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Abstract In this article, we propose a general class of accelerated means regression
models for recurrent event data. The class includes the proportional means model,
the accelerated failure time model and the accelerated rates model as special cases.
The new model offers great flexibility in formulating the effects of covariates on the
mean functions of counting processes while leaving the stochastic structure com-
pletely unspecified. For the inference on the model parameters, estimating equation
approaches are developed and both large and final sample properties of the proposed
estimators are established. In addition, some graphical and numerical procedures are
presented for model checking. An illustration with multiple-infection data from a
clinic study on chronic granulomatous disease is also provided.

Keywords Counting process · Marginal model · Model checking · Semiparametric
model · Recurrent events

1 Introduction

In many research settings, the event of interest can be experienced more than once
per subject. Such outcomes have been termed recurrent events, which are commonly
encountered in longitudinal follow-up studies. Medical examples of recurrent events
are multiple infection episodes and tumor recurrences. Other examples include re-
peated breakdowns of a certain machinery in reliability testing and repeated purchases
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of a certain product in marketing research. The structure of recurrent events is that
of naturally ordered multivariate failure time data since different events within an
individual are correlated. Correspondingly, the analysis of recurrent event data has
recently been the subject of much methodological research, and the investigators are
often interested in assessing the effects of covariates on certain features of the recurrent
events process.

For recurrent event data, there are several estimating procedures proposed in the
survival analysis literature, including conditional models (Andersen and Gill 1982;
Prentice et al. 1981) and marginal models (Wei et al. 1989). Following the traditional
development of survival analysis, these methods are based on modeling the intensity
and hazard functions. Because the mean number of events is more interpretable quan-
tity than the hazard in the context of recurrent event data, some authors have proposed
to model the mean and rate functions (Pepe and Cai 1993; Lawless and Nadeau 1995;
Lin et al. 2000, 2001). For example, Lawless and Nadeau (1995) have proposed a class
of marginal means models, and Lin et al. (2000) studied the proportional means and
rates models for counting processes.

One class of models which have been developed in many contexts is time-
transformation models, in which all subjects have similar trajectories and the effect of
covariates is to alter the time scale of the trajectories. For example, Lin et al. (1998)
provided the accelerated failure time model to formulate the effects of covariates on the
mean function of the counting process for recurrent events. Ghosh (2004) presented
the accelerated rates model for counting processes in which the effect of covariates
is to transform the time scale for a baseline rate function. In this paper, we propose a
more general class of accelerated means regression models for recurrent event data,
which includes the proportional means model, the accelerated failure time model and
the accelerated rates model as special cases. The class are related to a class of semi-
parametric hazards regression models for univariate survival data studied by Chen
and Jewell (2001). In the new model, a covariate’s effect is identified as having two
separate components, namely a time-scale change and a relative ratio for the mean
function of the counting process.

The remainder of the paper is organized as follows. In Sect. 2, we present a semi-
parametric formulation of the general model, and proposes an estimating procedure
for the model parameters. The asymptotic properties of the proposed estimators are
established. In Sect. 3, we develop a technique for checking the adequacy of the general
model. Section 4 reports some results from simulation studies conducted for evaluat-
ing the proposed methods. In Sect. 5, the methodology is applied to a data set from
a clinic study on chronic granulomatous disease, followed by concluding remarks in
Sect. 6. The details of the proofs are relegated to Appendix.

2 Model and estimation procedure

Suppose that a total of n subjects are observed over time. Let N∗
i (t) be the number

of events that occur over the interval [0, t] for subject i, and Zi be a p-vector of
covariates. In most applications, the subject is followed for a limited period of time so
N∗

i (·) is not fully observed. Let Ci denote the follow-up or censoring time. Assume
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that Ci is independent of N∗
i (·) conditional on Zi. Define Ni(t) = N∗

i (t ∧ Ci) and
Yi(t) = I (Ci ≥ t), where a ∧ b = min(a, b), and I (·) is the indicator function. The
observable data consist of {Ni(·), Yi(·), Zi} (i = 1, . . . , n).

The proposed accelerated means regression model takes the form

E{N∗
i (t)|Zi} = µ0(te

β ′
10Zi )g(β ′

20Zi), (1)

where β10(t) and β20 are p-vectors of unknown regression parameters, and µ0(t) is an
unspecified baseline mean function. The link function g(·) is pre-specified and twice
continuously differentiable with g(·) ≥ 0. Clearly, model (1) becomes the proportional
means model when β10 = 0 and g(x) = ex. The choice of g(x) = 1 yields the accel-
erated failure time model for counting processes. When g(x) = ex and β20 = −β10,

model (1) reduces to the accelerated rates regression model for recurrent events. If
N∗(t) is a simple counting process (i.e., can only take a value of 0 or 1), model (1) is
equivalent to a general hazards regression model studied by Chen and Jewell (2001)
for univariate survival data.

Flexibility of the general model may lead to concern of identifiability. Following
the arguments of Chen and Jewell (2001), we address the issue of identifiability in the
following proposition.

Proposition 1 Under model (1), if there exist a sequence of constants {ck}+∞
k=−∞ and

a large enough t0 > 0 such that µ0(t) = ∑+∞
k=−∞ ckt

k , for any t ∈ [0, t0], and g(·)
is a strictly monotone function, then β10 and β20 are identifiable if and only if there
exist k1, k2 ∈ {0,±1,±2, . . .} such that k1 �= k2 and ck1ck2 �= 0.

