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Abstract Weighted analysis methods are considered for cohort sampling designs
that allow subsampling of both cases and non-cases, but with cases generally sam-
pled more intensively. The methods fit into the general framework for the analysis of
survey sampling designs considered by Lin (Biometrika 87:37–47, 2000). Details are
given for applying the general methodology in this setting. In addition to considering
proportional hazards regression, methods for evaluating the representativeness of the
sample and for estimating event-free probabilities are given. In a small simulation
study, the one-sample cumulative hazard estimator and its variance estimator were
found to be nearly unbiased, but the true coverage probabilities of confidence inter-
vals computed from these sometimes deviated significantly from the nominal levels.
Methods for cross-validation and for bootstrap resampling, which take into account
the dependencies in the sample, are also considered.

Keywords Subsampling · Horvitz-Thompson estimators · Cumulative hazard
estimator · Cross-validation · Case–control study · Case–cohort design

1 Introduction

Clinical trials often involve collection of tissue from the patients enrolled in the trials.
The tissue can be used to investigate whether biomarkers are useful for predicting clin-
ical outcomes or for predicting benefit from specific treatments. For various reasons,
including costs of biomarker evaluation and lack of availability of tissue or consent
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for use of tissue, the biomarkers are often evaluated on only a subset of the patients
on the study.

If the clinical outcomes of interest are event times, and the event rate is low, then
it is well-known that a more efficient design is obtained by sampling subjects with
observed events (cases) more intensively than cases with censored event outcomes
(non-cases). Case-cohort sampling (Prentice 1986), with the cohort consisting of the
patients enrolled on the study, is one attractive option for such a biomarker study.
However, the classic case-cohort design assumes all cases, plus a random subcohort,
are included in the sample. For biomarker studies in clinical trials, it is generally not
possible to include all of the cases, due to lack of availability of analyzable samples.
Thus an extension of the case-cohort design is needed, where the sampling fractions
for both cases and non-cases are <100%. Such designs fit into the general survey
sampling framework considered by Lin (2000). An alternative approach would be to
regard the cohort as the patients on the study with analyzable tissue available, but this
is often a vaguely defined set, since additional tissue might be obtained during the
course of the biomarker project, and determining whether the tissue is evaluable often
takes considerable effort, and thus may not be done on all tissue samples.

Cohort sampling has traditionally been studied in the context of epidemiologic
cohort studies. The issues which limit evaluation of biomarkers to a subset of the
cases in the clinical setting would often occur in cohort studies, too, so the meth-
ods discussed here will also be useful in these settings, although the terminology of
patients enrolled on clinical trial will continue to be used in the following.

There are two levels of sampling in such projects. The set of patients enrolled on
the study will be referred to here as the cohort. The subset of the cohort analyzed for
biomarkers will be referred to as the sample. The larger set of patients meeting the
criteria for entry on the clinical trial will be referred to as the population. The terms
“study population” and “target population” could also be used for the cohort and the
population. The population is assumed to be much larger than the cohort enrolled on
the study, so that it can essentially be assumed to be infinite. Throughout, the focus
is on drawing inferences on effects in the population, which is often referred to as
“superpopulation” inference in the survey sampling literature (see e.g. Lin 2000); the
problem of finite sample inferences on effects in the cohort of patients on the study
is generally not of interest. Since the cohort is not a random sample from the pop-
ulation, the question of whether the patients on the clinical trial are a representative
sample from the population should always be of concern. However, this issue cannot
be directly addressed without additional data on the population, and it will not be
considered further here.

The motivation for this paper came from a genomic project analyzing RNA
expression of 371 genes in tumor tissue obtained from paraffin blocks from patients
enrolled on an adjuvant breast cancer trial E2197 conducted by the Eastern Cooper-
ative Oncology Group (Goldstein et al. 2008). The expense of the assays limited the
genomic project to a subset of the 2952 patients enrolled on the clinical trial. The
primary endpoint for the genomic study was time to disease recurrence, but there was
interest in also examining other endpoints (such as disease-free survival and over-
all survival), and plans include updating analyses with additional follow-up at later
times, so a more flexible design than time-matched nested case–control sampling
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(e.g. Prentice and Breslow 1978) was necessary. As many recurrences as possible and
roughly 3.5 times as many non-recurrences were sampled from within strata defined
by baseline clinical factors. Due to lack of consent, lack of tissue submission, and
factors affecting evaluability of the assay, the final genomic sample included only 179
of 363 recurrences.

As discussed, for example, by Lin (2000) and Breslow and Wellner (2007) (and in
additional references in those papers), one approach to estimation in such sampling
designs is to use generalized Horvitz-Thompson estimators, where contributions are
weighted inversely proportional to the sampling fractions in each group. Such estima-
tors, while generally not fully efficient, often have good properties in practice. This
paper provides details of applying this approach in the specific setting here, especially
with regard to variance estimation. Although the sampling scheme here is similar
to the “exclusive” (Rodrigues and Kirkwood 1990) or “cumulative” (Rothman and
Greenland 1998) case–control design, with controls sampled from the non-cases at
the end of the study period, the weighted analysis methods allow consistent estimates
of hazard ratios and cumulative event probabilities in the population, provided there
are no biases related to when the non-cases are sampled. In particular, the weighted
analysis methods can also be applied to the classic case-cohort design (Chen and Lo
1999; Borgan et al. 2000).

