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Abstract We discuss the estimation of the expected value of the quality-adjusted
survival, based on multistate models. We generalize an earlier work, considering the
sojourn times in health states are not identically distributed, for a given vector of covar-
iates. Approaches based on semiparametric and parametric (exponential and Weibull
distributions) methodologies are considered. A simulation study is conducted to eval-
uate the performance of the proposed estimator and the jackknife resampling method
is used to estimate the variance of such estimator. An application to a real data set is
also included.

Keywords Quality of life · Survival analysis · Multistate models · Exponential
distribution · Weibull distribution · Semiparametric proportional hazards

1 Introduction

Over the last decade, the concept of health has been broadened, comprising physical,
functional, mental and social well being in addition to survival and disease-specific
responses. In this new setting, the quality of life of patients become an important aspect
to be considered in statistical analyses. As pointed out by Fairclough (1997), the main
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objective of studies concerned with quality of life assessment is to compare the overall
quality of life related to different medical treatments. Most of these studies, however,
consider only the quality of life and do not include survival times or disease-specific
responses. On the other hand, only the survival time is considered when comparing
treatments based on the usual survival methodologies. A better criteria of comparison
should include both survival times and quality of life. This idea becomes even more
appealing when treatments provide the same survival experience for the patients.

In this context, new methodologies have been developed in order to take into account
both, survival and quality of life. As an example, we may refer to the joint estimation
of quality of life, assessed longitudinally, and time to event, as presented by Pocock
et al. (1987), or the application of multistate models, as suggested by Andersen and
Keiding (2002).

The quality-adjusted survival time is an alternative approach that has the advantage
of incorporating both survival and quality of life information in a single response vari-
able. The idea of quality-adjusted survival was introduced by Gelber et al. (1989), with
the Q-TWiST (Quality-adjusted Time Without Symptoms of disease and Toxicity of
treatment) methodology.

Several authors have discussed the quality-adjusted survival. For right censored
data, the classical Kaplan–Meier estimator based on the quality-adjusted survival time
may not perform well, and Zhao and Tsiatis (1997) proposed an alternative estima-
tor based on weighted estimating equations, assuming independent censoring. The
estimator was further modified by Zhao and Tsiatis (1999) in order to increase its effi-
ciency. Another approach to estimate the survival distribution of the quality-adjusted
survival time, allowing for covariates, was proposed by van der Laan and Hubbard
(1998). The comparison of survival functions of quality-adjusted lifetime for two dif-
ferent treatments when the data is right-censored was considered by Zhao and Tsiatis
(2001). The estimation of the mean quality-adjusted lifetime was also discussed by
Zhao and Tsiatis (2000) and an estimator based on influence functions was derived
by Robins et al. (1994). The estimation of the mean quality-adjusted survival when
clinical evaluations are made on a periodic basis (e.g., monthly) was considered by
Chen and Sen (2001). They also considered that patients could experience more than
one type of health status between two visits.

Tunes-da-Silva et al. (2008) proposed an estimator for the mean quality-adjusted
survival time using a multistate model for the sojourn times, considering paramet-
ric as well as semiparametric approaches. The estimator was developed based on the
assumption that the sojourn times in each health state are independent and identically
distributed random variables for a given vector of covariates. In this paper, we will
generalize that estimator allowing the sojourn times to be non-identically distributed.
In Sect. 2 we present the definition for the quality-adjusted survival time and obtain an
expression for its expected value in this new setting. In Sect. 3 parametric and semi-
parametric models for the sojourn times are described and in Sect. 4 we deal with the
three state model. Section 5 contains a real data example. Finally, simulation studies
are presented and discussed in Sect. 6. Further discussions and concluding remarks
are presented in Sect. 7.
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2 The mean quality-adjusted survival time

In order to formally define the quality-adjusted survival time, assume that n individu-
als are being followed up and consider that the health history of the i-th patient can be
described by a process {Vi (t), t ≥ 0}, where Vi (t) may assume any of the K +1 states
belonging to the state space � = {0, 1, . . . , K }. Suppose that the states 1, 2, . . . , K
are transient and the state 0 is absorbing so that if Vi (t) = 0, then Vi (s) = 0, ∀s ≥ t .
The usual survival time for the i-th individual is given by Ti (t) = inf{t : Vi (t) = 0}.
Define also the function Q that maps the state space into a pre-specified set of real
numbers (the utility coefficients). By this notation, the quality-adjusted survival time
is given by

Ui =
Ti∫

0

Q{Vi (t)}dt =
∞∫

0

Q{Vi (t)}dt, i = 1, . . . , n. (1)

The function Q may also be defined such that it depends on both health state
and time, i.e., Q{Vi (t), t}, meaning that the quality of life associated to each state
may change over time. However, this situation will not be considered in this
paper.

It is assumed each patient is observed as long as the absorbing state is not reached
nor the patient is censored, and that the occurrence of any change in health state during
the period the patient is being followed up is known. We also consider that a transient
state can be visited more than once and denote by T (k)

j the sojourn time in the j-th
visit to a state k. Note that it is not assumed a progressive structure in this case, but
progressive processes are special cases in this general setting. Using the above intro-
duced notation and considering that the quality of life remains constant when a patient
is in a given health state, the quality-adjusted survival time can be simplified as

U =
∞∫

0

Q{V (t)}dt = q1

N1∑
j=1

T (1)
j + q2

N2∑
j=1

T (2)
j + · · · + qK

NK∑
j=1

T (K )
j ,

where qk is the coefficient related to the k-th health state and Nk is the number of
visits to state k, k = 1, 2, . . . , K . When there are only two states, one corresponding
to perfect health and the other corresponding to death, with utility coefficients equal to
1 and 0, respectively, the quality-adjusted survival time reduces to the usual survival
time.