Proposition 1 implies that the model is not identifiable if and only if the baseline
mean function is in the form of ckt

k for some k, in which all three subclasses of special
models and the general model (1) coincide. We assume that β10 and β20 are identifiable
throughout the paper.

The two parameters β10 and β20 can be interpreted as measuring two different
effects the covariate may have on the mean function of the recurrent event process.
For example, suppose that Zi is binary, and Zi = 1 stands for the treatment group
and Zi = 0 for the control group, as in a randomized clinical trial. The first parame-
ter β10 identifies the acceleration or deceleration of the mean function process in the
treatment group, which is called time-scale effect, while β20 characterizes the relative
ratio after adjusting for the different mean function process in the treatment and the
control groups, which is called relative-ratio effect. Therefore, model (1) implies that
the treatment can alter both the magnitude of the mean function and the frequency
of recurrences simultaneously. Correctly identifying and estimating these two com-
ponents may better describe a given recurrent event data, although the main value of
the general model (1) may be in quantifying and highlighting differences between the
three subclasses of models that are commonly used individually.

Let Ñi(t;β1) = Ni(te
−β ′

1Zi ), and Yi(t;β1) = I (Ci ≥ te−β ′
1Zi ). Define

Mi(t;β) = Ñi(t;β1) −
t∫

0

Yi(s;β1)g(β ′
2Zi)dµ0(s),
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where β = (β ′
1, β

′
2)

′. Under model (1), Mi(t;β0) are zero-mean stochastic processes,
where β0 = (β ′

10, β
′
20)

′. Thus, for given β, a reasonable estimator for µ0(t) is the
solution to

n∑

i=1

⎡

⎣Ñi(t;β1) −
t∫

0

Yi(s;β1)g(β ′
2Zi)dµ(s)

⎤

⎦ = 0, 0 ≤ t ≤ τ,

where τ is a prespecified constant such that P(Ci ≥ τe−β10Zi ) > 0. Denote this
estimator by µ̂0(t;β), which can be expressed as

µ̂0(t;β) =
n∑

i=1

t∫

0

dÑi(s;β1)
∑n

j=1 Yj (s;β1)g(β ′
2Zj )

. (2)

To estimate β0, using the generalized estimating equation methods (Liang and Zeger
1986) and replacing µ0(t) with its estimator obtained above, we specify the following
two estimating functions for β10 and β20:

U1(β) =
n∑

i=1

τ∫

0

{
Zi − Z̄(t;β)

}
dÑi(t;β1), (3)

and

U2(β) =
τ∑

0

τ∫

0

{
W(t, Zi;β) − W̄ (t, Zi;β)

}
dÑi(t;β1), (4)

where W(t, Zi;β) is a known p-dimensional weight function of t, Zi and β, not in
the span of the functions 1 and Zi,

Z̄(t;β) =
∑n

i=1 Yi(t;β1)g(β ′
2Zi)Zi

∑n
i=1 Yi(t;β1)g(β ′

2Zi)
,

and

W̄ (t;β) =
∑n

i=1 Yi(t;β1)g(β ′
2Zi)W(t, Zi;β)

∑n
i=1 Yi(t;β1)g(β ′

2Zi)
.

LetZ∗
i (t;β) = (Z′

i ,W(t, Zi;β)′)′, Z̄∗(t;β) = (Z̄(t;β)′, W̄ (t;β)′)′, andU(β) =
(U1(β)′, U2(β)′)′. Then (3) and (4) can be written as

U(β) =
n∑

i=1

τ∫

0

{
Z∗

i (t;β) − Z̄∗(t;β)
}
dÑi(t;β1). (5)
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Since U(β) is a discrete function of β1, we define the estimator β̂ = (β̂ ′
1, β̂

′
2)

′ as a zero-
crossing of U(β) or as a minimiser of ‖U(β)‖ (Lin et al. 1998; Chen and Jewell 2001;
Ghosh 2004), where ‖v‖ = (v′v)1/2 for a vector v. Various methods of solving this
equation exist, such as direct grid search, the bisection method or the technique of sim-
ulated annealing (SA). When there are only a small number of covariates, direct grid
search and the bisection method are recommended. For high-dimensional covariate
vectors, the SA method may be more efficient, which is a generic probabilistic meta-
algorithm for the global optimization problem, namely locating a good approximation
to the global optimum of a given function in a large search space. Each step of the SA
algorithm replaces the current solution by a random “nearby” solution, chosen with a
probability that depends on the difference between the corresponding function values
and on a global parameter, that is gradually decreased during the process (see, for
example, Lin and Geyer 1992). When β̂ is available, the baseline mean function µ0(t)

can be estimated by the Nelson–Aalen-type estimator µ̂0(t) ≡ µ̂0(t; β̂) given by (2).
In general, to establish the asymptotic properties of β̂, we need first to establish

the asymptotic properties of U(β0). Under certain regularity conditions, we show in
Theorem 1 of the Appendix that n−1/2U(β0) is asymptotically normal with mean zero
and covariance matrix that can be consistently estimated by �̂, where

�̂ = n−1
n∑

i=1

Di(β̂)Di(β̂)′, (6)

Di(β) =
τ∫

0

{
Z∗

i (t;β) − Z̄∗(t;β)
}
dM̂i(t;β),

and

M̂i(t;β) = Ñi(t;β1) −
t∫

0

Yi(t;β1)g(β ′
2Zi)dµ̂0(t;β).