The paper is organized as follows. In the following section, the basic data structure
and results on estimating a population mean are reviewed. Comparisons of means
between subpopulations and comparisons of the estimates of population parameters
based on subjects in the sample and on those not in the sample are also considered.
The latter problem is important because the sampling of subjects with observed events
is generally not random, so the representativeness within the cohort of the resulting
sample is of concern. Next, specifics of Lin (2000) general results on estimators for
the proportional hazards model regression parameters and event-free probabilities are
given in Sect. 3. Specialization to estimation of event-free probabilities in the one-
sample case is also considered and is examined in a simulation study. Finally, an
increasingly important issue for analyzing high dimensional biomarker data is vali-
dation of results (e.g. Dupuy and Simon 2007). Given the expense of the assays and
limited availability of tissue, it is often impractical to have completely separate train-
ing and validation samples. Thus, some form of internal validation is often necessary.
Some issues related to applying cross-validation and bootstrap methods in this context
are considered in Sect. 4. Additional discussion is given in Sect. 5.

2 General notation and basic results

Stratified sampling is assumed, with separate random sampling from the subjects with
observed events (cases) and those with censored event times (non-cases) within each
stratum. Let M j be the number of subjects in stratum j in the full cohort, j = 1, . . . , J .
In general, a ‘+’ subscript will be used to denote summation over that subscript, so
M+ = ∑J

j=1 M j (J = 8 and M+ = 2952 for E2197). The case/non-case status is
determined by the primary event of interest at the time the sample is drawn, but other
types of events may be analyzed and additional follow-up may be collected on the
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primary endpoint by the time of analysis. Thus in general, let δi j = 1 for subjects with
the primary event at the time the sample is drawn (cases) and δi j = 0 for non-cases,
let Ti j be the event or censoring time of interest for a particular analysis, γi j be the
indicator of whether Ti j is an event (γi j = 1) or censoring time (γi j = 0), where γi j

may or may not be the same as δi j , xi j be a vector of baseline covariates, and Zi j be
the value of some generic feature of interest (which could be a function of Ti j , γi j

and xi j ), for subject i in stratum j . Let D j = δ+ j be the number of potential cases in
stratum j , so M j − D j is the corresponding number of potential non-cases. Also, let
Si j = 1 if subject i in stratum j in the full cohort is sampled and Si j = 0 otherwise,
and set d j = ∑

i Si jδi j and m j = S+ j , so m j is the total number of subjects, d j is the
number of cases and m j − d j is the number of non-cases sampled from stratum j .

The following assumptions are made:

1. Within each stratum, the observations (Ti j , γi j , δi j , xi j , Zi j ), i = 1, . . . ,M j are
independent and identically distributed, and the strata are also independent.

2. The sampling is performed independently for cases and non-cases, and conditional
on stratum and case status, subjects in the cohort are equally likely to be sampled.
This implies that Zi j and Si j are independent conditional on stratum and the δi j .

3. The values of d j and m j are fixed by design, or alternatively, are independent of
other data values (ie covariates and event times) so the analysis can be conditioned
on the actual number sampled.

Since fixed numbers of cases and non-cases are sampled from the finite cohort within
each stratum, S1 j , . . . , SM j , j are not independent.

The sampling weights for the weighted estimators are defined by wi j = w j (δi j ),
where

w j (δ) = δD j/d j + (1 − δ)(M j − D j )/(m j − d j ),

which are the inverse sampling fractions within strata and case status groups.
Now consider estimating the marginal mean µZ = E(Zi j ), which is the mean in

the population the cohort is drawn from. A straightforward estimator is

µ̂Z =
J∑

j=1

M j∑

i=1

Si jwi j Zi j

/ J∑

j=1

M j∑

i=1

Si jwi j =
∑

i j

Si jwi j Zi j/M+, (1)

which has the form of a Horvitz-Thompson estimator. A basic introduction to
Horvitz-Thompson estimators and finite population inference was given by Over-
ton and Stehman (1995). Here we focus on superpopulation inference, as considered
for example in Lin (2000).

Now M+µ̂Z = Z+++ Z̃ , where Z̃ = ∑
i j {Si jw j (δi j )−1}Zi j , and as in Lin (2000),

Z++ and Z̃ are asymptotically independent, so Var(M+µ̂Z )
.= Var(Z++)+ Var(Z̃).