It is important to note that censoring has an informative pattern in the quality-
adjusted time scale. Glasziou et al. (1990) argue that patients with poor quality of
life tend to accumulate the quality-adjusted survival time slowly and, because of that,
small censored quality-adjusted survival times are associated with poor quality of life.

The main goal of this paper is related to the estimation of the mean quality-adjusted
lifetime for a given vector Z of covariates, given by
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µQ = E(U |Z) = E

⎛
⎝

∞∫

0

Q{V (t)}dt

∣∣∣∣Z
⎞
⎠

= q1E

⎡
⎣ N1∑

j=1

T (1)
j

∣∣∣∣Z
⎤
⎦ + q2E

⎡
⎣ N2∑

j=1

T (2)
j

∣∣∣∣Z
⎤
⎦ + · · · + qK E

⎡
⎣ NK∑

j=1

T (K )
j

∣∣∣∣Z
⎤
⎦ . (2)

Expression (2) is general and can be applied in different situations. In this paper,
we consider that the mean time spent in some health states may decrease as the num-
ber of previous visits to that state increases. More specifically, it is assumed that the
expectation of the sojourn times in state k may decrease for k = 1, . . . , r and, for
k = r + 1, . . . , K , the sojourn times T (k)

j are random variables with the same distri-
bution, for a given vector of covariates. The number r of states whose mean sojourn
times may decrease depends on the process considered. In a illness-death process, for
example, it may be reasonable to assume the frequency of illness episodes increases
with time, i.e., the mean sojourn time in the healthy state decreases and it is evident
that r = 1.

It is also assumed a competitive risk structure for the sojourn times in the states,
i.e., the observed sojourn time in state k is

T (k)
j = min

l∈B(k)

{T k→l
j },

where T k→l
j is the time spent in state k up to a transition to state l (which may not be

observable) and B(k) is the set of all states that can be reached from k.
In order to work with expression (2), it is needed to compute the quantities

E

[∑Nk
j=1 T (k)

j

∣∣∣∣Z
]

, k = 1, . . . , K . To simplify the notation, from now on we will

write this expectation as E
[∑Nk

j=1 T (k)
j

]
, i.e., the vector of covariates Z will be omit-

ted, but all results will be obtained for a given vector of covariates. We will compute
this expectation separately for the states in which the mean sojourn time decreases
and for the states in which the mean sojourn time remains constant.

Consider initially the states for which the mean sojourn time decreases as the num-
ber of previous visits increases. It is assumed the distribution functions of the sojourn
times T (k)

j , k = 1, . . . , r belong to the Lehmann family (see Hajek et al. 1999), i.e.,
the specific hazard function for the transition from state k to state l in the j-th visit to
k is given by

λk→l
j (t) = (1 + d(k)

j )λk→l
1 (t),

l ∈ B(k), where j = 1, . . . , Nk accounts for the number of visits to state k, B(k) is the

set of all states that can be reached immediately after state k and d(k)
j are constants, to

be discussed later on. Assuming that

λk→l
1 (t) = λk→l◦ (t)eβT

kl Z,
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we have

λk→l
j (t) = λk→l◦ (t)(1 + d(k)

j )eβT
kl Z,

l ∈ B(k). Since we are working on a competing risk framework, the hazard and survival
functions of the minimum among T k→l

j , for l ∈ B(k), are respectively given by

λk j (t) = (1 + d(k)
j )

⎛
⎝ ∑

l∈B(k)

λk→l◦ (t)eβT
kl Z

⎞
⎠

= (1 + d(k)
j )λk1(t)

and

Sk j (t) =
⎡
⎣ ∏

l∈B(k)

(Sk→l◦ (t))eβT
kl Z

⎤
⎦

(1+d(k)
j )

= (Sk1(t))
(1+d(k)

j )
,

where λk1(t) and Sk1(t) are the hazard and survival functions associated with the first
visit to state k.

Since E(T (k)
j ) = ∫ ∞

0 Sk j (t)dt , using the first order Taylor approximation of Sk j (t),
we have

E(T (k)
j ) ≈ ηk + d(k)

j

∞∫

0

Sk1(t) log Sk1(t)dt

and

E

⎡
⎣ Nk∑

j=1

T (k)
j

⎤
⎦ ≈ E(Nk)ηk + E

⎡
⎣ Nk∑

j=1

d(k)
j

⎤
⎦

∞∫

0

Sk1(t) log Sk1(t)dt, (3)

k = 1, . . . , r , where ηk = E(T (k)
1 ) and d(k)

1 = 0.

If we make further assumptions on the coefficients d(k)
j , the expression for the

expected value of the total time spent in each state can be simplified. Two different
assumptions are considered. The first one is

d(k)
j =

{
(e( j−1)γ (k) − 1), j = 1, . . . , s(k),

(es(k)γ (k) − 1), j > s(k),
(4)
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where s(k) are known quantities and γ (k) are unknown parameters. The expectation

E
[∑Nk

j=1 d(k)
j

]
is given by

E

⎡
⎣ Nk∑

j=1

d(k)
j

⎤
⎦ =

∞∑
j=1

P(Nk ≥ j)d(k)
j = ζk,

and must be computed for each process. In Sect. 5 we discuss how to compute this
quantity for a process with three states.

