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Abstract This paper discusses regression analysis of panel count data that often
arise in longitudinal studies concerning occurrence rates of certain recurrent events.
Panel count data mean that each study subject is observed only at discrete time points
rather than under continuous observation. Furthermore, both observation and follow-
up times can vary from subject to subject and may be correlated with the recurrent
events. For inference, we propose some shared frailty models and estimating equa-
tions are developed for estimation of regression parameters. The proposed estimates
are consistent and have asymptotically a normal distribution. The finite sample prop-
erties of the proposed estimates are investigated through simulation and an illustrative
example from a cancer study is provided.
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1 Introduction

Panel count data usually arise in longitudinal follow-up studies that concern occur-
rence rates of certain recurrent events. In this situation, each study subject is observed
only at discrete time points rather than under continuous observation and only the
numbers of the events that occur between the observation times, not their occurrence
times, are observed. Furthermore, both observation and follow-up times can vary from
subject to subject. Areas that often produce panel count data include demographical
studies, epidemiological studies, medical periodic follow-up studies and tumorgenic-
ity experiments (Kalbfleisch and Lawless 1985; Thall and Lachin 1988).

For panel count data, three processes are involved. They are the underlying count-
ing process that characterizes the recurrent process of interest, the process that gov-
erns observation times, and the process that determines follow-up times. If the three
processes are independent completely or given covariates, a number of methods are
available for the analysis of panel count data. For example, Kalbfleisch and Lawless
(1985) considered the fitting of Markov model to panel count data. Sun and Kalbfleisch
(1995) and Wellner and Zhang (2000) discussed estimation of mean function of the
underlying counting process, while Sun and Wei (2000), Zhang (2002) and He et al.
(2008) investigated regression analysis of panel count data.

In practice, the three processes may be correlated. For example, the follow-up times
may be times to some terminal events related to the recurrent event of interest. Some
recent references that discuss this for recurrent event data include Huang and Wang
(2004), Liu et al. (2004), Huang and Liu (2007), Liu and Huang (2007), Rondeau et al.
(2007) and Ye et al. (2007). Wang et al. (2001) also considered the same phenomenon
and described a study of AIDS patients in which the recurrent and terminal events
are hospitalization and death, respectively. Note that for recurrent event data, only the
underlying counting process and the follow-up process are involved. Also one could
face the same correlated problem in general longitudinal studies and for this, an exten-
sive literature has been developed (De Gruttola and Tu 1994; Wulfsohn and Tsiatis
1997; Roy and Lin 2002; Song et al. 2002; Liu et al. 2007).

For panel count data, as mentioned above, one could have to deal with three related
processes and the same could be true for longitudinal studies. For example, in the
AIDS study discussed in Wang et al. (2001), suppose that one is interested in some
symptoms related to AIDS such as CD4 counts or the time at which the patient’s CD4
counts cross some threshold. Then the response process may be correlated with the
observation process as well as the follow-up process. Lipsitz et al. (2002) presented
a set of longitudinal data from a study of children with acute lymphoblastic leukemia
which involves correlated response and observation processes. Huang et al. (2006)
and Sun et al. (2007) discussed a set of panel count data that arose from a bladder
cancer study in which the response process and the observation process are related.
In this study, one may suspect the possible correlation among the follow-up process,
the response process and the observation process as well. Therefore, in this paper, we
consider situations where all three processes may be correlated with the main interest
on the estimation of covariate effects on the response process after adjusting for the
possible correlation among the three processes.
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The remainder of this paper is organized as follows. Section 2 introduces notation
and describes joint models for the three processes. To characterize the correlation, we
employ some shared frailty models, a commonly used approach in both survival and
longitudinal data analyses when a joint analysis is required. In Sect. 3, we consider
estimation of regression parameters and for this, the estimating equation approach is
applied. To implement the approach, a three-step estimation procedure is developed
and the proposed estimates of regression parameters are consistent and have asymptot-
ically a normal distribution. Section 4 presents some results obtained from a simulation
study for assessing the proposed inference approach and an illustrative example is dis-
cussed in Sect. 5. Some concluding remarks and discussion are given in Sect. 6.

2 Notation and models

Consider a recurrent event study that consists of n independent subjects. Let Ni (t)
denote the number of occurrences of the recurrent event of interest before or at time t
for subject i . Suppose that for subject i , there exists a vector of covariates denoted by
xi . Given xi and two latent variables ui and vi , the mean function of Ni (t) has the form

E{Ni (t)|xi , ui , vi } = µN (t) exp(x ′
iβ1 + uiβ2 + viβ3) . (1)

Here µN (t) is a completely unknown continuous baseline mean function and β1, β2
and β3 are unknown regression parameters.

For subject i , suppose that Ni (·) is observed only at finite time points Ti1 < · · · <

Ti Ki , where Ki denotes the potential number of observation times, i = 1, . . . , n. That
is, only the values of Ni (t) at these observation times are known and we have panel
count data on the Ni (t)’s. Also for subject i , suppose that there exist two follow-up
times C∗

i and τi , where C∗
i may be related to Ni (t) and the Til ’s and τi is independent

of them. Assume that one only observes Ci = min(C∗
i , τi ) and δi = I (Ci = C∗

i )

and thus Ni (t) is observed only at these Til ’s with Til ≤ Ci , i = 1, . . . , n. Define
Ñi (t) = Hi {min(t, Ci )}, where Hi (t) = ∑Ki

l=1 I (Til ≤ t), i = 1, . . . , n. Then
Ñi (t) is a point process characterizing the i th subject’s observation process and jumps
only at the observation times.