The following proposition gives the main result, which will be used repeatedly in
subsequent sections.
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Proposition 1 Under the sampling assumptions here,

Var(Z̃)
.=

∑

j

Eδ[{w j (1)− 1}D j Var(Zi j |δi j = 1)

+{w j (0)− 1}(M j − D j )Var(Zi j |δi j = 0)]. (2)

This result follows from the joint distribution of the Si j given δ = (δ11, . . . , δJ MJ )
′

and from the independence of the Zi j and Si j given δ. Additional details are given in
the Appendix. Thus in general, Var(µ̂Z ) can be estimated from the sample by

M−1+

⎛

⎝V̂Z +
∑

j

[
{w j (1)− 1}D j V̂ 1

Z j + {w j (0)− 1}(M j − D j )V̂
0
Z j

]
⎞

⎠, (3)

where V̂Z = ∑
i j Si jwi j (Zi j − µ̂Z )

2/(M+ − 1) and V̂ δ
Z j = ∑

i I (δi j = δ)Si j (Zi j −
µ̂δZ j )

2/(mδ
j − 1), µ̂δZ j = ∑

i I (δi j = δ)Si j Zi j/mδ
j , and mδ

j = ∑
i Si j I (δi j = δ) (the

wi j are constant within a stratum by case status combination, so they do not need to
be included in the formulas for the V̂ δ

Z j ). The quantities V̂Z and V̂ δ
Z j can be replaced

by other appropriate estimators in special cases.
One special case is estimating the proportion of the population with some char-

acteristic, such as the proportion of the population with primary tumors ≤ 2 cm for
E2197. If Zi j = 1 for subjects with tumors ≤ 2 cm and Zi j = 0 for other subjects,
then µ̂Z estimates the proportion of the population with this characteristic. In this
case, V̂Z can be replaced by µ̂Z (1 − µ̂Z ) and V̂ δ

Z j can be replaced by π̂ δj (1 − π̂ δj ),

where π̂ δj = ∑
i I (δi j = δ)Si j Zi j/mδ

j .

2.1 Conditional means

Conditional means and probabilities are often also of interest. For example, it may be
of interest to estimate the mean gene expression level within subpopulations defined
by baseline characteristics, such as hormone receptor positive and negative subsets
or high, intermediate and low tumor grade subsets in E2197. Let Gi j be a variable
indicating the subpopulation level, Gi j = 1, . . . , g. Then a weighted estimator for
µZ (l) = E(Zi j |Gi j = l) is

µ̂Z (l) =
∑

i j

Si jwi j I (Gi j = l)Zi j

/∑

i j

Si jwi j I (Gi j = l).

Since

µ̂Z (l)− µZ (l) =
∑

i j Si jwi j I (Gi j = l){Zi j − µZ (l)}
∑

i j Si jwi j I (Gi j = l)

=
∑

i j Si jwi j I (Gi j = l){Zi j − µZ (l)}
M+ P(Gi j = l)

+ op

(
M1/2

+
)
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has the same asymptotic form as (1), with Z∗
i j = I (Gi j = l){Zi j −µZ (l)}/P(Gi j = l)

in place of Zi j , it follows from Proposition 1 that the asymptotic variance of µ̂Z (l)
can be estimated analogously to (3), using the estimated quantities

Ẑ∗
i j = I (Gi j = l){Zi j − µ̂Z (l)}M+

/∑

i j

Si jwi j I (Gi j = l).

Since µ̂Z (l) is constant for subjects with I (Gi j = l), it can be dropped from Ẑ∗
i j

for computing empirical variances, and this process is equivalent to calculating the
empirical variances in (3) directly from the Zi j , but using just those subjects in the
subset with Gi j = l.

A test of the hypothesis H0 : µZ (l) − µZ (l ′)= 0 or a confidence interval on
µZ (l)−µZ (l ′)will also be of interest in some settings. Proceeding as before, µ̂Z (l)−
µ̂Z (l ′)− {µZ (l)− µZ (l ′)} = ∑

i j Si jwi j Z∗∗
i j /M+ + op(M

1/2
+ ), where

Z∗∗
i j = I (Gi j = l){Zi j − µZ (l)}

P(Gi j = l)
− I (Gi j = l ′){Zi j − µZ (l ′)}

P(Gi j = l ′)

(under H0, the µZ (·) terms can be dropped). An estimate of the asymptotic variance
can thus be obtained by using the Z∗∗

i j in (3), substituting consistent estimates for the
unknown quantities in Z∗∗

i j . Unless levels l and l ′ of G are contained within separate
sampling strata, in general µ̂Z (l) and µ̂Z (l ′) will be correlated.

2.2 Comparing the sample to the rest of the cohort

As noted in the Introduction, when drawing inferences on effects in the population
studied in the clinical trial, the question of whether the sample analyzed in the bio-
marker study is representative of the full cohort is of interest. It is the estimate of the
population distribution obtained using the inverse sampling weights that is relevant,
not the raw distribution in the sample. The latter will usually differ from the target
population because of different sampling fractions for cases and non-cases. While it is
never possible to verify that the relationship of the biomarkers to outcomes obtained
from the sample will be similar in the full cohort without evaluating the biomarkers
on a random sample from the rest of the cohort, it is possible to compare the estimated
population distribution of factors that are measured on the entire cohort in the clinical
trial between those in the sample and those not in the sample. If these are similar for
known factors, then it will at least be reassuring that the sample is representative with
respect to standard factors.

The subjects not in the sample can be thought of as a second sample with selection
indicators 1 − Si j and sampling weights wc

i j = wc
j (δi j ), where

wc
j (δ) = δD j/(D j − d j )+ (1 − δ)(M j − D j )/(M j − D j − m j + d j ).
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The quantity E(Zi j ) can be estimated from this complementary set with

µ̂c
Z =

J∑

j=1

M j∑

i=1

(1 − Si j )w
c
i j Zi j

/ J∑

j=1

M j∑

i=1

(1 − Si j )w
c
i j =

∑

i j

(1 − Si j )w
c
i j Zi j/M+.