The second assumption is to assume that there is a constant d̄k such that
∑N

j=1

d(k)
j /N → d̄k as N → ∞, so that

E

⎡
⎣ Nk∑

j=1

d(k)
j

⎤
⎦ ≈ E

[
Nkd̄k

] = d̄kE(Nk). (5)

In this case, expression (3) may be written as

E

⎡
⎣ Nk∑

j=1

T (k)
j

⎤
⎦ ≈ E(Nk)ηk + E(Nk)d̄k

∞∫

0

Sk1(t) log Sk1(t)dt. (6)

The assumptions made for the coefficients d j are not unrealistic. We must ensure
that the hazards associated to transitions from a given state are bounded, i.e., they do
not become extremely high so that the sojourn times in that state becomes too small. If
that happens, it will imply that the patient would stay in the good health state for a very
short period of time, eventually tending to zero. In practice, a patient in that situation
would not be considered as having moved back to the good health state. Therefore,
the hazards of transitions may increase as the number of previous visits to that state
increases, but it must be bounded.

For states r +1, . . . , K , the expression for the expected total time spent in the state is
derived by Tunes-da-Silva et al. (2008) and we discuss it briefly here. For the states from
which the absorbing state can be reached, for j = 1, . . . , Nk −1, it is known that, given
Nk , the next state visited after T (k)

j must not be the absorbing one. Therefore, the distri-

bution of T (k)
j given Nk is the distribution of the minimum of all latent times T k→l

j given

that the time T k→0
j is greater than the minimum of all others, i.e., we have that T (k)

j

given Nk has the distribution of minl∈B(k)
{T k→l

j } given that T k→0
j > minl∈B∗

(k)
{T k→l

j },
where B∗

(k) = B(k)\{0}. Denote by T ∗(k)
j the random variable with the same distribu-

tion of minl∈B(k)
{T (k)→(l)

j } given T (k)→(0)
j > minl∈B∗

(k)
{T (k)→(l)

j }.
As for the last time state k is visited, the distribution of T ∗(k)

Nk
given Nk is the

distribution of minl∈B(k)
{T (k)→(l)

j } given that T (k)→(m)
j > minl∈B∗∗

(k)
{T (k)→(l)

j } for
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m ∈ B(k)\B∗∗
(k), where B∗∗

(k) is the set of all states that can be reached when it is known

that state k was visited for the last time. This random variable will be denoted by T †(k)
Nk

.
It follows that with the assumption of identically distributed sojourn times for states

r + 1, . . . , K , we have that

E

⎡
⎣ Nk∑

j=1

T (k)
j

⎤
⎦ = [E(Nk) − 1] E

(
T ∗(k)

1

)
+ E

(
T †k

Nk

)
.

Assume now that the latent random variables T (k)→(l)
j for l ∈ B(k) have proportional

hazards, i.e.,

λk,l(t) = λ◦
k(t)e

βT
kl Z,

l ∈ B(k), where λ◦
k(t) is the baseline hazard function. Under this assumption, Tunes-

da-Silva et al. (2008) show that T ∗(k)
j and T †(k)

Nk
are identically distributed and that

E

⎡
⎣ Nk∑

j=1

T (k)
j

⎤
⎦ = E(Nk)E(T (k)

1 ). (7)

Expression (7) is also valid for states from which the absorbing state cannot be
reached. Applying results (4) and (7) in (2), we have

µQ =
r∑

k=1

qk

⎡
⎣E(Nk)E(T (k)

1 ) + ζk

∞∫

0

Sk1(t) log Sk1(t)dt

⎤
⎦

+
K∑

k=r+1

qkE(Nk)E(T (k)
1 ), (8)

and by (6) it follows that

µQ =
r∑

k=1

qkE(Nk)

⎡
⎣E(T (k)

1 ) + d̄k

∞∫

0

Sk1(t) log Sk1(t)dt

⎤
⎦

+
K∑

k=r+1

qkE(Nk)E(T (k)
1 ). (9)

It is important to note that if ζk = 0 and d̄k = 0 for k = 1, . . . , K , we have that all
sojourn times are identically distributed and expressions (8) and (9) simplifies to the
ones obtained by Tunes-da-Silva et al. (2008).

Further simplifications of these expressions can be obtained by imposing certain
models for the sojourn times. Two different approaches are considered in this respect:
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parametric (exponential) and semiparametric models. We note that expressions (8) and
(6) can be applied to any other model for the sojourn times that allows the estimation
of the mean time, such as the ones presented by Huzurbazar (2004).

3 Modeling the sojourn times

Usual survival models can be applied with the inclusion of time independent covari-
ates. We consider a semiparametric approach, based on Dabrowska et al. (1994) and
Cox (1972), and also a parametric approach, based on the exponential distribution. For
both approaches, we assume the data is subject to right censoring, non-informative in
the chronological time scale.

3.1 Semiparametric model

The approach considered by Dabrowska et al. (1994) can be adapted in our case with
some minor modifications. Intuitively, if we assume that each visit to a state defines a
new state, the results presented their work remain valid.

Denote by 0 = τ0 < τ1 < τ2 < τ3 < · · · the instants of entrance in states
V0, V1, V2, V3, . . ., respectively. Following Dabrowska et al. (1994), it is necessary to
define stopping times given by

• Un = τn+1 if τn, τn+1, Vn and Vn+1 are known;
• τn < Un < τn+1 if Vn is known, Vn+1 is unknown and τn+1 − τn > Un − τn ;
• Un = τn if no information is available on τn+1 − τn , Vn and Vn+1.