In the following, define

S(0)(t;β) = n−1
n∑

i=1

Yi(t;β1)g(β ′
2Zi),

S(1)(t;β) = n−1
n∑

i=1

Yi(t;β1)ġ(β ′
2Zi)Zi,

S(2)
z (t;β) = n−1

n∑

i=1

Yi(t;β1)g(β ′
2Zi)Z

⊗2
i ,

S(3)
z (t;β) = n−1

n∑

i=1

Yi(t;β1)ġ(β ′
2Zi)Z

⊗2
i ,

123



362 Lifetime Data Anal (2008) 14:357–375

S(2)
w (t;β) = n−1

n∑

i=1

Yi(t;β1)g(β ′
2Zi)W(t, Zi;β)Z′

i ,

and

S(3)
w (t;β) = n−1

n∑

i=1

Yi(t;β1)ġ(β ′
2Zi)W(t, Zi;β)Z′

i ,

where ġ = dg(t)/dt and v⊗2 = vv′ for a vector v.

We also prove in Theorem 2 of the Appendix that n1/2(β̂ − β0) is asymptotically
normal with mean zero and covariance matrix that can be consistently estimated by
Â−1�̂(Â−1)′, where

Â =
(

Â11 Â12

Â21 Â22

)

,

Â11 =
τ∫

0

[
S(2)

z (t; β̂) − Z̄(t; β̂)⊗2S(0)(t; β̂)
]
d{λ̂0(t)t},

Â12 =
τ∫

0

[
S(3)

z (t; β̂) − Z̄(t; β̂)S(1)(t; β̂)′
]
dµ̂0(t), (7)

Â21 =
τ∫

0

[
S(2)

w (t; β̂) − W̄ (t; β̂)Z̄(t; β̂)S(0)(t; β̂)′
]
d{λ̂0(t)t},

Â22 =
τ∫

0

[
S(3)

w (t; β̂) − W̄ (t; β̂)S(1)(t; β̂)′
]
dµ̂0(t),

and λ̂0(t) is a density-type estimator of λ0(t) = dµ0(t)/dt, that is,

λ̂0(t) = h−1
∫

K

(
u − t

h

)

dµ̂0(u),

where h is the bandwidth and K(·) is a kernel function with a compact support (e.g.,
Ramlau-Hansen 1983).

Based on the above result, we see that the estimator Â requires an estimate for the
derivative of µ0(t). Because such density-type estimator λ̂0(t) tends to be numeri-
cally unstable, the resulting variance estimator for β̂ will also be unreliable. In order
to obtain a stable variance estimate of β̂, we adapt a resampling technique due to
Parzen et al. (1994). Specifically, let β̂∗ be the solution to

U(β) =
n∑

i=1

Di(β̂)Gi, (8)
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where {G1, . . . ,Gn} are independent standard normal variables. By the arguments of
Parzen et al. (1994) and Lin et al. (1998), the asymptotic distribution of n1/2(β̂ − β0)

can be approximated by the conditional distribution of n1/2(β̂∗ − β̂) given the data
{Ni(·), Yi(·), Zi}(i = 1, . . . , n). To approximate the distribution of β̂, we produce
a large number of realisations of β̂∗ by repeatedly generating the random samples
(G1, . . . ,Gn) while fixing the data {Ni(·), Yi(·), Zi}(i = 1, . . . , n) at their observed
values. The covariance matrix of β̂ can then be approximated by the empirical covari-
ance matrix of β̂∗. Hence, confidence intervals for β0 can be constructed using the
empirical distribution of β̂∗.

Let V (t) = n1/2{µ̂0(t) − µ0(t)}. We show in Theorem 3 of the Appendix that
V (t) converges weakly to a zero-mean Gaussian process whose covariance function
at (s, t) can be consistently estimated by �̂(s, t) = n−1 ∑n

i=1 �̂i(s)�̂i(t), where

�̂i(t) =
t∫

0

dM̂i(u; β̂)

S(0)(u; β̂)
− Ĥ (t)′Â−1

τ∫

0

{
Z∗

i (u; β̂) − Z̄∗(u; β̂)
}

dM̂i(u; β̂),

Ĥ1(t) =
t∫

0

Z̄(u; β̂)d{λ̂0(u)u}, (9)

Ĥ2(t) =
t∫

0

S(1)(u;β)

S(0)(u;β)
dµ̂0(u),

and Ĥ (t) = (Ĥ1(t)
′, Ĥ2(t)

′)′.
As in the case of β̂, it is difficult to estimate the asymptotic covariance function

of V (t) analytically. Following Lin et al. (1998), we can show that the asymptotic
distribution of V (t) can be approximated by the conditional distribution of V̂ (t),

where

V̂ (t) = n1/2
{
µ̂0(t; β̂) − µ̂0(t; β̂∗)

}
+ n−1/2

n∑

i=1

t∫

0

dM̂i(u; β̂)

S(0)(u; β̂)
Gi,

where β̂∗ is the solution to (8). Thus, we may use the simulated distribution of V̂ (t)

to make inference about µ0(t) along the lines of Lin et al. (1998).