Then since 1/wi j + 1/wc
i j = 1, so 1 + wi j/w

c
i j = wi j , it follows that

M+(µ̂Z − µ̂c
Z ) =

∑

i j

Zi j {Si jwi j − (1 − Si j )w
c
i j }

=
∑

i j

δi j Zi jw
c
i j (Si jwi j − 1)+

∑

i j

(1 − δi j )Zi jw
c
i j (Si jwi j − 1).

Except for the wc
i j factors, this expression is the same as Z̃ above. The full cohort

contribution (Z++) has cancelled here. Applying similar arguments to those in the
Appendix,

Var{M+(µ̂Z − µ̂c
Z )} =

∑

j

Eδ
{
wc

j (1)w j (1)D j Var(Zi j |δi j = 1)

+wc
j (0)w j (0)(M j − D j )Var(Zi j |δi j = 0)

}
,

since again wi j − 1 = wi j/w
c
i j . The Var(Zi j |δi j ) terms can be estimated from the

observed data as discussed above, except that here data from the full cohort can be
used (since this comparison can only be made for Zi j observed on the full cohort).

3 Weighted partial likelihood estimators

The proportional hazards model assumes that the event hazard rate for subject i j is

λ(t |xi j ) = λ0(t) exp(β ′xi j ) (4)

for an unspecified underlying hazard function λ0(t), where β is the vector of unknown
regression parameters. The cumulative underlying hazard is �0(t) = ∫ t

0 λ0(u) du.
The centered event counting process is

Mi j (t, β) = Ni j (t)−
t∫

0

Yi j (u) exp(β ′xi j ) d�0(u),

where Ni j (t) = I (Ti j ≤ t, γi j = 1) is the event counting process and Yi j (t) =
I (Ti j ≥ t) is the at risk counting process. Recall that the event time and status data
being analyzed can be different from that used to define the sampling case status.
Generally the Mi j (t, β) are not martingales conditional on selection in the sample.
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The log weighted (pseudo) partial likelihood is

Lw(β) =
∑

i j

γi j Si jwi j

[

β ′xi j − log

{
∑

lk

SlkwlkYlk(Ti j ) exp(β ′xlk)

}]

,

the weighted score is

Uw(β) = ∂Lw(β)/∂β =
∑

i j

Si jwi j

∫

{xi j − xw(t, β)} d Ni j (t),

where

xw(t, β) =
∑

i j Si jwi j Yi j (t)xi j exp(β ′xi j )
∑

i j Si jwi j Yi j (t) exp(β ′xi j )
,

and the weighted ‘information’ is

Iw(β) = −∂
2Lw(β)

∂β∂β ′

=
∫ (∑

i j Si jwi j Yi j (t)xi j x ′
i j exp(β ′xi j )

∑
i j Si jwi j Yi j (t) exp(β ′xi j )

− xw(t, β)xw(t, β)′
)

∑

i j

Si jwi j d Ni j (t).

The weighted partial likelihood estimator β̂ satisfies the score equation Uw(β̂) = 0.
Lin (2000) shows that in considerable generality, β̂−β is approximately normal with
mean 0 and variance

E{Iw(β)}−1Var{Uw(β)}E{Iw(β)}−1.

When all cases are sampled, various authors have given results for Var{Uw(β)}, includ-
ing Chen and Lo (1999), Borgan et al. (2000) and Samuelsen et al. (2007). An extension
of these results to allow subsampling of the cases and the possibility of analyzing dif-
ferent endpoints is needed here. Let µx (t, β) be the limit in probability of xw(t, β).
A key part of Lin (2000) development is showing that the asymptotic properties of
M−1/2

+ Uw(β) are the same as those of M−1/2
+

∑
i j Si jwi jUi j , where

Ui j =
∫

{xi j − µx (t, β)} d Mi j (t, β). (5)

Note that Ui j is a function of only the data from subject i j , so the Ui j are independent
in the full cohort. Thus the problem of estimating the variance of Uw(β) fits into the
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framework of Sect. 2, with the vectors Ui j in the role of the Zi j . A vector generalization
of Proposition 1 leads to the formula

Var{Uw(β)} .= Var{U++(β)} +
∑

j

Eδ[{w j (1)− 1}D j Var(Ui j |δi j = 1)

+{w j (0)− 1}(M j − D j )Var(Ui j |δi j = 0)]. (6)

If the γi j are identical to the δi j and all observed events in the cohort are sampled, so
d j = D j , then this formula is equivalent to that given for Var(β̂) on the top half of
page 106 in Samuelsen et al. (2007).