In the following, we assume that given (x ′
i , ui ), Hi (·) is a non-homogeneous

Poisson process with the intensity function

λih(t) = λ0h(t) exp(x ′
iα1 + ui ) . (2)

In the model above, λ0h(t) is a completely unknown continuous baseline intensity
function and α1 denotes the vector of regression parameters. For the follow-up time
C∗

i , it will be assumed that its hazard function is given by

λic(t) = λ0c(t) exp(x ′
iγ1 + uiγ2 + vi ) (3)

given xi , ui and vi , where λ0c(t) denotes an unknown baseline hazard function and
γ1 and γ2 are regression parameters.
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Under models (1)–(3), it is clear that β2, β3 and γ2 partly determine the correla-
tion among the three processes. For instance, when γ2 = 0, the observation process
and the follow-up process are independent given (x ′

i , ui ). For subjects with the same
(x ′

i , ui ), these two processes are positively correlated if γ2 > 0 and they are nega-
tively correlated if γ2 < 0. Similarly, β2 and β3 measure the correlation between the
response process and the observation process or the follow-up process, respectively,
given (x ′

i , ui , vi ). Therefore, one can estimate the covariate effects on the response
process adjusting for possible correlation among the three processes. Note that there
are no regression parameters associated with ui and vi in models (2) and (3) to avoid the
identifiability issue and the difficulty to interpret the correlation between the response
process and the observation process (measured by β2) or the follow-up process (mea-
sured by β3).

There exists a great deal of research on each of the three models (1)–(3) and their
special cases individually. For example, model (3) without the latent variables is the
well-known proportional hazards model (Kalbfleisch and Prentice 2002) and a number
of methods have been developed for the same model with γ2 = 0. Wang et al. (2001)
and Huang and Wang (2004) considered a model similar to model (2) for recurrent
event data. There also exists some limited work on the joint analysis of two of these
models (Cheng and Wei 2000). In the following, we study the joint analysis of all
three models together with the focus on estimation of regression parameters β1 along
with α1 and γ1. Let �0h(t) = ∫ t

0 λ0h(s)ds. We will assume that �0h(τ ) = 1 for
identifiability and E(ui |xi ) = E(ui ), where τ denotes the length of study. Also it
will be assumed that vi ∼ N (0, σ 2), where σ 2 is an unknown parameter.

3 Estimation of regression parameters

In this section, we consider estimation of β1 along with other parameters. For this,
note that if the latent effects ui ’s and vi ’s are known, then model (1) becomes the
usual proportional means model and several methods such as that given in Cheng
and Wei (2000) can be used. Unfortunately they are not known in practice. To deal
with this, we borrow the idea used in Huang and Wang (2004) to first estimate or
predict these unknown latent variables. For i = 1, . . . , n, let x ′

1i = (x ′
i , ui ), x ′

2i =
(x ′

i , ui , vi ), β
′ = (β ′

1, β2, β3), α
′ = (α′

1, 1, 0), and γ ′ = (γ ′
1, γ2). The proposed

estimation procedure consists of the following three steps.

3.1 Estimation of model (2)

To estimate β1, we first consider inference about model (2), for which we have recur-
rent event data. Let K ∗

i = Ñi (Ci ), the total number of observations on subject i, i =
1, . . . , n. Also let the s j ’s denote the ordered and distinct time points of all the obser-
vation times {Ti l}, d j be the number of the observation times equal to s j , and n j be
the number of the observation times satisfying Til ≤ s j ≤ Ci among all subjects.
Define x ′

3i = (x ′
i , 1), α′∗ = (α′

1, α2) = (α′
1, E(ui )). Then following Huang and

Wang (2004), one can first estimate �0h(t) and α∗ by
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�̂0h(t) =
∏

sl>t

(

1 − dl

nl

)

and the estimating equation

n∑

i=1

wi x3i

{
K ∗

i �̂−1
0h (Ci ) − exp(α′∗x3i )

}
= 0, (4)

respectively. In Eq. 4, the wi ’s are some weights that could depend on xi , Ci and
�0h . A key fact used in deriving the above estimating equation is that conditional
on (x ′

i , Ci , ui , K ∗
i ), the observation times {Ti1, . . . , Ti K ∗

i
} are the order statistics of a

simple random sample of size K ∗
i from the density function

λ0h(t) exp(α′
1xi + ui )

�0h(Ci ) exp(α′
1xi + ui )

I (0 ≤ t ≤ Ci ) = λ0h(t)

�0h(Ci )
I (0 ≤ t ≤ Ci ) .

