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Abstract Breslow and Clayton (J Am Stat Assoc 88:9–25,1993) was, and still is, a
highly influential paper mobilizing the use of generalized linear mixed models in
epidemiology and a wide variety of fields. An important aspect is the feasibility
in implementation through the ready availability of related software in SAS (SAS
Institute, PROC GLIMMIX, SAS Institute Inc., URL http://www.sas.com, 2007),
S-plus (Insightful Corporation, S-PLUS 8, Insightful Corporation, Seattle, WA, URL
http://www.insightful.com, 2007), and R (R Development Core Team, R: A Language
and Environment for Statistical Computing, R Foundation for Statistical Computing,
Vienna, Austria, URL http://www.R-project.org, 2006) for example, facilitating its
broad usage. This paper reviews background to generalized linear mixed models and
the inferential techniques which have been developed for them. To provide the reader
with a flavor of the utility and wide applicability of this fundamental methodology we
consider a few extensions including additive models, models for zero-heavy data, and
models accommodating latent clusters.
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1 Introduction

Generalized linear models (GLM; McCullagh and Nelder 1989) provide an extension
of linear models which relaxes the assumptions of normality, constant error variance
and a linear relationship between the covariate effects and the mean. The introduction
of GLMs produced a unified likelihood regression approach for the analysis of a wide
range of continuous and discrete outcomes. More recently, there have been a wealth
of developments allowing many complicated hierarchical additive and mixture mod-
els particularly for the analysis of count and binomial data. Many special cases have
also been considered as this area is driven by motivating applications from diverse
fields each with some special features. Indeed, the generalized linear model and its
extensions are fundamental in epidemiology; for example, Stangle et al. (2007) inves-
tigate a lead exposure treatment, Dubin et al. (2007) conduct a study to see if triggered
sampling reduces bias in longitudinal studies subject to dropout, Rich-Edwards et al.
(2005) analyze pre-term delivery in Boston before and after September 11, 2001 using
a mixed logistic model and Kleinman et al. (2004) study small area disease incidents
in order to detect biological terrorism.

A GLM is specified by a random component which specifies the probability dis-
tribution of the response variable, a systematic component, which specifies a linear
function of the explanatory variables used as the predictor, and the link function which
relates the systematic component and the mean value of the random component. The
random component consists of independent observations y from a distribution in the
exponential family

f (y) = exp

{
y θ − b(θ)

a(φ)
+ c(y, φ)

}

where a(·), b(·) and c(·) are specified functions, θ is the canonical parameter and φ
is the dispersion parameter. The mean and variance of Y are µ = E[Y ] = b′(θ) and
V ar [Y ] = a(φ)v(µ), where v(µ) = b′′(θ); dependence of the variance function on
µ arises through the canonical parameter θ . Covariates are introduced in the system-
atic component, η = g(µ) = xT α, where x is a vector of covariates and α, a vector
of regression parameters; g(µ) is the link function. If θ = µ, then the link g is the
canonical link.

For many years, these models were standard for the analysis of count and binomial
data. Inference using maximum likelihood is straightforward and diagnostic proce-
dures were developed including tests for the link function (Cheng and Wu 1994),
residual diagnostics (Pierce and Schafer 1986; Cook and Weisberg 1989), and tests
for the common problem of overdispersion (Breslow 1989). Wedderburn’s (1974) for-
mulation of inference using quasi-likelihood estimation assumed only independence
and a functional relationship between the mean and variance. The quasi-likelihood
function is expressed as

∫ µ

y

y − t

a(φ)v(t)
dt
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and the estimating equations for θ based on a sample y = [y1, . . . , yn]T are well-
known as

DT V−1(y − µ) = 0 (1)

where D = ∂µ/∂θ ,µ = [µ1, . . . , µn]T , µi = E[Yi ] and V = diag {ai (φ)v(µi )}.
Quasi-likelihood extends the scope of GLMs by utilizing only the first two moment
assumptions concerning the response variable. Quasi-likelihood estimates are consis-
tent and asymptotically normal (White 1982) and need not correspond to a specific
probability distribution for y. Nelder and Pregibon (1987) further introduced extended
quasi-likelihood where V ar [Y ] need not be a known function of µ allowing more
general variance structures. McCullagh and Nelder (1989) showed that the extended
quasi-likelihood is the unnormalized saddlepoint approximation for the exponential
family (Barndorff-Nielsen and Cox 1979).

With the notion that overdispersion is an important problem in the analysis of count
data which leads to underestimation of the standard error estimates of the covariate
effects, several methods for handling this phenomenon were developed. Likelihood
approaches incorporating correlation in the data such as through the negative bino-
mial alternative to the Poisson were commonplace. Generalized estimating equations
(GEEs; Liang and Zeger 1986) were developed as a multivariate analogue of quasi-
likelihood for longitudinal studies where correlation is likely. With the GEE approach
the regression analysis is the prime focus and modeling of correlations less important.
The GEEs take the same form as (1) but use a working covariance V for V ar [Y].

