absorbing barrier at u = 1 and a lower absorbing barrier at −l = −2. The true
cure rate for this population under these assumptions is p = 0.269. To approximate
the process, each unit of time was split into one hundred segments, and the change
in the process in each segment was generated from a normal distribution with mean
0.01δ and variance 0.01ν. The time at which the process first reached the upper barrier
was recorded for 1000 individuals.

Lesosky and Horrocks (2004) found that for certain values of the parameters and
time increments, this type of simulation method was not adequate to properly simu-
late from the two barrier distribution. However, the values used here should provide
a sample that roughly approximates one from the two barrier distribution. For this
simulation, Type I right censoring was used. If the process first reached the lower
barrier, or had not reached either barrier by t = 100, the time was considered to be
right censored at 100. Of the 1000 individuals, 315 were censored at 100.

4.3.1 Comparison of the models

Table 3 gives the values of the log-likelihoods and AIC. The IGNMIX and IGCRM
models seem to provide the best overall fit. Surprisingly, the fit of these two models
is marginally better than the two barrier model for this simulation. All of the Wiener
process models yield similar fits over the range of the data. The Weibull and lognormal
mixture models provide a poor fit to the data, judging by the AIC. The Weibull model
yields an especially poor fit. This is evidenced by both the AIC and the systematic
curvature in the goodness-of-fit plot. The plots for the other models show very straight
lines.

The estimates of the cure rates for the different models are compared in Table 4. The
estimate of the drift parameter for the DIG model is positive, resulting in an estimated

Table 3 Log-likelihood and AIC values for the two barrier simulation data

Model Log-likelihood No. of Parameters AIC

Weibull mixture −3549.477 3 7104.954
Lognormal mixture −3511.889 3 7029.778
DIG −3505.619 2 7015.238
IGCRM −3503.000 3 7011.999
IGNMIX −3502.989 3 7011.979
Two barrier −3503.705 3 7013.411
DIGIGMIX −3502.987 5 7015.973

Table 4 Estimates of the cure rate for the two barrier simulation

Model p̂ Model p̂

Weibull mixture 0.3031 IGNMIX 0.1592
Lognormal mixture 0.2668 Two barrier 0.2727
DIG 0 DIGIGMIX 0.1576
IGCRM 0.2227 True p 0.2693
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Fig. 4 Estimated survivor curves for the Wiener process models

cure rate of 0. When heterogeneity in the drift parameter is allowed (the IGNMIX
model), the estimated cure rate is 0.1592, closer to the other models, but still relatively
low. Not surprisingly, the two barrier model provided the best estimate of the cure
rate.

Figures 4 and 5 illustrate the estimated survival and hazard functions for the Wie-
ner process models. The estimated survival curves are similar over the range of the
observed data, but differ in the right tail. Beyond the right extreme of the observed
data (t = 100), the DIG survivor curve drops more quickly than the other models,
reaching 0 in the limit.

All the Wiener process models fit this simulated data from a two barrier process
reasonably well. The fit of Weibull and lognormal mixtures is considerably worse.
The defective inverse Gaussian estimate of the cure rate is 0, quite different from the
other models.

5 Conclusions

5.1 Comments on the fit of the models to the data sets

The defective inverse Gaussian model does have some initial appeal as a cure rate
model, but it is somewhat lacking when it comes to actually estimating the cure rate.
The model often provides a similar fit over the range of the data as the other Wiener
process models, but it tends to have more area in the far right tail of the estimated
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Fig. 5 Estimated hazard functions for the Wiener process models

density function for the population. This often leads to a lower estimate of p than the
other models. Frequently, the estimated cure rate is 0.

The inverse Gaussian cure rate mixture model is a useful, more flexible alternative
to the defective inverse Gaussian. One drawback to this model is that the interpretation
of the survival times and the cure rate as the result of an underlying Wiener process is
lost to a certain extent.

Allowing for heterogeneity in the drift parameter (the IGNMIX model) can some-
times improve the fit over the DIG, but often results in very similar fits to the DIG
model. Many of the comments regarding the DIG also apply to the IGNMIX model.
The estimated cure rate for this distribution is often much lower than the other models.

The two barrier model is a potentially useful generalization of the defective inverse
Gaussian model. For the data sets analyzed above, the fit over the range of the data
was often similar to the defective inverse Gaussian, but the estimated cure rate was
often closer to the standard cure rate mixtures. This is also true of the inverse Gaussian
cure rate mixture model, but the two barrier model has the advantage of preserving
the interpretation of the survival times and cure rate as the realization of an underlying
Wiener process.