Also, for k = 1, . . . , r , define

Mk,h =
h∑

h′=1

I (Vh′ = k),

that counts the number of times state k was visited up to the h-th transition is observed.
Consider now the counting processes

Ñk j l(t) =
∑
h≥1

I (τh ≤ t, Vh−1 = k, Vh = l, Mk,h = j), k = 1, . . . , r, l ∈ B(k),

Ñkl(t) =
∑
h≥1

I (τh ≤ t, Vh−1 = k, Vh = l), k = r + 1, . . . , K , l ∈ B(k),

and

Ñ (t) =
r∑

k=1

∑
j

∑
l

Ñk j l(t) +
K∑

k=r+1

∑
l

Ñkl(t).
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We assume that the processes {Ñk j l(t) : t ∈ [0, τ ]}, k = 1, . . . , r , and {Ñkl(t) : t ∈
[0, τ ]}, k = r + 1, . . . , K , have intensities given, respectively, by

�k j l(dt) = I (V (t−) = k, Mk(t
−) = j)λk j l (L(t); Z) dt

= I (V (t−) = k, Mk(t
−) = j)λ◦

k (L(t)) (1 + d(k)
j )eβT

kl Zdt,

and

�kl(dt) = I (V (t−) = k)λkl (L(t); Z) dt

= I (V (t−) = k)λ◦
k (L(t)) eβT

kl Zdt,

where L(t) = t − τÑ (t−)
is the backward recurrence time. It is assumed that the

intensities are computed with respect to the history or filtration Ft generated by the
counting processes Ñk j l(t) and Ñkl(t) and the information available at t = 0.

Note that in this case it is assumed that the hazards functions associated to transi-
tions from the same state to others are proportional, so that the baseline hazard function
λ◦

k (L(t)) depends only on the actual state k.
We can define the processes associated to the sojourn times:

Nk j l(x) =
∑
h≥0

I (τh+1 − τh ≤ x, Vh = k, Vh+1 = l, Uh = τh+1, Mkh = j) ,

Nk(x) =
∑

j

∑
l∈B(k)

Nkl(x),

Yk j (x) =
∑
h≥0

I (τh+1 − τh ≥ x, Vh = k, Mkh = j, Uh − τh ≥ x) ,

j = 1, 2, . . ., for k = 1, . . . , r and l ∈ B(k) and

Nkl(x) =
∑
h≥0

I (τh+1 − τh ≤ x, Vh = k, Vh+1 = l, Uh = τh+1) ,

Nk(x) =
∑

l∈B(k)

Nkl(x),

Yk(x) =
∑
h≥0

I (τh+1 − τh ≥ x, Vh = k, Uh − τh ≥ x) ,

for k = r + 1, . . . , K and l ∈ B(k), where B(k) is the set of states that can be visited
from k.

Let (1 + d(k)
j ) = eα

(k)
j and denote by β the vector collecting all unknown parame-

ters. We also define the vectors Zi,k j l for k = 1, . . . , r and Zi,kl for k = r + 1, . . . , K

such that ZT
i,k j l

β = ZT
i βkl + α

(k)
j for k = 1, . . . , r and ZT

i,klβ = ZT
i βkl for k =

r + 1, . . . , K . Assuming that there are n replications of these processes, the log-
likelihood is given by
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l(β, τ ) =
n∑

i=1

⎧⎨
⎩

r∑
k=1

⎡
⎣ ∑

l∈B(k)

Jk∑
j=1

τ∫

0

[
βT Zi,k j l + α j − log

(
nS(0)

k (t,β)
)]

d Ni,k j l(t)

⎤
⎦

+
K∑

k=r+1

⎡
⎣ ∑

l∈B(k)

τ∫

0

[
βT Zi,kl − log

(
nS(0)

k (t,β)
)]

d Ni,kl(t)

⎤
⎦
⎫⎬
⎭ ,

where

S(0)
k j l

(t,β) = 1

n

n∑
i=1

Yi,k j (t)(1 + d(k)
j )eβT

kl Zi , k = 1, . . . , r, l ∈ B(k),

S(0)
kl (t,β) = 1

n

n∑
i=1

Yi,k(t)e
βT

kl Zi , k = r + 1, . . . , K , l ∈ B(k),

and

S(0)
k (t,β) =

∑
l∈B(k)

S(0)
kl (t,β).

Properties for estimators obtained under this model are presented by Dabrowska
et al. (1994) using arguments that do not make use of the usual martingale properties,
since there is not an appropriate filtration for the processes associated to the sojourn
times (e.g. Andersen et al. 1993, p. 680) leading to suitable martingales. Asymptotic
theory of a simpler model have been worked out by Shu et al. (2007).

After obtaining the estimator β̂ from l(β, τ ), the cumulative hazard functions can
be estimated by (Andersen et al. 1993)

Â◦
k(t, β̂) =

n∑
i=1

t∫

0

d Ni,k(u)

nSk(u, β̂)
,

for k = 1 . . . , K , and the baseline survival function by

Ŝ◦
k (t) = exp{−Â◦

k(t, β̂)}

or

S̃◦
k (t) = π

u≤t

(
1 − dÂ◦

k(u, β̂)
)
.

The survival functions related to each transition are estimated by either

Ŝk j l(t) = Ŝ◦
k (t)

exp(ZT
k j l β̂)

,

S̃k j l(t) = S̃◦
k (t)

exp(ZT
k j l β̂)

123



226 Lifetime Data Anal (2009) 15:216–240

or

S̆k j l(t) = π
u≤t

(
1 − exp

(
ZT

k j l β̂
)

dÂ◦
k(u, β̂)

)

for k = 1, . . . , r , and analogous expressions are valid for k = r + 1, . . . , K . The
survival function for the sojourn time in state k at the j-th visit is given by

Ŝk j (t) =
∏

l∈B(k)

Ŝk j l(t),

S̃k j (t) =
∏

l∈B(k)

S̃k j l(t)

or

S̆k j (t) = π
u≤t

⎛
⎝1 −

⎡
⎣ ∑

l∈B(k)

exp
(

ZT
k j l β̂

)⎤⎦ dÂ◦
k(u, β̂)

⎞
⎠

for k = 1, . . . , r . Finally, the mean sojourn time of the j-th visit to state k can be
estimated by

̂E(T (k j )) =
∞∫

0

Ŝk j (x)dx .