The variance of U++(β), which is the score from the full cohort, can be estimated
by Iw(β̂), since M−1+ Iw converges to the same limit as the average information from
the full cohort. To estimate the conditional variances in (6), the unknown quantities
in Ui j need to be replaced by estimates. Let Ûi j be Ui j with xw(t, β) substituted for
µx (t, β), β̂ substituted for β and the Breslow-style estimator substituted for the cumu-
lative hazard �0(t) (see Sect. 3.1 below for more details). These Ûi j are simply the
score residuals from the fit of the model, available from the output in many packages,
so the following algorithm can be used to estimate Var(β̂):

1. Fit the model using weighted partial likelihood, obtaining the estimates β̂ and the
inverse information Iw(β̂)−1.

2. Obtain the score residuals from the fit of the model.
3. Calculate the empirical variance-covariance matrices V̂ 1

U j and V̂ 0
U j of the score

residuals for the cases and non-cases in stratum j , for each j . (The case status for
this calculation is defined by the status in the sampling data.)

4. Estimate Var(β̂) with

Iw(β̂)−1 + Iw(β̂)−1
∑

j

(
D j − d j

d j
D j V̂ 1

U j

+ M j − D j − m j + d j

m j − d j
(M j − D j )V̂

0
U j

)

Iw(β̂)−1.

This formula is equivalent in their setting to that defined by Samuelsen et al. (2007)
using the DFBETA case influence residuals, which combine the score residuals and
information factors of the second term above.

The ‘robust’ variance estimator (Barlow 1994; Therneau and Grambsch 2000,
Sect. 7.3) estimates Var{Uw(β)} with the empirical variance-covariance matrix of the
quantitieswi j Ûi j (the weighted score residuals). While the robust variance estimator is
valid under certain circumstances, it can overestimate the true variance from stratified
case-cohort samples, especially for the effects of factors used in defining sampling
strata (see Samuelsen et al. 2007).

Score tests with estimated nuisance parameters will also be of interest in some set-
tings. Write β ′ = (φ′, ψ ′) and Uw(β)′ = {Uw

φ (φ,ψ)
′,Uw

ψ (φ,ψ)
′}, and consider the

hypothesis H0 : φ= 0. Let ψ̂0 be the weighted partial likelihood estimator under H0,
which is the solution to Uw

ψ (0, ψ)= 0. The score test statistic is Uw
φ (0, ψ̂0)

′V̂ar{Uw
φ

(0, ψ̂0)}−1Uw
φ (0, ψ̂0). Using parameters as subscripts to denote the subvectors and
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submatrices corresponding to those parameters (as with Uw
φ and Uw

ψ ), and using stan-
dard Taylor series methods, under H0,

Uw
φ (0, ψ̂0)

.= Uw
φ (0, ψ)− Iwφψ(0, ψ)I

w
ψψ(0, ψ)

−1Uw
ψ (0, ψ).

Thus an estimator of the null variance of Uw
φ (0, ψ̂0) is given by BV̂ B ′, where V̂

is the estimate of (6), B = {I,−Iwφψ(I
w
ψψ)

−1}, and both V̂ and Iw are evaluated at

(φ,ψ) = (0, ψ̂0).

3.1 Cumulative hazard and survivor function estimation

The cumulative hazard for a subject with covariates x , based on model (4) is�(t |x) =
exp(β ′x)�0(t), and the event-free probability at t is S(t |x) = exp{− exp(β ′x)�0(t)}.
The generalization of the Breslow estimator of�0(t) to survey sampling is �̂(t, β̂, 0),
where

�̂(t, β, x) = exp(β ′x)
t∫

0

∑
i j Si jwi j d Ni j (u)

∑
i j Si jwi j Yi j (u) exp(β ′xi j )

=
t∫

0

∑
i j Si jwi j d Ni j (u)

∑
i j Si jwi j Yi j (u) exp{β ′(xi j − x)} .

An estimator of S(t |x) is then given by Ŝ(t |x) = exp{−�̂(t, β̂, x)}. Lin (2000) shows
that, as for the other quantities considered here, Var{�̂(t, β̂, x)} .= Vc(t, x)+Vs(t, x),
where Vc(t, x) is the variance of the corresponding estimator computed from the full
cohort and Vs(t, x) is the extra variation due to the finite cohort subsampling (Lin only
considers the case x = 0, but the extension to the version here follows trivially by cen-
tering the covariates at x). The quantity Vc(t, x) can be estimated from the sample with

V̂c(t, x) =
t∫

0

∑
i j Si jwi j d Ni j (u)

S0(u, β̂, x)2
+ R(t, β̂, x)′ Iw(β̂)−1 R(t, β̂, x),

where S0(u, β, x) = ∑
i j Si jwi j Yi j (u) exp{β ′(xi j − x)} and

R(t, β, x) = −
t∫

0

⎧
⎨

⎩

∑

i j

(xi j − x)Si jwi j Yi j (u) exp{β ′(xi j − x)}
⎫
⎬

⎭

×
∑

i j Si jwi j d Ni j (u)

S0(u, β, x)2

(this formula is essentially the same as that given on the upper part of page 43 of Lin
2000).
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The term Vs(t, x) can be obtained using the general approach from Sect. 2 (and the
Appendix). From Eq. 2.7 of Lin (2000) and the subsequent material there, the appro-
priate Zi j terms here, based on an expansion of �̂(t, β̂, x)−�(t |x) can be estimated
from the sample with