Let α̂′∗ = (α̂′
1, α̂2) denote the estimate of α′∗ given by Eq. 4. Note that given

(x ′
i , Ci , ui ), the expected value of K ∗

i is equal to �0h(Ci ) exp(α′
1xi + ui ). Thus it is

natural to predict ui by

ûi = log

{
K ∗

i

�̂0h(Ci ) eα̂′
1xi

}

. (5)

3.2 Estimation of model (3)

In this subsection, we discuss estimation of model (3). For this, let O = (O1, . . . , On),
where O ′

i = (Ci , δi , x ′
i , ui ) denotes the observed data on subject i assuming that ui is

known. Also let c1 < · · · < ck denote the ordered observed failure times and assume
that we can write �0c(t) as

�0c(t) =
k∑

j=1

a j I (t ≥ c j ) ,

where a′ = (a1, . . . , ak) is a vector of unknown parameters. Define θ = (a′, γ ′, σ 2)′.
Then the full likelihood function has the form

L(θ) =
n∏

i=1

{λ0c(Ci ) exp(x ′
1iγ + vi )}δi exp{−�0c(Ci ) exp(x ′

1iγ + vi )} φ(vi ; σ)

based on the pseudo complete data O and the vi ’s, where φ(·; σ) denotes the density
function of N (0, σ 2).

To maximize L(θ) with respect to θ , we propose to replace ui in L(θ) by its predic-
tion given in (5) and then use the EM algorithm to deal with the latent variables vi ’s as
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usual. To implement the EM algorithm, we first consider the E-step, which computes
the conditional expectation of the log likelihood function given the current estimate
of θ and the observed data O . To this end, note that the log likelihood function can be
written as

l(θ) =
n∑

i=1

{

δi

[

log{λ0c(Ci )} + x ′
1iγ + vi

]

−�0c(Ci ) exp(x ′
1iγ + vi ) + log φ(vi ; σ)

}

=
n∑

i=1

δi

[

log{λ0c(Ci )} + x ′
1iγ

]

+
n∑

i=1

g(vi ; θ),

where

g(vi ; θ) = δivi − �0c(Ci ) exp(x ′
1iγ + vi ) + log φ(vi ; σ).

To calculate E{l(θ)|O, θ(m)}, one needs to calculate

Ei {g(vi ; θ)|Oi , θ
(m)} =

∫

g(vi ; θ) f (vi |Oi , θ
(m)) dvi ,

where θ(m) denotes the current estimate of θ and

f (vi |Oi , θ) = exp(δivi ) exp{−�0c(Ci ) exp(x ′
1iγ + vi )}φ(vi ; σ)

∫

exp(δivi ) exp{−�0c(Ci ) exp(x ′
1iγ + vi )}φ(vi ; σ)dvi

,

the conditional density of vi given Oi and θ . It is apparent that this integration has
no closed form. For this, with θ = θ(m), let { v

(l)
i ; i = 1, . . . , n, l = 1, . . . , L } be

L independent and identically distributed samples from N (0, {σ (m)}2), where L is
sufficiently large. Then one can approximate Ei {g(vi ; θ)|Oi , θ

(m)} by

Êi {g(vi ; θ)|Oi , θ
(m)}

=
∑L

l=1 g(v
(l)
i ; θ) exp(δiv

(l)
i ) exp{−�

(m)
0c (Ci ) exp(x ′

1iγ
(m) + v

(l)
i )}

∑L
l=1 exp(δiv

(l)
i ) exp{−�

(m)
0c (Ci ) exp(x ′

1iγ
(m) + v

(l)
i )}

. (6)

Now we consider the M-step of the EM algorithm, which maximizes
E{l(θ)|O, θ(m)} with respect to θ . For this, by taking its derivatives with respect
to θ and setting the derivatives equal to zero, we obtain the following equations

a(m+1)
j =

[ n∑

i=1

Ei
{
exp(x ′

1iγ + vi )I (Ci ≥ c j )
}
]−1

, (7)
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for j = 1, .., k, σ (m+1) = {n−1 ∑n
i=1 Ei (v

2
i )}1/2, and

n∑

i=1

Ei

[

x1i
{
δi − �0c(Ci ) exp(x ′

1iγ + vi )
}
]

= 0 (8)

for the updated estimate θ(m+1) of θ . In practice, we propose to obtain the a(m+1)
j

and thus �
(m+1)
0c first by using (7) with letting θ = θ(m). Then by replacing �0c with

�
(m+1)
0c , one can solve (8) to get γ (m+1) and {σ (m+1)}2. Finally, given the estimate θ̂

of θ , one could calculate the conditional expectation of vi given Oi as or predict vi by

v̂i = Êi (vi |Oi , θ̂ ), (9)

which can be approximated by (6).

3.3 Estimation of β1

Now we are ready to estimate β1 or β in model (1). For this, define Yi (t) = I (t ≤ Ci )

and

S j (β; t) = 1

n

n∑

i=1

Yi (t) exp{x ′
2i (β + α)} x⊗ j

2i ,

for j = 0, 1, 2, where a⊗0 = 1, a⊗1 = a and a⊗2 = a a′ for a vector a. Note that
if all the ui ’s and vi ’s are known, following Cheng and Wei (2000), one can estimate
β using the estimating function

U (β) = 1√
n

n∑

i=1

τ∫

0

{

x2i − S1(β; t)

S0(β; t)

}

Ni (t)d Ñi (t).