Remark Note that in order to approximate the distribution β̂, we adapt a simple
resampling method (Parzen et al. 1994), which is essentially a parametric bootstrap
procedure. Of course, a nature approach following the work of Efron (1979) is simply
to resample the data with replacement and create bootstrap analogues of β̂, which is
the (naive) bootstrap method. However, implementation of this type scheme is com-
putationally slow and intensive. This is essentially due to the high dimension of the
data and the use of the resampling mechanism to rebuild bootstrap replicates at each
stage. In addition, there is no analytical proof that the naive bootstrap method is valid
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for recurrent event data. Theoretical justification of the existing resampling methods
is generally nontrivial and has to be made on a case by case basis.

3 Goodness-of-fit tests

As with any regression model, it is important to develop goodness-of-fit methods for
assessing the adequacy of model (1). Following Lin et al. (2000), we consider the
following cumulative sums of residual:

F(t, z; β̂) = n−1/2
n∑

i=1

I (Zi ≤ z)M̂i(t; β̂), (10)

where the event I (Zi ≤ z) means that each of the components of Zi is no larger than
the corresponding component of z. We show in Theorem 4 of the Appendix that the
null distribution of F(t, z; β̂) can be approximated by the zero-mean Gaussian process

F̃ (t, z) = n−1/2
n∑

i=1

t∫

0

{

I (Zi ≤ z) − S(u, z; β̂)

S(0)(u; β̂)

}

dM̂i(u; β̂)

−B̂(t, z)′Â−1n−1/2
n∑

i=1

τ∫

0

{
Z∗

i (u; β̂) − Z̄∗(u; β̂)
}

dM̂i(u; β̂), (11)

where

S(u, z;β) = n−1
n∑

i=1

Yi(u;β1)g(β ′
2Zi)I (Zi ≤ z),

B̂1(t, z) = n−1
n∑

i=1

t∫

0

Yi(u; β̂1)g(β̂ ′
2Zi)I (Zi ≤ z)

{
Zi − Z̄(u; β̂)

}
d{λ̂0(u)u},

B̂2(t, z) = n−1
n∑

i=1

t∫

0

Yi(u; β̂1)ġ(β̂ ′
2Zi)Zi

{

I (Zi ≤ z) − S(u, z; β̂)

S(0)(u; β̂)

}

dµ̂0(u),

and B̂(t, z) = (B̂1(t, z)
′, B̂2(t, z)

′)′.
As in the case of V (t), it is difficult to estimate the asymptotic covariance function

of F(t, z; β̂) analytically. We again appeal to the resampling approach and show that
the null distribution of F(t, z; β̂) can be approximated by the conditional distribution
of F̂ (t, z), where
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F̂ (t, z) =
{
F(t, z; β̂) − F(t, z; β̂∗)

}

+ n−1/2
n∑

i=1

t∫

0

{

I (Zi ≤ z) − S(u, z; β̂)

S0(u; β̂)

}

dM̂i(u; β̂)Gi.

Thus, to approximate the distribution of F(t, z; β̂), one can obtain a large number
of realizations from F̂ (t, z), by repeatedly generating the standard normal random
sample (G1, . . . ,Gn) while fixing the data {Ni(·), Yi(·), Zi} (i = 1, . . . , n) at their
observed values. To assess the overall fit of model (1), one can plot a few realizations
from F̂ (t, z) along with the observed F(t, z; β̂) and see if they can be regarded as
arising from the same population. More formally, we can apply the supremum test
statistic sup0≤t≤τ,z |F(t, z; β̂)|, with which the p-value can be obtained by comparing

the observed value of sup0≤t≤τ,z |F(t, z; β̂)| to a large number of realizations from

sup0≤t≤τ,z |F̂ (t, z)|.

4 Simulation studies

Simulation studies were conducted to examine the finite sample properties of the pro-
posed estimators. In the study, gap time between the recurrences were generated from
the random-effect intensity model

λ(t |Zi, η) = ηλ0(te
β1Zi )eβ1Zi g(β2Zi), (12)

where g(x) = exp(x), λ0(t) = t2, η is a gamma random variable with mean 1
and variance σ 2, and Zi is a Bernoulli random variable with success probability 0.5.
The follow-up time was generated from the uniform distribution U(0, 3.5), which
yielded an average of approximately two observed events per subject. Simple inte-
gration implies that model (12) is of the form (1). When σ 2 = 0, recurrent events
within an subject are independent. On the other hand, nonzero values of σ 2 induce
correlation between recurrences.

For each simulation study, we considered σ 2 = 0, 0.25, 0.5 and 1. The weight
function W(t, Zi;β) was taken as the Gehan weight function

W(t, Zi;β) = n−1
∑

j

Yj (t;β1)g(β2Zj )Zi.

For each simulation setting, 1,000 simulation samples were considered, and 1,000
resamplings were generated for each simulation sample. We took τ as the largest
recurrence time so that all data were used in the analysis. The estimates of β0 were
obtained by the bisection method with the accuracy of ±0.0001.