Ẑi j =
t∫

0

d Ni j (u)

S0(u, β̂, x)
−

t∫

0

Yi j (u) exp{β̂ ′xi j }
S0(u, β̂, x)

d�̂(t, β̂, 0)+ R(t, β̂, x)′ Iw(β̂)−1Ûi j

=
t∫

0

d Ni j (u)

S0(u, β̂, x)
−

t∫

0

Yi j (u) exp{β̂ ′(xi j − x)}
S0(u, β̂, x)

d�̂(t, β̂, x)

+ R(t, β̂, x)′ Iw(β̂)−1Ûi j ,

where Ui j is defined in (5) and Ûi j is the score residual estimate of Ui j defined above.
An estimate V̂s(t, x) of Vs(x, t) can be computed from the Ẑi j as in (3).

The specialization of �̂(t, β̂, x) to the one-sample case, which can be defined by
�̂w(t) = �̂(t, 0, 0), is also of interest. In most applications, such estimates would be
computed in subsets of the data defined by baseline characteristics. The calculations
for a subset follow the same as for the full sample here, with the sums restricted to the
subset of interest.

The general results for �̂(t, β̂, x) still apply in this simplified setting, and Ẑi j

simplifies to

Ẑi j =
t∫

0

d Ni j (u)− Yi j (u)d�̂w(u)
∑

lk SlkwlkYlk(u)
, (7)

and V̂c(t, 0) can be written

∑

i j

Si jwi j

t∫

0

d Ni j (u)

{∑lk SlkwlkYlk(u)}2 . (8)

A simple estimate of S(t) is then given by S̃w(t) = exp{−�̂(t)}. By the delta method,
an estimator of Var{S̃(t)} is given by S̃w(t)2V̂ar{�̂w(t)}. A product limit version can
also be given. Specifically, by analogy with the unweighted case, let t1, . . . , tK be the
unique event times, and define

Ŝw(t) =
∏

tk≤t

{1 − �̂w(tk)+ �̂w(tk−)}

=
∏

tk≤t

(

1 −
∑

i j Si jwi j I (Ti j = tk, δi j = 1)
∑

i j Si jwi j Yi j (tk)

)

.

The asymptotic variances of Ŝw(t) and S̃w(t) will be the same.
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3.2 A simulation study of the cumulative hazard estimator

Here performance of the variance estimator V̂ for �̂w(t), based on (7) and (8) is con-
sidered for the one-sample estimator computed for a single stratum. Full cohort event
times are generated from an exponential distribution with 5-year event-free probabil-
ities S(5) of either 0.90 or 0.95. Censoring times are drawn from the uniform (3,8)
distribution. The cumulative hazard �̂w(t) is computed at t = 3, 5, 7. Through t = 3
there is complete follow-up and at t = 7 the risk sets are becoming small, so the times
span a considerable range of conditions. Cohort sizes in the stratum of M j = 1000,
2952 are considered. In all cases m j − d j = 150 and d j = min{50, D j }. Cohorts
with D j < 50 only occur for the combination M j = 1000 and S(5) = 0.95, where
the expected number of events in the cohort is 54.76 and approximately 24% of the
generated cohorts should contain< 50 events. For each configuration, 10,000 samples
are generated. In each case, for each time point, the average of the �̂w(t), the empirical
variance of the �̂w(t) (which estimates the true variance), the average of the variance
estimators computed from each sample (E(V̂ )), and the true coverage probabilities of
nominal 95% confidence intervals are computed. Confidence intervals are computed
from the normal approximation on both the �(t) scale and the log{�(t)} scale, with
the variance estimates for the latter case obtained using the delta method. For each
case, the proportion of the samples where the true value was smaller than the lower
confidence limit (<LCL) and the proportion where true value was larger than the
upper confidence limit (>UCL) are given (both should be 2.5%). The results, given
in Table 1, show that the bias in the estimator and in the variance estimator are mini-
mal, but the performance of the confidence intervals is mixed. The scenarios and time
points have been chosen to have low event probabilities, where cohort sampling meth-
ods may be most useful, but where convergence to normality may be slow. There is
generally some skewness in the distribution of �̂w(t) (that is sometimes overcorrected

Table 1 Simulation results for estimating the cumulative hazard (entries for Var{�̂w(t)} and E(V̂ ) are
multiplied by 10,000)

M j S(5) t �(t) E{�̂w(t)} Var{�̂w(t)} E(V̂ ) CI on �(t) CI on log{�(t)}
<LCL >UCL <LCL >UCL
(%) (%) (%) (%)

1000 0.90 3 0.0632 0.0632 1.04 1.01 1.7 4.3 3.3 1.9
5 0.1054 0.1052 1.50 1.54 1.7 3.3 2.6 2.0
7 0.1475 0.1474 3.31 3.45 0.6 4.8 1.6 3.2

2952 0.90 3 0.0632 0.0633 0.78 0.78 2.4 3.1 3.8 1.4
5 0.1054 0.1053 0.89 0.88 2.3 2.8 3.3 1.8
7 0.1475 0.1478 2.11 2.13 0.6 5.7 1.4 4.6