Motivated by this, we propose to estimate β based on the following estimating function

Û (β) = 1√
n

n∑

i=1

τ∫

0

{

x̂2i − Ŝ1(β; t)

Ŝ0(β; t)

}

Ni (t)d Ñi (t). (10)

Here x̂2i = (x ′
i , ûi , v̂i )

′ with the ûi and v̂i given by (5) and (9), respectively, and

Ŝ j (β; t) denotes S j (β; t) with the x2i ’s and α replaced by the x̂2i ’s and α̂ = (α̂′
1, 1, 0)′,

respectively.
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Define the estimate β̂ of β as the solution to Û (β) = 0. Note that x̂2i is independent
of β and we have

∂Û (β)

∂β
= − 1√

n

n∑

i=1

τ∫

0

{
Ŝ2(β; t)Ŝ0(β; t) − Ŝ1(β; t)Ŝ1(β; t)′

Ŝ2
0 (β; t)

}

Ni (t) d Ñi (t),

which is strictly negative. Thus β̂ is unique. In the Appendix, we show that β̂ is
consistent and

√
n(β̂ − β) converges in distribution to a normal random vector with

mean zero and covariance matrix given in the Appendix.
For estimation of the covariance matrix of β̂1 or β̂, we propose to use the following

simple bootstrap procedure. Let B denote a prespecified positive integer. For each b,
where 1 ≤ b ≤ B, draw a simple random sample of size n,

D(b)=
{

T (b)
i1 , . . . , T (b)

i K ∗
i
, N (b)

i (T (b)
i1 ), . . . , N (b)

i (T (b)

i K ∗
i
), C (b)

i , δ
(b)
i , x (b)

i

′; i=1, . . . , n
}

,

with replacement from the observed data

D =
{

Ti1, . . . , Ti K ∗
i
, Ni (Ti1), . . . , Ni (Ti K ∗

i
), Ci , δi , x ′

i ; i = 1, . . . , n
}

.

Let β̂(b) be the proposed estimate of β based on the data set D(b) defined above. Then
a natural estimate of the covariance matrix of β̂ is given by

�̂ = 1

B − 1

B∑

b=1

{

β̂(b) − 1

B

B∑

b=1

β̂(b)

}⊗2

.

In the procedure given above, one needs to choose L and B. In general, for a practical
problem, one may start with some reasonable values and then increase them until the
results are stable. For example, it is common to choose L = 200 and B = 100. For
simulation studies, if using enough replications, one may actually only need to use
small values for them to save the computational effort. More comments are given in
the next section.

4 Numerical results

We conducted a simulation study to assess the performance of the estimation proce-
dure proposed in the previous sections under different situations with the focus on
estimation of β1. Note that models (2) and (3) and the estimation of the regression
parameters in them have been investigated by other authors. In the study, the covariate
xi ’s were assumed to follow a Bernoulli distribution with success probability 0.5. To
generate the simulated data, we first generated the u∗

i = exp(ui ) and vi from the
gamma distribution with mean 10 and variance 50 and the normal distribution with
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mean 0 and variance σ 2 = 0.25, respectively. Given xi , ui and vi , C∗
i was generated

under model (3) with λ0c(t) = 0.002 and it was assumed that τi = τ = 18.
For the observation process, we assumed that Hi follows the homogeneous Poisson

process with λ0h(t) = τ−1. Then given xi and ui , K ∗
i , the number of real observation

times for subject i , follows the Poisson distribution with mean

�ih(Ci |xi , ui ) = �0h(Ci ) exp(xiα1 + ui ) = Ci exp(xiα1 + ui )

τ
,

i = 1, 2, . . . , n. Furthermore, the observation times (Ti1, . . . , Ti K ∗
i
) are the order

statistics of a random sample of size K ∗
i from the uniform distribution over (0, Ci ).

Given K ∗
i and (Ti1, . . . , Ti K ∗

i
), we generated Ni (Ti j ) using the formula

Ni (Ti j ) = N∗
i [λN (Ti1)] + N∗

i [λN (Ti2) − λN (Ti1)]
+ · · · + N∗

i [λN (Ti j ) − λN (Ti j−1)]

for j = 1, . . . , K ∗
i and i = 1, . . . , n. Here N∗

i [λN (t)] denotes the random number
generated from the Poisson distribution with mean

t exp(xiβ1 + uiβ2 + viβ3) .

The results given below are based on n = 100 or 200, and 1000 replications.
Table 1 presents the simulation results on estimation of β1 for the situations where

β1 = −2,−1, 0, 1, 2 along with β2 = β3 = 0 and α1 = γ1 = γ2 = 1. The table
includes the averages of proposed estimates of β1 based on the simulated data, the
sample standard deviations of the estimates (SSD), the means of the bootstrap standard
deviation estimates (BSD), and the empirical 95% coverage probabilities (CP) for β1.
Table 2 gives the estimation results for the same situations as in Table 1 except that

Table 1 Estimation of β1 with β2 = β3 = 0, L = 50 and B = 20

True β1

−2 −1 0 1 2

n = 100

β̂1 −2.0159 −1.0019 0.0027 0.9966 2.0071

SSD 0.1843 0.1224 0.0967 0.0807 0.0778

BSD 0.1847 0.1287 0.1001 0.0876 0.0837

CP 0.930 0.943 0.937 0.946 0.945

n = 200

β̂1 −2.0143 −1.0045 −0.0013 1.0018 2.0009

SSD 0.1273 0.0877 0.0660 0.0601 0.0539

BSD 0.1282 0.0900 0.0708 0.0624 0.0583

CP 0.930 0.942 0.957 0.948 0.947
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Table 2 Estimation of β1 with β2 = β3 = 0.2, L = 50 and B = 20