Table 1 presents the simulation results on estimation of β0 = (β10, β20) = (−0.5,

0.5) with the sample sizes n = 50 and 100. The table includes the biases (Bias) given
by the sample means of the point estimates β̂ minus the true value, the sampling means
(SEE) of the estimated standard errors of β̂, the sampling standard errors (SSE) of
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Table 1 Monte carlo simulation results

Num σ 2 β10 = −0.5 β20 = 0.5

Bias SSE SEE CP Bias SSE SEE CP

50 0.00 −0.002 0.068 0.068 0.946 −0.003 0.080 0.079 0.951
50 0.25 0.000 0.085 0.084 0.945 0.002 0.096 0.094 0.947
50 0.50 −0.004 0.098 0.095 0.942 −0.009 0.107 0.105 0.945
50 1.00 0.005 0.117 0.113 0.937 −0.013 0.129 0.124 0.938
100 0.00 0.001 0.044 0.043 0.949 0.008 0.049 0.048 0.952
100 0.25 −0.007 0.067 0.064 0.947 0.009 0.078 0.075 0.947
100 0.50 0.008 0.070 0.068 0.944 −0.010 0.082 0.081 0.946
100 1.00 −0.008 0.076 0.074 0.938 −0.007 0.089 0.085 0.940

β̂, and the 95% empirical coverage probabilities (CP) for β0 based on the empirical
distribution of β∗. It can be seen from Table 1 that the proposed estimation proce-
dures performed well for the situations considered here. Specifically, the proposed
estimators are practically unbiased, and both the variance estimation and coverage
probabilities seem reasonable.

5 An example of application

We now apply the proposed method to the multiple-infection data taken from the CGD
study presented by Fleming and Harrington (1991) and Lin et al. (2000). CGD is a
heterogeneous group of uncommon inherited disorders of the immune function char-
acterized by recurrent pyogenic infections. In order to assess the efficacy of gamma
interferon in reducing the rate of infections, a double-blinded clinical trial was con-
ducted in which patients were randomized to either placebo or gamma interferon
group. A total of 128 patients were enrolled into the study. By the end of the trial, 30
of the 65 patients in the placebo group and 14 of 63 in the gamma interferon group
had experienced at least one infection. The full data set appears in the Appendix D.2
of Fleming and Harrington (1991). Lin et al. (2000) also analyzed the data using
compared multiple endpoint Cox models to analyze these data. Although the data set
contains several covariates, but for the illustration purpose, we focus on the effects of
treatment and the patients’ age on the rate of infections (Lin et al. 2000; Ghosh 2004).

For the analysis, we defined Zi1 as the treatment indicator, which take the value 1 if
the subject received gamma interferon and Zi2 to be the patients’s age at enrollment.
Let τ be the largest observed infection time. The bisection method with the accuracy
of ±0.00001 was employed to find the estimates of the regression parameters, and
1,000 resamplings were used to approximate the distribution β̂. Firstly, we only used
the treatment indicator Zi1 in model (1) with g(x) = exp(x), and the results are shown
in model A of Table 2. In model A, the treatment covariate has no effect of time-scale
change, but has the proportional effect on the mean function of recurrent infections,
indicating that gamma interferon is effective in reducing the mean of infection. Next,
we added the age covariate into the model, and the results are presented in model B
of Table 2. This also suggests that the covariates have no effect of time-scale change,
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Table 2 Estimation of the effect for the CGD study

Estimation Model A Model B

Treatment only Treatment Age

β̂10 Coefficient −0.0005 0.0021 −0.0049
Standard error 0.0016 0.0025 0.0102
p-Value 0.756 0.401 0.632

β̂20 Coefficient −1.080 −1.1044 −0.0204
Standard error 0.3068 0.3478 0.0077
p-Value 0.004 0.002 0.008

and the proportional effect is highly significant on the mean function of recurrent
infections. In addition, The above results are close to that of Lin et al. (2000) using
the proportional means model.

Using the results of model B in the Table 2, Fig. 1 displays the estimates of the
cumulative frequencies of recurrent infections for 18-year-old patients who received
gamma interferon versus who did not receive gamma interferon. The estimates are
shown from day 4 to day 373, which are respectively the smallest and largest infection
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Fig. 1 Estimation of the cumulative frequencies of infections for 18-year-old CGD patients
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times observed in the data set. The 95% simultaneous confidence bands are based on
the 1,000 simulated realizations of V̂ (·). Again, the treated patients tend to have fewer
infection episodes over time.

Now we consider the application of the model checking procedures given in Sect. 3
to the data. We only show the analysis for model B with both covariates in the model.
The p-value using the supremum test statistic sup0≤t≤τ,z |F(t, z; β̂)| based on 1,000

realizations of sup0≤t≤τ,z |F̂ (t, z)| is 0.659, which means that the model is appropriate
for the CGD data set.

6 Concluding remarks

In this article we have studied a general class of accelerated means regression models
for recurrent event data, which are flexible and include some commonly used models
as special cases. An estimation procedure was proposed for the model parameters, and
asymptotic properties of the estimators were derived. The methodology was applied to
data from a clinic study on chronic granulomatous disease, and the simulation results
show that the proposed methods work well for the situations considered.

One potential use of the general model (1) is to test if the proportional means model,
the accelerated failure time model and the accelerated rates model can be identified
from the data. For example, we can check the proportional means assumption by testing
β10 = 0 with g(x) = ex, the accelerated failure time assumption by testing β20 = 0,

and the accelerated rates assumption by testing β20 = −β10 with g(x) = ex . These
can be done by the Wald or Score-type statistics, and we are currently conducting
more simulations to further address these issues both theoretically and numerically.