In order to obtain an estimator for the mean quality-adjusted survival time, it
is also needed to estimate ζk in expression (8) or d̄k in expression (9) as well as∫ ∞

0 Sk1(x) log Sk1(x)dx . Estimators of ζk or d̄k are easily obtained given the partial
likelihood estimators of the parameters d j . The expression

∫ ∞
0 Sk1(x) log Sk1(x)dx

can be estimated as the area under the estimated function.

3.2 Parametric model

In this section we consider that the latent time transitions are well described by an expo-
nential model, i.e., the hazard functions associated to the variables T k→l

j , k = 1, . . . , r
and l ∈ B(k), are given by

λk→l
j (t) = (1 + d(k)

j )e−βT
kl Z,

where βkl is a vector of unknown parameters and d(k)
j defined as before. Define now

αk j = log(1 + d(k)
j ),

so that d(k)
j = eαk j −1, j = 1, 2, . . .. Denoting by β the vector of all unknown param-

eters, including αk j , ∀k, j , we define the vector Zkl j such that βT
klZ − αk j = βT Zkl j .

With this notation, the likelihood function is given by

123



Lifetime Data Anal (2009) 15:216–240 227

L(β) ∝
n∏

i=1

⎧⎨
⎩

r∏
k=1

⎡
⎣

Ni,k∏
j=1

⎛
⎝ ∏

l∈B(k)

λk→l
j (t

(k j )

i )
δi,k j l

⎞
⎠
⎤
⎦

× exp

⎛
⎝−

∑
l∈B(k)

∫ t
(k j )

i

0
λk→l

j (u)du

⎞
⎠
⎤
⎦

×
K∏

k=r+1

⎡
⎣

Ni,k∏
j=1

⎛
⎝ ∏

l∈B(k)

λk→l(t
(k j )

i )
δi,k j l

⎞
⎠exp

⎛
⎝−

∑
l∈B(k)

∫ t
(k j )

i

0
λk→l(u)du

⎞
⎠
⎤
⎦
⎫⎬
⎭,

where

δi,k j l =
{

1, if state l is visited after the j-th visit to k;
0, otherwise,

and t
(k j )

i is the observed sojourn time in the j-th visit to state k (possibly censored).
Maximum likelihood estimators are obtained by solving U (β) = 0, where U (β)

is the score function based on L(β). It is important to note that the maximization
procedure must take into account the restriction α

(k)
j ≥ 0.

It is easy to show that, for this parametric model,

E(T (k)
1 ) = 1∑

l∈B(k)
λk→l

1

and

∞∫

0

Sk1(t) log Sk1(t)dt = − 1∑
l∈B(k)

λk→l
1

,

so that expressions (8) and (9) can be written as

µQ =
r∑

k=1

qk
1∑

l∈B(k)
λk→l

1

[E(Nk) − ζk] +
K∑

k=r+1

qkE(Nk)
1∑

l∈B(k)
λk→l

1

and

µQ =
r∑

k=1

qk
1∑

l∈B(k)
λk→l

1

E(Nk)(1 − d̄k) +
K∑

k=r+1

qk
1∑

l∈B(k)
λk→l

1

E(Nk).

Estimators for µQ are obtained plugging the estimators for the corresponding
unknown quantities into these expressions.
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3.3 Expected number of visits to each state

For each state k, define the variables

Mk,m =
{

1, if state k was visited at least m times;
0, if the absorbing state has been reached earlier.

Note that Nk = ∑
m Mk,m and E(Nk) = ∑

m E(Mk,m) = ∑
m P(Mkm = 1). For

states k = r + 1, . . . , K , the probability that a transition from k to k′ takes place is

pkk′ =
∞∫

0

λk→k′
(u)

⎛
⎝ ∏

l∈B(k)

Sk→l(u)

⎞
⎠ du.

For states 1 to r , we consider the general situation in which the hazard function
associated to a transition from k to k′ in the j-th visit to k is given by λk→k′

j (t) =
(1 + d(k)

j )λk→k′
1 (t) and the hazard function of the transition k → k′ in the first visit

to k is λk→k′
1 (t) = λ◦

k(t)g(βkk′ , Z), where g(·) is any positive function. Considering
this notation, the probability of a transition to k′ after the j-th visit to k is

pk( j)k′ =
∞∫

0

(1 + d(k)
j )λk→k′

1 (u)

⎛
⎝ ∏

l∈B(k)

(
Sk→k′

1 (u)
)(1+d(k)

j )

⎞
⎠ du

= (1 + d(k)
j )g(βkk′ , Z)

∞∫

0

λ◦
k(u)

(
S◦

k (u)
)∑

l∈B(k)
(1+d(k)

j )g(βkl ,Z)
du

= (1 + d(k)
j )g(βkk′)

(1 + d(k)
j )

∑
l∈B(k)

g(βkl , Z)
= g(βkk′)∑

l∈B(k)
g(βkl , Z)

.

This result shows us that the transition probabilities are the same for all j . There-
fore, it is possible to construct a matrix P of transition probabilities that does not
depend on the number of previous visits to each state, and the results presented by
Tunes-da-Silva et al. (2008) are directly applicable here. Assuming that all patients
enter in the study in the same health state, it is possible to compute the probability
f1k of reaching k for the first time, given by the sum of the probabilities of reaching
k in one, two, three, … steps. Denote by f (n)

kk the probability of going from k to k in
n steps, which can also be computed based on the transition matrix P, and let

fkk =
∞∑

n=0

f (n)
kk
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be the probability of returning to k from k. We have that P(Mk1 = 1) = f1k and
P(Mkm = 1) = f1k ( fkk)

m−1, m = 1, 2, . . .. Therefore,

E(Nk) = f1k

∞∑
m=0

( fkk)
m = f1k

1 − fkk
.