True β1

−2 −1 0 1 2

n = 100

β̂1 −2.0135 −1.0037 −0.0097 0.9936 1.9925

SSD 0.1700 0.1264 0.1107 0.1043 0.1076

BSD 0.1644 0.1248 0.1096 0.1023 0.1036

CP 0.920 0.933 0.944 0.934 0.942

n = 200

β̂1 −2.0097 −1.0051 −0.0054 0.9938 1.9980

SSD 0.1334 0.0941 0.0895 0.0861 0.0890

BSD 0.1242 0.0950 0.0847 0.0838 0.0827

CP 0.938 0.946 0.940 0.939 0.940
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Fig. 1 Quantile plot with β1 = 0, β2 = 0 and β3 = 0

β2 = β3 = 0.2. These results indicate that the estimate β̂1 seems to be unbiased and
the bootstrap variance estimation procedure provides reasonable estimates. Also the
results on the empirical coverage probabilities indicate that the normal approximation
seems to be appropriate.

As mentioned above, in the study, we have focused only on β1 to save the space
and actually the results for other parameters are similar to those given above. For
example, for the setups considered in Table 1 with β1 = 0, we obtained β̂2 = 0.0016,
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Fig. 2 Quantile plot with β1 = 1, β2 = 0 and β3 = 0

Table 3 Estimation of β1 with β2 = β3 = 0, L = 200 and B = 100

True β1

−2 −1 0 1 2

n = 100

β̂1 −2.0169 −1.0037 0.0046 1.0011 2.0039

SSD 0.1759 0.1212 0.0923 0.0845 0.0791

BSD 0.1840 0.1279 0.1004 0.0878 0.0834

CP 0.947 0.949 0.956 0.943 0.957

β̂3 = 0.0031, α̂1 = 0.9652, γ̂1 = 0.9848 and γ̂2 = 1.0506 with n = 100, and
β̂2 = −0.0002, β̂3 = −0.0009, α̂1 = 1.0034, γ̂1 = 1.0083 and γ̂2 = 1.0469 with
n = 200 based on the simulated data. To assess the performance of the normal approx-
imation to the finite-sample distribution of the estimate of β1, we studied the quantile
plots of the standardized estimates of β1. Figures 1 and 2 display such plots corre-
sponding to the situations where n = 100, β1 = 0 or 1 with β2 = β3 = 0. These
figures indicate that the normal approximation seems reasonable. Similar plots were
obtained for other setups.

Note that in Tables 1 and 2, we used L = 50 and B = 20. As mentioned before,
in practice, one should use large values for them. For the simulation study here, how-
ever, these values seem to be sufficient. To give an example, Table 3 gives the results
obtained for the proposed estimate of β1 under the same setup as that for Table 1

123



188 Lifetime Data Anal (2009) 15:177–196

except that L = 200, B = 100 and n = 100. Similar simulation results were obtained
for other setups with larger values of L and B.

5 An application

In this section, we illustrate the proposed methodology using the data set from a blad-
der cancer study conducted by the Veterans Administration Cooperative Urological
Research Group (Byar 1980; Andrews and Herzberg 1985; Wellner and Zhang 1998;
Sun and Wei 2000). In the study, the patients with superficial bladder tumors were
randomly assigned to one of three treatment groups: placebo, thiotepa and pyridoxine.
During the study, many patients had multiple recurrences of the bladder tumors and all
recurrent tumors between the visits were recorded and removed at their clinical visits.
Both the number of visits and visit time points varied greatly from patient to patient.
At the beginning of the study, for each patient, two important baseline covariates were
reported and they are the number of initial tumors and the size of the largest initial
tumor. Following Sun and Wei (2000), we restrict our attention to the patients in the
placebo (47) and thiotepa (38) groups. For these two groups, the average numbers of
visits were 8.66 and 13.50 and the median follow-up times were 30 months and 32.5
months, respectively. Also the average numbers of bladder tumor recurrence were
39.81 and 17.03, respectively.

For the analysis, define the first component of xi to be equal to 1 if the i th patient was
given the thiotepa treatment and 0 otherwise. Also define the second and third compo-
nents of xi to be the number of initial tumors and the size of the largest initial tumor
of the patient, respectively. Assume that the occurrence process of the bladder tumors,
the clinical visit process and the follow-up process can be described by models (1), (2)
and (3), respectively. The application of the estimation procedure with L = 200 and
B = 1000 proposed in the previous sections gave β̂1 = (−1.8483, 0.1996, 0.0015)′
with the estimated standard errors of (0.6879, 0.3181, 0.3562)′. These results suggest
that the thiotepa treatment significantly reduced the occurrence rate of the bladder
tumors. However, the occurrence rate of the bladder tumors does not seem to be sig-
nificantly related with the number of initial tumors and the size of the largest initial
tumor. Note that for the analysis here, we also tried larger values of L and B and
obtained similar results.