1000 0.95 3 0.0308 0.0307 0.33 0.33 1.1 4.9 3.1 2.0
5 0.0513 0.0512 0.62 0.61 1.5 4.6 3.0 2.2
7 0.0718 0.0720 1.29 1.31 0.8 4.7 2.2 2.8

2952 0.95 3 0.0308 0.0307 0.21 0.22 1.9 3.5 3.2 1.5
5 0.0513 0.0513 0.29 0.29 1.8 3.2 2.9 2.0
7 0.0718 0.0722 0.67 0.67 0.9 4.8 1.9 3.3
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by use of the log transformation) and sometimes fairly high correlation between the
estimate and its estimated standard error (that can be in the opposite direction on the
log scale), which jointly lead to the observed problems with the confidence interval
coverage. Both factors vary with the follow-up time point and the scenario, leading to
the complex pattern in Table 1, which makes it difficult to predict performance.

4 Cross-validation and bootstrap resampling

Cross-validation provides a general approach to validation of results when the amount
of available data is limited. Cross-validation can be used to estimate the accuracy of
the procedure used to develop a classifier or predictor in the context of the particular
problem (see e.g. Dupuy and Simon 2007; Rademacher et al. 2002), but not the accu-
racy of the particular model or predictor. Because of the amount of data needed to give
valid estimates of accuracy for the right-censored endpoints of interest here, K -fold
cross-validation, where the data are randomly divided into K groups, is considered.
The model or predictor is developed on the data with one of the groups omitted, and
then the omitted group is used to evaluate how well the model classifies subjects or
predicts outcomes. This process is repeated with each group omitted in turn, and the
average prediction accuracy over the omitted sets gives an estimate of the accuracy
when the procedure is applied to the full data set (the data sets used to fit the model in
the cross-validation procedure contain (K − 1)/K of the full sample, and so should
be reasonably representative if K is not too small).

The dependence in the sample is a problem, since the cross-validation sets need to
be independent. Since subjects in the full cohort are independent, cross-validation can
conceptually be applied at the level of the full cohort and then the sampling of cases and
non-cases can be done within the cross-validation subsets. This can be implemented
by dividing the actual sample into K groups and then recomputing the weights based
on a corresponding division of the portion of the cohort that is not in the sample, as
follows. The only information needed on the full cohort are the values of the M j and
the D j . First the m j subjects in the sample in stratum j can be randomly divided
into K subsets of size mkj , k = 1, . . . , K . Then the M j − m j subjects in stratum j
who are not in the sample can also be randomly divided into K subsets of size M∗

k j ,
k = 1, . . . , K . The mkj and M∗

k j can be fixed and each can be set to be as close to
equal (in k) as possible. While the number of subjects in the groups can be fixed, in
order to obtain independent subsets, the number of cases and non-cases cannot be. Let
dkj be the number of cases in the sample and D∗

k j the number of cases in the cohort
not in the sample assigned to the kth cross-validation set in stratum j . For the subjects
not in the sample, all that matters in the random division into K subsets is determining
the D∗

k j , and under random division into subsets, these have a multivariate hypergeo-
metric distribution, and so can be generated without access to individual patient data
for the subjects not in the sample. For analyses of the kth cross-validation training
set, the sampling weights are then set to

∑
l �=k(D

∗
l j + dl j )/

∑
l �=k dl j for cases and

∑
l �=k(M

∗
l j + ml j − D∗

l j − dl j )/
∑

l �=k(ml j − dl j ) for non-cases, and for analyses of
the kth validation set, the sampling weights are set to (D∗

k j + dkj )/dkj for cases and
to (M∗

k j + mkj − D∗
k j − dkj )/(mkj − dkj ) for non-cases. In this way, each omitted
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validation set in the K -fold cross validation is independent of the complementary
training set, since each is constructed from independent subsets of the full cohort.

It is possible to use nested application of this process, applying cross validation to
each training set in the top level cross validation procedure, say for the purpose of
optimizing tuning parameters in a classification algorithm on each training set.

The dependence in the sample also creates a challenge for bootstrap sampling, since
the bootstrap resamples should reproduce the dependence structure in the sample. In
general, bootstrapping dependent data is a complex problem, but here there is again a
simple solution based on generating bootstrap samples of the full cohort and repeating
the process of selecting cases and non-cases for each bootstrap data set. As with the
cross-validation procedure, it is only necessary to have information on the M j and D j

from the full cohort to do this. Since the original sampling was performed separately
within strata, the bootstrap resampling can also be done within strata. Within each
stratum, the population distribution of the data can be estimated with the weighted
empirical distribution of the subjects in the stratum in the sample, where the weights
are the wi j . Sampling the required number of subjects from the empirical distribu-
tion can be done by weighted sampling with replacement from the subjects in the
stratum in the sample. Other than the fact that subjects with and without observed
events have different sampling weights, the generation of the full cohort ignores event
status (that is, it does not attempt to replicate the number of events in the original
cohort). This process can be used to generate a full M+-subject study cohort. Cases
and non-cases can then be sampled at random within strata from this cohort to give
a new sample, with the same number of cases and non-cases within strata. Sampling
weights can then be computed from the bootstrap cohort resample and the selected
subset as in the original data set. This process is equivalent to just resampling subjects
in the sample, with a further random adjustment to the weights based on the distri-
bution of the potential cases and non-cases within strata in the full cohort bootstrap
resamples.