The DIGIGMIX model is another interesting alternative to the DIG model. It is
much more flexible, and its nature as a mixture of distributions allows it to provide
a reasonable fit to some unusual data. The Wiener process models provided the best
fit to the burn data. The fit of these models was better than the more commonly
used Weibull and lognormal mixture models. These models have seen very limited

123



Lifetime Data Anal (2009) 15:147–176 173

use as cure rate models, but should be considered as possible alternatives in many
situations.

5.2 Extensions

Extensions of the models considered here to allow for frailty or heterogeneity between
individuals are of considerable interest. Many hazard-based frailty models have
been studied, generally via the introduction of a frailty random variable acting
multiplicatively on the hazard function. Alternative models of frailty regarded as
influencing an underlying process may frequently be more biologically plausible as
persuasively argued by Aalen and Gjessing (2001). Specifically, these authors study
the Wiener process with randomized drift and demonstrate its utility in incorporating
covariates both internal and external (Kalbfleisch and Prentice, 2002). In addition,
this model is a defective survival distribution allowing for a cured fraction. Aalen
(1994) appears to be the first to recognize its potential as a frailty model in sur-
vival analysis. Here we have only considered the simple model with randomized
drift denoted by IGNMIX in order to compare it with our models. However, all of
the models discussed herein have potential to be extended to allow for unobserved
heterogeneity.
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Appendix

Results for hybrid methods for the DIGIGMIX model

The required conditional expectations can be calculated using the following formulae.

E(αi )=P(individual i is in group 1)=

⎧
⎪⎨

⎪⎩

π f1(ti )
π f1(ti )+(1−π) f2(ti )

for uncensored times.

π S1(t∗i )

π S1(t∗i )+(1−π)S2(t∗i )
for right censored times.

For uncensored failure times E(γi ) = P(individual i is a susceptible) = 1. For cen-
sored times,

E (k)(γi | α = 0) = E(γi | αi = 0, δ
(k)
2 , ν(k), t∗i )

=

⎧
⎪⎨

⎪⎩

1 for δ
(k)
2 > 0

1−F
(

t∗i |δ(k)
2 ,ν(k)

)
−p(k)

i

1−F
(

t∗i |δ(k)
2 ,ν(k)

) for δ
(k)
2 < 0,
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where p(k)
i = 1 − e2δ

(k)
2 /ν(k)

. Also,

E (k)(log f (t) | α = 1) = −1

2
log(2πν

(k)
1 ) − 1

2
E (k)(log t3 | α = 0)

−E (k)

⎛

⎜⎝

(
1 − δ

(k)
1 t
)2

2ν
(k)
1 t

⎞

⎟⎠ ,

E (k)(log f (t) | α = 0, γ = 1) = −1

2
log(2πν

(k)
2 ) − 1

2
E (k)(log t3 | α = 0)

−E (k)

⎛

⎜⎝

(
1 − |δ(k)

2 |t
)2

2ν
(k)
2 t

⎞

⎟⎠ .

For censored values, E(t1i | t1i > t∗i ) and E(1/t1i | t1i > t∗i ) are given by (4)

and (5), with δ(k) and ν(k) replaced by δ
(k)
1 and ν

(k)
1 , respectively. E(t2i | t2i > t∗i ) and

E(1/t2i | t2i > t∗i ) are given by (4) and (5) with δ(k) and ν(k) replaced by |δ(k)
2 | and

ν
(k)
2 , respectively. In a simple case involving no covariates, closed form solutions exist

for the updated estimates of π , δ1, and ν1;

π(k+1) =
∑n

i=1 E (k)(αi )

n
,

δ
(k+1)
1 =

∑n
i=1 E (k)(αi )∑n

i=1 E (k)(αi )E (k)(t1i )
,

ν
(k+1)
1 =

∑n
i=1 E (k)(αi )E (k)

(
1

t1i

)
−

(∑n
i=1 E (k)(αi )

)2
∑n

i=1 E (k)(αi )E (k)(t1i )∑n
i=1 E (k)(αi )

.

No closed form solutions exist for the next iteration of δ2 and ν2. As in the DIG model,
these estimates can be updated at each iteration using one step of a Newton iteration.

This hybrid EM-EM1 algorithm can be used to find the maximum likelihood esti-
mates for the DIGIGMIX model, where πk , δk

1, and νk
1 can be found using their closed

form estimators, and δk
2 and νk

2 can be updated using a one-step Newton procedure.
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