It is evident that the expected number of visits in each state depends on the process
considered. Also, the way it is computed may be different for each particular process.
In the next section, we present the derivation for a three state process in details.

4 Three state process

The estimator of the mean quality-adjusted survival time in the situation with three
states (two transient and one absorbing—see Fig. 1) is derived in this section. We
assume sojourn times in state B independent with the same distribution for a given
vector of covariates, whereas the mean sojourn times in state A decreases as the num-
ber of previous visits increases. For this process, applying the results presented in
Sect. 2, the mean quality-adjusted survival is given by

µQ = qA [E(NA)] E(T (A)
1 ) + qA

⎛
⎝

∞∫

0

SA1(t) log SA1(t)dt

⎞
⎠ E

⎡
⎣ NA∑

j=1

d j

⎤
⎦

+ qB [E(NB)] E
(

T (B)
1

)
.

Assuming that all patients enter the study in the same health state, we have E(NA) =
E(NB). Defining the variables

MA,m =
{

1, if state A was visited at least m times;
0, otherwise,

for, m ≥ 1, we have that NA = ∑
m MA,m , P(MA,1 = 1) and

P(MA,2 = 1) = P(A → B → A) =
∞∫

0

λB A|Z(u)
(
SB A|Z(u)SB0|Z(u)

)
du = pZ,

Fig. 1 Three state process

A B Abs.
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where λB A|Z(u) is the hazard function for the transition B → A for a given Z and
SB A|Z(u) and SB0|Z(u) are the survival functions for the respective transitions. It
follows that

E(NA) =
∑

m

E(MAm) = 1 +
∞∑

m=2

pm−1
Z = 1

1 − pZ
,

with pZ = ∫ ∞
0 λB A|Z(u)SB A|Z(u)SB0|Z(u)du. In addition, P(NA ≥ j)= P(MA, j =

1) = p j−1
Z and, under assumption (4),

E

⎡
⎣ NA∑

j=1

d j

⎤
⎦ = ζA|Z =

∞∑
j=1

P(NA ≥ j)d j =
s∑

j=1

p j−1
Z (e jγ −1)+

∞∑
j=s+1

p j−1
Z (esγ −1)

= [(
eγ pZ

)s − 1
] [ 1

1 − pZ
− eγ

1 − pZeγ

]
. (10)

The mean quality-adjusted survival time under assumption (4) is given by

µQ ≈ qA
1

1 − pZ
E(T (A)

1 ) + qAζA|Z

⎛
⎝

∞∫

0

SA1(t) log SA1(t)dt

⎞
⎠

+ qB
1

1 − pZ
E
(

T (B)
1

)
, (11)

and, under (6),

µQ ≈ qA
1

1 − pZ

⎛
⎝E(T (A)

1 ) + d̄

∞∫

0

SA1(t) log SA1(t)dt

⎞
⎠ + qB

1

1 − pZ
E
(

T (B)
1

)
.

(12)

Assuming the semiparametric model, under (4), we have

µQ = qA
eZT βB A + eZT βB O

eZT βB O
E(T (A)

1 ) + qA
AζA|Z + qB
eZT βB A + eZT β

BO

eZT βB O
E
(

T (B)
1

)

(13)

and under (5) we have

µQ = eZT βB A + eZT βB O

eZT βB O

[
qA

(
E(T (A)) + d̄
A

)
+ qBE(T (B))

]
, (14)

where 
A = eZT β A
∫ ∞

0 (S0(t))eZT β A log (S0(t)) dt and ζA|Z is defined in (10).
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Assuming an exponential model, the expressions can be simplified to

µQ = qA
1

λA|Z

(
λB A|Z + λBO|Z

λBO|Z
− ζA|Z

)
+ qB

1

λBO|Z
, (15)

where λA|Z = e−ZT β A ,

ζA|Z =
[(

eγ λB A|Z
λB A|Z + λBO|Z

)s

− 1

] (
λB A|Z + λBO|Z

)

×
(

1

λBO|Z
− eγ

λB A|Z(1 − eγ ) + λBO|Z

)
,

and

µQ = qA
(1 − d̄)

λA|Z
λB A|Z + λBO|Z

λBO|Z
+ qB

1

λBO|Z
. (16)

The results for the parametric approach remain valid for any proportional hazards
model. Therefore, a Weibull distribution can also be considered. The derivation of the
estimator for the Weibull distribution is exactly the same as done for the exponential
distribution. Assuming that the sojourn times follow a Weibull distribution with hazard
rates given by

λk→l
j (t) = (1 + d(k)

j )e−βT
kl Zνtν−1,

for k = A, B, l ∈ B(k), B(A) = {B} and B(B) = {A, O}, expressions (11) and (12)
can be simplified to, respectively,

µQ = qA
� (1 + 1/ν)

λ
1/ν

A|Z

(
λB A|Z + λBO|Z

λBO|Z
− ζA

ν

)

+ qB

(
λB A|Z + λBO|Z

)1−1/ν

λBO|Z
�

(
1 + 1

ν

)

and

µQ = qA
� (1 + 1/ν)

λ
1/ν

A|Z

λB A|Z + λBO|Z
λBO|Z

(
1 − d̄

ν

)

+ qB

(
λB A|Z + λBO|Z

)1−1/ν

λBO|Z
�

(
1 + 1

ν

)
.