5 Discussion

This paper gives details for implementation of weighted analyses for event-stratified
subsampling for biomarker studies in clinical trials and epidemiologic cohort studies.
Such designs potentially have wide application in studies with low event rates. They
allow straightforward analysis of multiple endpoints (e.g. survival, disease-free sur-
vival and recurrence-free interval), and also allow incorporating additional follow-up
after the sample has been selected.

While stratified cohort sampling designs have advantages in flexibility over nested
case–control sampling (where the controls for each case are sampled from the risk
set at the case’s event time), these advantages could be offest by the possible effects
of analytic batch, long-term storage, and freeze-thaw cycles on the biomarker evalua-
tions. In the E2197 genomic project, RNA was extracted from tumor blocks created at
the time of diagnosis (shortly before study entry), and the RNA extraction and geno-
mic evaluation were performed on the entire sample within a short period of time,
so these factors should be minimal. However, for settings where these factors can be
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substantial, Rundle et al. (2005) argue that the nested case–control design is preferred,
since it allows the tissue sample for each case to be compared to a matched set of
control samples.

The purpose of stratified cohort sampling designs is to improve efficiency over
a simple random sample from the cohort of study subjects. Further work is needed
to guide the choice of strata and the ratio of non-cases to cases in such designs.
For example, if the purpose is to estimate the marginal relationship between fac-
tor X and risk of recurrence, and factor X is thought to be correlated with fac-
tor Y , which has been measured on the full cohort, then better understanding is
needed of how to best use the information on Y in selecting the sample. Currently, it
appears simulation methods are required to investigate power of alternative sampling
designs.

The weighted analysis methods used here are not efficient, but efficient estimators
in related designs tend to be complex; see e.g. Nan (2004) and Scheike and Marti-
nussen (2004). The local averaging method of Chen (2001) also has better efficiency
than the weighted methods discussed here for case-cohort sampling. This method
was extended to stratified sampling by Samuelsen et al. (2007), who showed that
the method corresponds to sampling (or post stratification) within intervals defined by
length of follow-up, in addition to case/non-case status. However, as discussed in more
detail in Breslow and Wellner (2007) and elsewhere, the convenience and flexibility
of the weighted estimation methodology makes it a reasonable option except when
the efficiency loss may be substantial.

Acknowledgements Discussions with collaborators at Genomic Health Inc. and sanofi aventis on the
E2197 analysis led to numerous refinements in the paper. Tianxi Cai suggested the concept for cross-val-
idation based on dividing the full cohort. Partial funding was provided by sanofi aventis and a grant from
the National Cancer Institute.

Appendix

Here additional details of the derivation of (2) are given. Using standard results on
Horvitz-Thompson estimators (see e.g. Overton and Stehman 1995; Lin 2000), and
since sampling is conducted independently within stratum by event status groups, it
follows that asymptotically in the super-population model,

Var(Z̃) =
J∑

j=1

E

{
∑

i

∑

l

Cov(Si jwi j − 1, Sl jwl j − 1|δ)Zi j Zl j

}

=
J∑

j=1

Eδ

{
∑

i

∑

l

Cov(Si jwi j − 1, Sl jwl j − 1|δ)E(Zi j Zl j |δ)
}

=
J∑

j=1

Eδ

{
∑

i

Var(Si jwi j − 1|δ)Var(Zi j |δ)
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+
∑

i

∑

l

Cov(Si jwi j − 1, Sl jwl j − 1|δ)E(Zi j |δ)E(Zl j |δ)
}

using the independence of the Zi j . Now Cov(Si jwi j − 1, Sl jwl j − 1|δ) = 0 when
δi j �= δl j , and E(Zi j |δ) depends on i only through the value of δi j , so

∑

i

∑

l

Cov(Si jwi j − 1, Sl jwl j − 1|δ)E(Zi j |δ)E(Zl j |δ)

= E(Zi j |δ, δi j = 1)2
∑

i

∑

l

δi jδl j Cov(Si jwi j − 1, Sl jwl j − 1|δ)

+ E(Zi j |δ, δi j = 0)2
∑

i

∑

l

(1 − δi j )(1 − δl j )Cov(Si jwi j − 1, Sl jwl j − 1|δ)

= 0,

since, for example,

∑

il

δi jδl j Cov(Si jwi j − 1, Sl jwl j − 1|δ) = Var

{
∑

i

δi j (Si jwi j − 1)

∣
∣
∣
∣
∣
δ

}

and
∑

i δi j (Si jwi j − 1) = ∑
i δi j {Si jw j (1) − 1} = d j (D j/d j ) − D j = 0. Also,

Var(Si jwi j − 1|δ) = w2
i j (1/wi j )(1 − 1/wi j ) = wi j − 1, so

Var(Z̃) =
J∑

j=1

E

{
∑

i

(wi j − 1)Var(Zi j |δ)
}

.

Formula (2) follows by splitting this expression into sums over subjects with δi j = 1
and δi j = 0.
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