Our proposed method assumes that the censoring and event processes are indepen-
dent conditional on covariates. However, in many applications, this noninformative
censoring assumption might not hold, especially when censoring could be caused by
informative dropouts or failure events. It would be of interest to extend procedures for
a general class of accelerated means regression models to handle these problems.

Another limitation of the approach given here is that the covariates Z are time-
invariant. In some applications, it might be of interest to use time-dependent covariates
in the model. An obvious extension of model (1) in this case would be

E{N∗
i (t)|Zi(t)} = µ0(te

β ′
10Zi(t))g(β ′

20Zi(t)).

However, the proposed estimation procedure cannot be extended in a straightforward
manner to deal time-dependent covariates.

Since estimating functions (3) and (4) were given in a somewhat ad hoc fash-
ion using the generalized estimating equation methods, it would be worthwhile to
further investigate the efficiencies of the proposed estimators. If N∗

i (·) is a Poisson
process, then it might be possible to estimate β0 and µ0(·) more efficiently by the
nonparametric maximum likelihood approach, and the resulting inference procedure
would be much more complicated.
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Note that in (4), there is a weight function that needs to be specified. We used Gehan
weight function in the simulation studies, and there are many potential candidates for
the weight function W(t, Zi;β). For instance, we may choose W(t, Zi;β) = tZi and
W(t, Zi;β) = {t/(1 + t)}Zi as in Chen and Jewell (2000). Ideally, we would choose
W(t, Zi;β) to minimize the variance of β̂. However, it does not appear possible to
derive an optimal weight without specification of dependence structure on the incre-
ments of N∗(t), and the selection of weight functions is usually a complicated problem
(Lin et al. 2001). Thus, as for further research, it would be useful to investigate how
to find a weight function that gives the optimal efficiency of the proposed estimate of
regression parameters if it exists.
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Appendix: Asymptotic properties of U(β0), β̂, µ̂0(t) and F(t, z; β̂)

Let s(0)(t), s(1)(t), s
(2)
z (t), s

(3)
z (t), s

(2)
w (t), s

(3)
w (t), z̄(t) and w̄(t) be the limits of

S(0)(t;β0), S(1)(t;β0), S
(2)
z (t;β0), S

(3)
z (t;β0), S

(2)
w (t;β0), S

(3)
w (t;β0), Z̄(t;β0)

and W̄ (t;β0), respectively.
We will use the same notation defined in the previous sections and assume that the

following regularity conditions hold:

(C1) (N∗
i , Ci, Zi) are independent and identically distributed for i = 1, . . . , n.

(C2) P(Yi(τ ;β10) = 1) > 0.

(C3) Ni(t), Zi and W(t, Zi;β0) are bounded on [0, τ ] for i = 1, . . . , n.

(C4) g(·) is twice continuously differentiable with g(·) ≥ 0, and g(β ′
20Zi) is locally

bounded away.
(C5) Cie

β10Zi has a bounded density and µ0(t) has a bounded second derivative.
(C6) A is nonsingular, where

A =
(

A11 A12
A21 A22

)

,

A11 =
τ∫

0

[
s(2)
z (t) − z̄(t)⊗2s(0)(t)

]
d{λ0(t)t},

A12 =
τ∫

0

[
s(3)
z (t) − z̄(t)s(1)(t)′

]
dµ0(t),

A21 =
τ∫

0

[
s(2)
w (t) − w̄(t)z̄(t)s(0)(t)′

]
d{λ0(t)t},
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A22 =
τ∫

0

[
s(3)
w (t) − w̄(t)s(1)(t)′

]
dµ0(t).

Theorem 1 Under conditions (C1)–(C4), n−1/2U(β0) is asymptotically normal with
mean zero and covariance matrix � = E{did

′
i}, where

di =
τ∫

0

{
Z∗

i (t;β0) − z̄∗(t)
}
dMi(t;β0),

and z̄∗(t) = (z̄(t)′, w̄(t)′)′.

Proof It can be checked that

U(β0) =
n∑

i=1

τ∫

0

{
Z∗

i (t;β0) − Z̄∗(t;β0)
}
dMi(t;β0).

By following the argument used in Theorem 1 of Lin et al. (1998), it is easily to get
that

n−1/2U(β0) = n−1/2
n∑

i=1

di + op(1).

Utilizing the multivariate central limit theorem, n−1/2U(β0) converges in distribution
to a normal random variable with mean zero and variance matrix � = E{did

′
i}, which

can be consistently estimated by �̂ defined in (6).
Let U(β) be the limit of n−1U(β), and N be a compact neighborhood of β0 on

which ‖U(β)‖ is minimised to obtain β̂. �

Theorem 2 Assume that conditions (C1)–(C6) hold and U(β) �= 0 for all β ∈ N but
β �= β0. Then β̂ is strongly consistent and n1/2(β̂ − β0) converges in distribution to
zero-mean normal with covariance matrix A−1�(A−1)′.

Proof Write

U1(β) − U1(β0) = {U(β1, β2) − U1(β1, β20)} + {U(β1, β20) − U1(β10, β20)}.