For comparison, we noticed that Sun and Wei (2000) assumed that the three pro-
cesses involved are independent of each other given the covariates and estimated the
effects of three covariates as (−2.0249, 0.6620,−0.1229)′ with the estimated stan-
dard errors of (0.4500, 0.2133, 0.2035)′. It can be seen that the results from the two
methods are similar but the approach that took into account the possible correlation
among the three processes gave smaller estimated effects. In other words, without
taking into account the correlation, one could overestimate the treatment or covar-
iate effects. One possible reason for this is that part of the estimated effects given
by the approach assuming the independence may be due to the correlation of the
three processes. Huang et al. (2006) studied a similar problem and gave a similar
conclusion.
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6 Concluding remarks

In this article, we considered regression analysis of panel count data when all three pro-
cesses involved may be related and for the purpose, some shared frailty models were
proposed. For inference, an estimating equation approach and an EM algorithm were
developed for estimation of regression parameters representing covariate effects. A
key advantage of the proposed approach over existing methods for panel count data is
that it allows both the observation process and the follow-up process to be related with
the response process of interest. In general, it may be hard to have enough evidence to
verify or assess the independence assumption or the existence of the correlation. But
as mentioned before, this could happen quite often in practice.

In the preceding sections, our focus has been on estimation of regression param-
eter β1. Sometimes, one may be interested in estimating the baseline mean function
µN (t) in model (1). For this, one could develop an estimate following the one given in
Thall and Lachin (1988) or others by treating ui and vi to be known and replaced with
ûi and v̂i given in (5) and (9), respectively.

For the estimation of regression parameters, we developed an EM algorithm, which
is complicated in computation. As an alternative, one may apply the approach given
in Louis (1982). However, this alternative is also very computationally intensive and
its detailed investigation and comparison with the approach given here are beyond
the scope of this paper. It is worth to mention that in this paper, we only considered
time-independent covariates. For the cases with time-dependent covariates, one can
still use the estimating function (10) with respect to model (1) but may need different
estimation processes with respect to models (2) and (3).

Note that the estimating Eq. 4 involves a weight function wi which could depend
on xi , Ci and �0h but no procedure was provided for its selection. As a direction for
future research, it would be useful to investigate how to choose this weight function to
obtain efficient or optimal estimates. Similarly, one could apply some weight functions
to the estimating function (10) and ask the same question. Another direction for future
research is to conduct a sensitivity analysis with respect to the frailty and to develop
some goodness-of-fit tests for the proposed models.
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Appendix

Proof of the asymptotic properties of β̂

In this appendix, we prove the consistency and normality of β̂. Let Ni , Ñi , Til ,

K ∗
i , xi , x1i , x2i , x3i , ui , vi , wi and Ci be defined as in the previous sections, and

K ∗, X, X1, X2, X3, U, V, W and C denote the underlying random variables of the
K ∗

i ’s, xi ’s, x1i ’s, x2i ’s, x3i ’s, ui ’s, vi ’s, wi ’s and Ci ’s, respectively. In order to study
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the asymptotic properties of β̂, we first impose the following regular conditions that
are similar to those given in Huang and Wang (2004).

(a) P(C ≥ τ, exp(U ) > 0) > 0;
(b) X is uniformly bounded;
(c) The variance of exp(U ) is bounded and there exists a positive small constant

ε > 0 such that exp(U ) > ε almost surely;
(d) G(s) = E{exp(U )I (C ≥ s)} is continuous for s ∈ [0, τ ].

Following the procedures in Fan and Li (2002), to achieve the good statistical prop-
erties of the estimators γ̂ and �̂0c(t) in model (3), the following two conditions are
also assumed to be satisfied.

(e) �0c(τ ) < ∞.
(f) (β ′, γ ′, α′)′ is an inner point of a compact subset in R3p+5;

Let ek, k = 1, . . . , p + 2, be a (p + 2)−dimensional vector whose elements are all
zero except its kth entry being equal to one. Using the same notation as Wang et al.
(2001), define Q(u) = ∫ u

0 G(v)d�0h(v), R(u) = G(u)�0h(u),

bih(t) =
K ∗

i∑

j=1

{ τ∫

t

I (Ti j ≤ u ≤ Ci )d Q(u)

R2(u)
− I (t ≤ Ti j ≤ τ)

R(Ti j )

}

and

fi =
∫

W X3 K ∗bih(C)d P(W, X3, K ∗, C)

�0h(C)
+ wi x3i {K ∗

i �−1
0h (Ci ) − exp(x ′

3iα∗)} ,

where P(·) denotes the joint distribution of the underlying variables. Then we have

α̂1 − α1 = 1

n

n∑

i=1

fih + op(n
−1/2), (A.1)

where fih is the vector function E{−∂ fi/∂α∗}−1 fi without the last entry, and

�̂0h(t) − �0h(t) = 1

n
�0h(t)

n∑

i=1

bih(t) + op(n
−1/2) , t ≤ τ (A.2)

(Wang et al. 2001; Huang and Wang 2004).
In this paper, we assume that the censoring time C follows the Cox’s frailty model

and that the latent variable V follows the normal distribution. Fan and Li (2002) dis-
cussed this issue where the frailty variable exp(V ) follows the Gamma distribution.
Under the conditions (a)–(f) listed above, the conditions A–D in Fan and Li (2002) are
all satisfied. Using the same arguments, there exist functions bic(·) and independent
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and identically distributed random variables fic, i = 1, . . . , n, such that

γ̂ − γ = 1

n

n∑

i=1

fic + op(n
−1/2) (A.3)

and

�̂0c(t) − �0c(t) = 1

n
�0c(t)

n∑

i=1

bic(t) + op(n
−1/2) , t ≤ τ. (A.4)

Note that the estimator γ̂ is no longer efficient since the latent variable ui ’s should be
estimated and thus enlarge the variance of γ̂ .