For both, parametric and semiparametric approaches, the model for the sojourn
times and estimation procedures are exactly as described before.
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Table 1 Frequencies for
hospitalization data

Sex Disease Total

Respiratory Digestive

Female 47 24 71
Male 43 26 69
Total 90 50 140

Table 2 Results for the
hospitalization data

Estimator Respiratory Digestive

Female Male Female Male

Exponential µ̂Q 12.55 6.27 9.82 5.04
Not ident. dist. (13) std 0.75 0.38 0.50 0.23
Exponential µ̂Q 10.90 5.68 8.87 4.75
Identic. dist. assumption std 0.32 0.18 0.35 0.15
Semiparametric µ̂Q 5.29 2.73 4.49 2.48
Not ident. dist. (15) std 0.17 0.10 0.17 0.10
Semiparametric µ̂Q 7.58 4.34 6.04 3.56
Identic. dist. assumption std 0.17 0.11 0.17 0.09

5 An application to hospitalization data

In this section we apply the methodology discussed in the previous sections to a data
retrieved from a larger data set, based on the information of all patients that were hos-
pitalized (including readmissions) in a medical facility in Brazil, from July 2006 to
June 2007. This data was first analyzed by Castro and Carvalho (2005). Only a sample
of the data is available and we selected from this sample patients aged 55 years or
older, hospitalized due to problems in the respiratory or digestive systems. Since the
censoring rate is extremely high and our main objective is to illustrate the methodol-
ogy, we selected a sample with a censoring rate of 60% and ended up with a total of
140 patients, as shown in Table 1. We consider a three state process for this data: state
A corresponding to the periods (in years) in which the patient is out of the hospital,
state B if the patient was admitted to the hospital, and the third state is the absorb-
ing state, corresponding to death. The maximum number of readmissions of a patient
observed in this sample was six, but most patients had one or two hospitalizations. We
considered both, parametric and semiparametric approaches, with two binary covar-
iates: gender (female or male) and disease (respiratory system or digestive system).
Age was not included in the model because the sample was somewhat homogeneous
with respect to that characteristic (all patients selected in the sample were aged more
than 55 years). The utility coefficients were set as 1/2 for state B and 1 for state A.
Jackknife resampling was used to compute standard errors. For each approach, we fit
the model considering two scenarios with respect to the sojourn times: being and not
being identically distributed. The results are shown in Table 2.

The figures for the exponential model are very different than the ones observed for
the semiparametric model. This is not surprising, since the assumption of exponential
distribution for the sojourn times may be not be tenable. In both situations considered
for the semiparametric model, the estimator of the mean quality adjusted survival
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time with the identically distributed assumption for the sojourn times in state A (for
a given set of covariates) showed larger estimates, for all combinations of gender and
disease. The opposite behavior was observed for the parametric model. Comparing
the mean quality adjusted times for the semiparametric approach, we may conclude
that patients with digestive problems have smaller quality adjusted survival time and
that males have smaller quality adjusted survival times when compared to females.

6 Simulation study

In this section, we present simulation studies of the proposed estimator. We consider
two different scenarios for the three state process shown in Fig. 1.

For the first simulation study, only one binary covariate, denoted x , was included
in the model assuming values 0 or 1. The data was generated in such way that the pro-
portion of covariates equal to 1 was the same as the proportion equal to 0. It was also
assumed that all observations were in the good health state at the beginning of the study.

The sojourn time of the j-th visit to state A was considered exponentially distrib-
uted, with hazard rate given by

λA j |x = exp (−2 − βAx + γ j) , j = 1, . . . , nd

and

λA j |x = exp (−2 − βAx + γ nd) , j > nd .

Note that if γ > 0, the mean sojourn time in state A decreases as the number of
previous visits increases for j = 1, . . . , nd .

The sojourn times in state B is the minimum between the time until a transition to A,
T (B)→(A)

j , and the time up to a transition to the absorbing state, T (B)→(O)
j . T (B)→(A)

j

and T (B)→(O)
j are exponentially distributed with hazard rates given by

λB A|x = exp (−1 − βB x)

and

λBO|x = exp (−2 − βB x) .

In the simulations considered we generated data with βA = βB = 1/2. Under these
assumptions, the expected number of visits to state A is

E(NA) = λB A|x + λBO|x
λB A|x

≈ 3.72.

This result motivated us to choose nd = 5 in our simulated data.
Censoring was included in the data with proportions fixed at 0%, 30% and 50%. We

assumed random censoring and the hazard for the censoring variable was computed so
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that the probability of an observation being censored was equal to the established pro-
portion of censoring. In order to do so, first note that from (15), if we set qA = qB = 1,
it is possible to obtain an expression for the expected survival time for the two possible
values of the covariate:

µx = 1

λA|x
λB A|x + λBO|x

λBO|x
+ 1

λBO|x
,

for x = 0, 1, and

µ = (1/2)µ1 + (1/2)µ0,

since the probability of x = 1 is 1/2.
For T and C independent and exponentially distributed random variables, it is

known that P(C > T ) = λT
λC +λT

and λT = 1
µT

. Therefore, the hazard for the censor-
ing variables was considered as

λC = pc

(1 − pc)µ
,

where pc is the desired proportion of censored observations. The simulated data
showed that the observed proportions of censored observations were very close to
the desired ones.

We fit a parametric (exponential) model and a semiparametric model. The jackknife
resampling method was employed to compute the estimated standard error as well as
the estimated bias for the estimators. If no transition between two states was observed,
the corresponding sample was disregarded since, in that case, it is not possible to esti-
mate the parameters associated to that transition. Therefore, we considered samples
with at least two observed transitions from state A to B, B to A and B to 0, so that
the jackknife could be used. The jackknife was applied removing all sojourn times
observed in a patient, i.e., removing one patient at each jackknife sample. Table 3
shows the results for both, parametric and semiparametric models, based on 1,000
simulations. For the parametric approach, the estimator was obtained using the sec-
ond order approximation based on a Taylor expansion applied to (3). We assumed that
the QOL scores for states A and B were 1 and 0.3, respectively.