For any sequence εn → 0, using a Taylor series expansion and the uniform strong law
of large numbers (Pollard 1990), we have that for ‖β − β0‖ ≤ εn,

U1(β1, β2) − U1(β1, β20) = −A12n(β2 − β20) + o(n‖β2 − β20‖)
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almost surely. Note that

U1(β1, β20) − U1(β10, β20) =
⎡

⎣
n∑

i=1

τ∫

0

{
Zi(t;β1, β20) − Z̄(t;β1, β20)

} {
Ñi(t;β1)

−Yi(t;β1)g(β ′
20Zi)dµ0(te

(β10−β1)
′Zi )

}

−
n∑

i=1

τ∫

0

{
Zi(t;β10, β20) − Z̄(t;β10, β20)

}

×
{
Ñi(t;β10) − Yi(t;β10)g(β ′

20Zi)dµ0(t)
}

⎤

⎦

+
n∑

i=1

τ∫

0

{
Zi(t;β1, β20) − Z̄(t;β1, β20)

}

×Yi(t;β1)g(β ′
20Zi)d{µ0(te

(β10−β1)
′Zi ) − µ0(t)}.

(A.1)

Applying the technique of Ying (1993) and Lin et al. (1998), we can show that the
first term on the right-hand side of (A.1) is of order o(n1/2). It follows from a Taylor
series expansion that

µ0(te
(β10−β1)

′Zi ) − µ0(t) = {λ0(t) + o(1)} t (β10 − β1)
′Zi.

Therefore, the second term on the right-hand side of (A.1) is

n∑

i=1

τ∫

0

{
Zi(t;β1, β20) − Z̄(t;β1, β20)

}
Yi(t;β1)g(β ′

20Zi)Z
′
id{tλ0(t)}(β10 − β1)

+ o(n‖β1 − β10‖)
= −A11n(β1 − β10) + o(n‖β1 − β10‖)

almost surely. It then follows that for any sequence εn → 0,

sup
‖β−β0‖≤εn

{
‖U1(β)−U1(β0)+(A11, A12)n(β−β0)‖/

(
n1/2+n‖β−β0‖

)}
= o(1)

almost surely. Similarly, we get that for any sequence εn → 0,

sup
‖β−β0‖≤εn

{
‖U2(β)−U2(β0) + (A21, A22)n(β−β0)‖/

(
n1/2+n‖β−β0‖

)}
= o(1)
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almost surely. Hence for any sequence εn → 0,

sup
‖β−β0‖≤εn

{
‖U(β) − U(β0) + An(β − β0)‖/

(
n1/2 + n‖β − β0‖

)}
= o(1) (A.2)

almost surely. It is easy to show that U(β0) = 0. Note that n−1U(β) → U(β) uni-
formly in N and U(β) �= 0 for all β �= β0. Then following the argument used in
Theorem 2 of Lin et al. (1998), we can get that β̂ is strongly consistent under the
regularity conditions (C1)–(C5). In addition, by the definition of β̂ and condition
(C6), it follows from (A.2) that n1/2(β̂ − β0) is asymptotically normal with mean
zero and covariance matrix A−1�(A−1)′, which can be consistently estimated by
Â−1�̂(Â−1)′. �
Theorem 3 Under conditions (C1)–(C6), V (t) converges weakly to a zero-mean
Gaussian process with covariance function �(s, t) = E{�i(s)�i(t)} at (s, t), where

�i(t) =
t∫

0

dMi(u;β0)

s(0)(u)
− h(t)′A−1

τ∫

0

{
Z∗

i (u;β0) − z̄∗(u)
}
dMi(u;β0),

h1(t) =
t∫

0

z̄(u)d{λ0(u)u}, h2(t) =
t∫

0

s(1)(u)

s(0)(u)
dµ0(u),

and h(t) = (h1(t)
′, h2(t)

′)′.

Proof To derive the asymptotic normality of V (t), first note that

µ̂0(t) − µ0(t) = {µ̂0(t; β̂1, β̂2) − µ̂0(t; β̂1, β20)}
+ {µ̂0(t; β̂1, β20) − µ̂0(t;β0)}
+ {µ̂0(t;β0) − µ0(t)}.

Using a Taylor series expansion and the uniform strong law of large numbers (Pollard
1990), we obtain that uniformly in t ∈ [0, τ ],

{µ̂0(t; β̂1, β̂2) − µ̂0(t; β̂1, β20)} = −h2(t)
′(β̂2 − β20) + op(n−1/2).

By following the proof of (A.2), it is seen that

{µ̂0(t; β̂1, β20) − µ̂0(t;β10, β20)} = −h1(t)
′(β̂1 − β10) + op(n−1/2)

uniformly in t ∈ [0, τ ]. It can be checked that

µ̂0(t;β0) − µ0(t) = n−1
n∑

i=1

t∫

0

dMi(u;β0)

s(0)(u)
+ op(n−1/2)
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uniformly in t ∈ [0, τ ]. Thus, it follows from Theorem 1 that