The consistency of β̂ follows from the two facts: (1) Û (β) tends to U (β) in prob-
ability as n tends to infinity; (2) the solution β̃ to U (β) = 0 is unique and consistent.
Now we turn to prove the asymptotical normality of the proposed estimator β̂. To
this end, it suffices to prove that the estimating function (10) can be written as the
summation of n independent and identically distributed zero-mean random variables
divided by

√
n, plus some negligible errors.

For i = 1, . . . , n, denote x̂4i = (x ′
i , ûi , vi )

′, mi = K ∗
i /{�0h(Ci ) exp(x ′

iα1)},
and x4i = (x ′

i , log(mi ), vi )
′. Let Ŝ j,4(β; t) = 1

n

∑n
i=1 Yi (t) exp{x̂ ′

4i (β + α̂)}x̂⊗ j
4i and

S j,4(β; t) = 1
n

∑n
i=1 Yi (t) exp{x ′

4i (β + α)}x⊗ j
4i for j = 0, 1, and denote the limit of

S j,4(β; t) as s j,4. To prove the asymptotical normality of β̂, rewrite the estimating
function (10) as

Û (β) =
3∑

j=1

Û j (β), (A.5)

where

Û1(β) = 1√
n

n∑

i=1

τ∫

0

{

x4i − S1,4(β; t)

S0,4(β; t)

}

Ni (t)d Ñi (t),

Û2(β) = 1√
n

n∑

i=1

τ∫

0

[

(x̂4i − x4i ) −
{

Ŝ1,4(β; t)

Ŝ0,4(β; t)
− S1,4(β; t)

S0,4(β; t)

}]

Ni (t)d Ñi (t),

Û3(β) = 1√
n

n∑

i=1

τ∫

0

[

(x̂2i − x̂4i ) −
{

Ŝ1(β; t)

Ŝ0(β; t)
− Ŝ1,4(β; t)

Ŝ0,4(β; t)

}]

Ni (t)d Ñi (t).

Since Û (β) can be written as the summation of three functions in (A.5), we only need
to show that each of the three parts can be written as the summation of n independent
and identically distributed zero-mean random variables divided by

√
n, plus some

negligible errors.
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For Û1(β), it is clear that

Û1(β) = 1√
n

n∑

i=1

τ∫

0

{

x4i − s1,4(β; t)

s0,4(β; t)

}

Ni (t)d Ñi (t) + op(1)

= 1√
n

n∑

i=1

g1i (β) + op(1).

To analyze Û2(β), note that ui ’s are functions of �0h(Ci ) and α1. Let
ui = ui (�0h(Ci ), α1) and x4i (�0h(Ci ), α1) = x4i . For j = 0, 1 and i = 1, . . . , n,

denote b( j)
i1 (β; t) = �−1

0h (Ci )
∂
∂s

[

Yi (t) exp{(β +α)′x4i (s, α1)}x⊗ j
4i (s, α1)

]

|s=�0h(Ci ),

b( j)
i2 (β; t) = ∂

∂α1

[

Yi (t) exp{x ′
4i (β + α)}x⊗ j

4i

]

, bi3 = �−1
0h (Ci )

∂
∂s ui (s, α1)|s=�0h(Ci ),

and bi4 = ∂
∂α1

[

ui (�0h(Ci ), α1)

]

. Then one obtains that

Ŝ j,4(β; t) = S j,4(β; t) + b( j)
i1 (β; t)�0h(Ci ){�̂0h(Ci )

−�0h(Ci )} + b( j)
i2 (β; t)(α̂1 − α1) + op(1) ,

which yields that

Ŝ1,4

Ŝ0,4
= S1,4

S0,4
+ 1

S0,4

n∑

i=1

[(
b(1)

i1 − S1,4
S0,4

b(0)
i1

)
�0h(Ci ){�̂0h(Ci ) − �0h(Ci )}

+
(

b(1)
i2 − S1,4

S0,4
b(0)

i2

)
(α̂1 − α1)

]

+ op(1).