The second study was performed in order to compare different estimators for the
mean quality adjusted survival. We generated data analogously to the first study, but
we also included a continuous covariate in addition to the binary one, following a nor-
mal distribution with zero mean and variance equals to 0.2. This variable was included
only for the sojourn times in state A. Therefore, the sojourn time of the j-th visit to
state A is exponentially distributed with hazard rate given by

λA j |x = exp
(−2 − βA1 x + βA2 y + γ j

)
, j = 1, . . . , nd

and

λA j |x = exp
(−2 − βA1 x + βA2 y + γ nd

)
, j > nd ,
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where x is the binary covariate and y is the continuous covariate. For state B, sojourn
times and censoring times were generated exactly as described before. For this con-
figuration, we used βA1 = βB = 0.2, βA2 = 0.4, nd = 5, qa = 0.8 and qb = 0.3.
There were n = 100 and n = 200 subjects per simulated data set and 2,000 replicates
per data configuration. We computed the estimated mean quality adjusted survival us-
ing nine different estimators: the parametric estimators proposed in this paper, using
the first and second order Taylor expansion (denoted parametric 1 and parametric 2,
respectively); the parametric estimator proposed by Tunes-da-Silva et al. (2008) that
assumes identically distributed sojourn times in state A, for a given vector of covari-
ates; the semiparametric estimator proposed in this work; the semiparametric estimator
proposed by Tunes-da-Silva et al. (2008), that also assumes sojourn times in state A
have the same distribution for a given vector of covariates; two estimators proposed by
Zhao and Tsiatis (2000) and two estimators proposed by Huang and Louis (1999). The
first estimator proposed by Zhao and Tsiatis (2000) is a simple weighted estimator,
given by

µ̂W T = 1

n

n∑
i=1


iUi

K̂ (Zi )
, (17)

where K̂ (Zi ) is the Kaplan–Meier estimator for the survival of the censoring variable,
Zi is the minimum between the time a patient reaches the absorbing state and the
censoring time and 
i is the failure indicator variable. The second estimator is an
improved one, obtained by adding a new term to the right-hand side of (17). The esti-
mators proposed by Huang and Louis (1999) are functions of Nelson-Aalen estimators
and also take into account the distribution of the censoring variable.

The proposed estimators as well as the estimators in Tunes-da-Silva et al. (2008)
allow for covariates while Zhao-Tsiatis and Huang-Louis estimators do not. There-
fore, for the estimators allowing covariates we computed the estimated mean quality
adjusted survival time for both values of the binary covariate with y = 0. For estima-
tors that do not allow for covariates, we computed the estimated mean quality-adjusted
survival for observations with x = 0 and with x = 1 separately. The estimators allow-
ing for covariates were computed including the covariate x in the model (i.e., we did
not compute separately for different values of x). Results of the simulation for x = 0
and x = 1 are listed in Tables 4 and 5, respectively.

The resulting figures from the simulations suggest that, in general, the proposed
estimators provide accurate estimates for low and moderate censoring rates. The sec-
ond order Taylor approximation estimator is the best one in most scenarios. For high
censoring rates, the variance of the estimator may be extremely high; the estimator
overestimates the mean quality-adjusted survival time in the parametric approach and
underestimates in the semiparametric situation. In Table 3, the difference between
the parametric and semiparametric approaches is due to the approximations used in
each situation: it was used the second order Taylor approximation for the parametric
estimator and the first order for the semiparametric estimator. In these cases, it can
be verified that the jackknife estimator considerably reduces the bias of the proposed
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estimators. Also, the jackknife estimator for the variance of µ̂Q provides, in general,
very good approximations.

The results in Tables 4 and 5 show that the estimator denoted by Huang-Louis 2 has
the smallest bias in most situations. However, the variance as well as the mean squared
error of the estimators that do not allow for covariates are greater than both parametric
and semiparametric estimators. This results shows the importance of including covar-
iates in the model. The parametric estimator with second order Taylor approxima-
tion usually has the smallest variance and mean squared error. The results also show
that the estimators proposed by Tunes-da-Silva et al. (2008), where it is assumed
that the distribution of the sojourn times in state A does not change as the num-
ber of previous visits to A increases, performs very badly when this assumption is
violated.

7 Discussion

In this paper, we generalize the estimator proposed by Tunes-da-Silva et al. (2008)
for the mean quality-adjusted survival time allowing the sojourn times to be non-iden-
tically distributed. This makes possible to apply the methodology to a broader class
of applied problems, since that, in practice, the mean sojourn times in each health
state usually changes over time. Although only right censoring was considered, the
extension for interval and left censored observations can be derived.

We assumed that the mean sojourn time in some states may decrease as the number
of previous visits increases, however the situation in which the mean sojourn times
increase may also be considered without further complications. Another assumption
made in this paper is the independence among sojourn times for a given patient, but
further work is under development to allow the incorporation of a possible correla-
tion among sojourn times for a patient. The use of frailty terms in gap times models,
however, is not straightforward due to the fact that when the overall follow-up time is
subject to right independent censoring, gap times (except the first one) are subject to
dependent censoring (see Lin et al. 1999). The inclusion of time dependent covariates
is also an issue of interest in applications; nevertheless, some of the results presented
in this paper do not remain valid in this case (in particular, results concerning the
expected number of visits to states), and the resulting expressions may be extremely
complex, compromising the simplicity of the estimator.

Simulation results show that the estimator behaves properly and may be a helpful
tool for treatment comparisons. The proposed estimator, in addition to be the only one
to include covariates, seems to have smaller mean squared error, although the bias may
be greater. The simulations also show us the importance of considering the decrease
of mean sojourn times in the model and how covariates can improve the estimation
when they are available. Finally, model validation is an important aspect that must
be carefully considered. The proposed estimator is based on multistate models for
sojourn times and it will be appropriate whenever the multistate model is correctly
specified. Model validation techniques for multistate models is a topic that needs to
be urgently developed.
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