V (t) = n−1/2
n∑

i=1

�i(t) + op(1) (A.3)

uniformly in t ∈ [0, τ ]. Because �i(t) are independent zero-mean random variables
for each t, the multivariate central limit theorem implies that n−1/2 ∑n

i=1 �i(t) con-
verges in finite dimensional distributions to a zero-mean Gaussian process. Using the
modern empirical theory as in Lin et al. (2000), we can show that n−1/2 ∑n

i=1 �i(t) is
tight. Thus, V (t) converges weakly to a zero-mean Gaussian process with covariance
function �(s, t) at (s, t). By the arguments of Lin et al. (2000), the covariance function
�(s, t) can be consistently estimated by �̂(s, t) defined in (9). �
Theorem 4 Under conditions (C1)–(C6), the null distribution of F(t, z; β̂) converges
weakly to a zero-mean Gaussian process with covariance function E{
i(t, z)
i

(t†, z†)} at (t, z) and (t†, z†), where


i(t, z) =
t∫

0

{

I (Zi ≤ z) − s(u, z)

s(0)(u)

}

dMi(u;β0)

− b(t, z)′A−1

τ∫

0

{
Z∗

i (u;β0) − z̄∗(u)
}
dMi(u;β0),

s(u, z) = E{Yi(u;β10)g(β ′
20Zi)I (Zi ≤ z)},

b1(t, z) = E

⎧
⎨

⎩

t∫

0

Yi(u;β10)g(β ′
0Zi)I (Zi ≤ z) {Zi − z̄(u)} d{λ0(u)u}

⎫
⎬

⎭
,

b2(t, z) = E

⎧
⎨

⎩

t∫

0

Yi(u;β10)ġ(β ′
20Zi)Zi

{

I (Zi ≤ z) − s(u, z)

s(0)(u)

}

dµ0(u)

⎫
⎬

⎭
,

and b(t, z) = (b1(t, z)
′, b2(t, z)

′)′.

Proof Write

F(t, z; β̂) =
⎡

⎣n−1/2
n∑

i=1

t∫

0

I (Zi ≤ z)
{
dÑi(u; β̂1)

−Yi(u; β̂1)g(β ′
20Zi)dµ0(ue(β10−β̂1)

′Zi )
}

− n−1/2
n∑

i=1

×
τ∫

0

I (Zi ≤ z)
{
dÑi(u;β10) − Yi(u;β10)g(β ′

20Zi)dµ0(u)
}
⎤

⎦
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− n−1/2
n∑

i=1

t∫

0

I (Zi ≤ z)Yi(u; β̂1)g(β̂ ′
2Zi)d

[
µ̂0(u, β̂) − µ0(u)

]

− n−1/2
n∑

i=1

t∫

0

I (Zi ≤ z)Yi(u; β̂1)
[
g(β̂ ′

2Zi)dµ0(u)

−g(β ′
20Zi)dµ0(ue(β10−β̂1)

′Zi )
]

+ n−1/2
n∑

i=1

t∫

0

I (Zi ≤ z)dMi(u, β0). (A.4)

Applying the technique of Ying (1993) and Lin et al. (1998), we can show that the first
term on the right-hand side of (A.4) is of order o(1) uniformly in t and z. Similarly to
(A.3), the second term on the right-hand side of (A.4) is equivalent to

−n−1/2
n∑

i=1

t∫

0

s(u, z)

s(0)(u)
dMi(u;β0) + b̃(t, z)′n1/2(β̂ − β0) + op(1),

where

b̃1(t, z) = E

⎧
⎨

⎩

t∫

0

Yi(u;β10)g(β ′
0Zi)I (Zi ≤ z)z̄(u)d{λ0(u)u}

⎫
⎬

⎭
,

b̃2(t, z) = E

⎧
⎨

⎩

t∫

0

Yi(u;β10)g(β ′
20Zi)I (Zi ≤ z)

s(1)(u)

s(0)(u)
dµ0(u)

⎫
⎬

⎭
,

and b̃(t, z) = (b̃1(t, z)
′, b̃2(t, z)

′)′. It follows from a Taylor series expansion that the
third term on the right-hand side of (A.4) equals

−b∗(t, z)′n1/2(β̂ − β0) + op(1),

where

b∗
1(t, z) = E

⎧
⎨

⎩

t∫

0

Yi(u;β10)g(β ′
0Zi)I (Zi ≤ z)Zid{λ0(u)u}

⎫
⎬

⎭
,

b∗
2(t, z) = E

⎧
⎨

⎩

t∫

0

Yi(u;β10)ġ(β ′
20Zi)I (Zi ≤ z)Zidµ0(u)

⎫
⎬

⎭
,
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and b∗(t, z) = (b∗
1(t, z)′, b∗

2(t, z)′)′. Therefore, it follows that uniformly in t and z,

F (t, z; β̂) = n−1/2
n∑

i=1


i(t, z) + op(1),

which is a sum of i.i.d. zero-mean terms for fixed t and z. By the multivariate central
limit theorem, F(t, z; β̂) converges in finite dimensional distributions to a zero-mean
Gaussian process. Using the modern empirical theory as in Lin et al. (2000), we can
show that n−1/2 ∑n

i=1 
i(t, z) is tight. Thus, F(t, z; β̂) converges weakly to a zero-
mean Gaussian process with covariance function E{
i(t, z)
i(t

†, z†)} at (t, z) and
(t†, z†). By the arguments of Lin et al. (2000), this Gaussian process can be approxi-
mated by the zero-mean Gaussian process F̃ (t, z) given by (11). �
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