Therefore, one obtains that

Û2(β) = 1√
n

n∑

i=1

τ∫

0

[

ai1�0h(Ci ){�̂0h(Ci ) − �0h(Ci )} + ai2(α̂1 − α1)

]

×Ni (t)d Ñi (t) + op(1) ,

where ai1 = ep+1bi3 + 1
s0,4

(
b(1)

i1 − s1,4
s0,4

b(0)
i1

)
and ai2 = ep+1bi4 + 1

s0,4

(
b(1)

i2

− s1,4
s0,4

b(0)
i2

)
. This, together with (A.1) and (A.2), immediately yields that

Û2(β) = 1√
n

n∑

i=1

τ∫

0

E j

[
{bih(C j )a j1(β; t) + fiha j2(β; t)}N j (t)d Ñ j (t)

]
+ op(1)

= 1√
n

n∑

i=1

g2i (β) + op(1).
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Now we consider Û3(β) in (A.5). First, note that x̂2i − x̂4i = ep+2(v̂i −vi ). Define
bi5 = Yi (t) exp{x ′

4i (β + α)}{ep+2 + x4i (β + α)′ep+2} and bi6 = Yi (t) exp{x ′
4i (β +

α)}(β + α)′ep+2. Using the same arguments to the expressions of Û2(β), one obtains
that

Û3(β) = 1√
n

n∑

i=1

τ∫

0

[

ep+2(v̂i − vi )
1

n

n∑

j=1

(
1

S0,4
b j5 − S1,4

S2
0,4

b j6

)

×(v̂ j − v j )

]

Ni (t)d Ñi (t)

= 1√
n

n∑

i=1

τ∫

0

(v̂i − vi )

[

ep+2 Ni (t)d Ñi (t)

−
(

1

s0,4
bi5 − s1,4

s2
0,4

bi6

)

E{N1(t)d Ñ1(t)}
]

+ op(1)

= 1√
n

n∑

i=1

τ∫

0

{v̂i − Ei (vi |Oi , θ)}
[

ep+2 Ni (t)d Ñi (t)

−
(

1

s0,4
bi5 − s1,4

s2
0,4

bi6

)

E{N1(t)d Ñ1(t)}
]

+ 1√
n

n∑

i=1

g32i (β) + op(1), (A.6)

where g32i (β) =
τ∫

0

{Ei (vi |Oi , θ) − vi }
[

ep+2 Ni (t)d Ñi (t) −
(

1

s0,4
bi5 − s1,4

s2
0,4

bi6

)

E{N1(t)d Ñ1(t)}
]

.

By (6), using Taylor series expansion as well as the similar arguments to Fan and
Li (2002) and Û2(β), there exist vector functions bik, k = 7, 8, 9, 10, such that the
first term of (A.6) equals to

1√
n

n∑

i=1

τ∫

0

{v̂i − Ei (vi |Oi , θ)}
[

ep+2 Ni (t)d Ñi (t)

−
(

1

s0,4
bi5 − s1,4

s2
0,4

bi6

)

E{N1(t)d Ñ1(t)}
]

123



194 Lifetime Data Anal (2009) 15:177–196

= 1√
n

n∑

i=1

τ∫

0

[

bi7�
−1
0h (Ci ){�̂0h(Ci ) − �0h(Ci )} + b′

i8(α̂1 − α1) + b′
i9(γ̂ − γ )

+ op(1) + bi10�
−1
0h (Ci ){�̂0c(Ci ) − �0c(Ci )}

][

ep+2 Ni (t)d Ñi (t)

−
(

1

s0,4
bi5 − s1,4

s2
0,4

bi6

)

E{N1(t)d Ñ1(t)}
]

.

In fact, Ei (vi |Oi , θ) is a function of (�0h(·), α1, γ,�0c(·)). Then bik, k = 7, 8,

9, 10, can be viewed as the partial derivatives of the conditional expectation. To be
specific,

bi7(·) = ∂

∂s
Ei (vi |Oi , θ)(s, α1, γ,�0c(·))|s=�0h(·),

bi8 = ∂

∂α1
Ei (vi |Oi , θ)(�0h(·), α1, γ,�0c(·)),

bi9 = ∂

∂γ
Ei (vi |Oi , θ)(�0h(·), α1, γ,�0c(·)),

and

bi10(·) = ∂

∂s
Ei (vi |Oi , θ)(�0h(·), α1, γ, s)|s=�0c(·).

Using (A.1)–(A.4), similarly to Û2(β), the first term of (A.6) equals to
1√
n

∑n
i=1 g31i (β) + op(1), where

g31i (β) =
τ∫

0

E j

[
{
bih(C j )b j7 + b j8 fih + b j9 fic + b j10bic(C j )

}

×
{

ep+2 Ni (t)d Ñi (t) −
(

1
s0,4

bi5 − s1,4

s2
0,4

bi6

)

E[N1(t)d Ñ1(t)]
} ]

+ op(1)

and the expectation is taken with respect to (X j , K ∗
j , U j , Vj ). This yields that Û3(β) =

1√
n

∑n
i=1{g31i (β) + g32i (β)} + op(1). Combining all the above results, there exists

a sequence of independent and identically distributed zero-mean random variables
g1(β), . . . , gn(β), such that

Û (β) = 1√
n

n∑

i=1

gi (β) + op(1),
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where gi (β) = g1i (β) + g2i (β) + g31i (β) + g32i (β), i = 1, . . . , n. By the stan-
dard procedure, one can obtain that the unique solution β̂ to Û (β) = 0 satisfies the
asymptotic normality. Specifically,

√
n(β̂ − β) converges in distribution to a nor-

mal random variable with mean zero and the covariance matrix φ−1�(φ−1)′, where
φ = −E{∂gi (β)/∂β} and � = Cov{gi (β)}. This completes the proof.
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