In other situations, special cases which extend quasi-likelihood to include unknown
parameters in the variance function were also considered. For example, Breslow
(1989), in an analysis of pock counts showing substantial overdispersion, utilized
a statistical model with V ar [Y ] = φµλ and employed pseudo-likelihood (Davidian
and Carroll 1987) for estimating variance components. Pseudo-likelihood estimating
equations are derived under the assumption that the residuals are well-approximated
by a normal distribution. Inferential methods for means and variance components were
developed.

Random effects models have also been popular with development mimicking that
for linear mixed models. The random effects typically represent cluster frailty terms
that impart correlation within clusters. In some situations these frailties are of prime
importance, for example where they may measure hospital cluster effects or spatial
small-area risks.

These models led to the development of generalized linear mixed models (GLMM)
where several hierarchies and crossings of clustering effects may be considered beyond
the random intercept model. The development and utilization of GLMMs was initially
hampered by the cumbersome intractable integrals required for estimation. A host
of inferential approaches were offered including penalized quasi-likelihood (PQL),
Monte Carlo EM, simulated maximum likelihood as well as variants of GEEs.

Section 2 reviews approximate and marginal methods for inference in generalized
linear mixed models. In Sect. 3 we discuss some specific extensions to provide a few
examples of recent developments to this methodology. The extensions considered
include additive models, discrete mixtures, including mixtures of nonhomogeneous
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Poisson processes, and component mixtures where one component is a degenerate dis-
tribution, such as zero-inflated count data models. Section 4 considers the important
topic of model checking and diagnostics. Section 5 discusses software for implemen-
tation of GLMMs.

2 Generalized linear mixed models

Generalized linear mixed models (GLMM) incorporate a wide variety of random
effects mimicking the familiar framework for linear mixed models, and thus per-
mitting the flexibility associated with classical linear models with multiple levels of
random effects incorporated in various hierarchies. We adopt the structure and notation
here as in Breslow and Clayton (1993). Let Y be a response vector of length n and let
X and Z define n × p and n ×q matrices of explanatory variables associated with fixed
and random effects, respectively. Conditional on the q-dimensional vector of random
effects, b, the observations Yi , i = 1, . . . , n are independent with E[Yi |b] = µb

i and
variance V ar [Yi |b] = φ a−1

i v(µb
i ), where v(·) is a known variance function, and ai is

a known constant. The conditional mean is related to the linear predictor through the
link function: ηb = [g(µb

1), . . . , g(µb
n)]T = Xα + Zb where µb = [µb

1, . . . , µ
b
n]T .

The random effects may introduce clustering, spatial correlation and other forms of
dependence among outcomes and are assumed to have a multivariate normal dis-
tribution with mean 0 and covariance R(θ), θ being the variance components. The
integrated quasi-likelihood is proportional to

|R|−1/2
∫

exp

{
− 1

2φ

n∑
i=1

di (yi ;µb
i )− 1

2
bT R−1b

}
db (2)

where di (y;µ) = −2
∫ µ

y ai (y − u)/v(u) du is the conditional deviance (Breslow and
Clayton 1993). If, conditional on b,Yi is a member of the exponential family, then
−di (yi ;µb

i )/(2φ) is the conditional log-likelihood of Yi given b, and Eb
[∑n

i=1 di

(yi ;µb
i )/(2φ)

]
is the log-likelihood function.

Random effects are useful for accommodating the heterogeneity often seen in
longitudinal data. Such heterogeneity may arise from spatial correlation, subject-
specific frailties or clustering effects, for example. Though GLMMs provide con-
siderable opportunities for advancement and flexibility in modeling count and binary
data, inference for these models is complicated by the integrals in the marginal max-
imum likelihood or quasi-likelihood estimating equations. With some simple special
cases, such as the random intercept Poisson model, a variety of estimation techniques
may be adapted leading to straightforward approaches. In this case, if the exponential
of the random intercept term is gamma distributed, the marginal likelihood is negative
binomial and maximum likelihood estimating equations for the parameters are avail-
able in closed form (Lawless 1987). Alternatively, if no distributional assumptions on
the random effects are preferred, Lawless and Zhan (1998) suggest the use of Poisson
estimating equations for the parameters in the mean but use a robust standard error
estimator to account for any overdispersion. McCullagh and Nelder (1989) also use
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the Poisson estimating equations and inflate the standard errors by a factor determined
by the ratio of the Pearson goodness-of-fit statistic to its degrees of freedom. With
more complicated models, neither marginal nor quasi-likelihood estimating equations
are available in closed form. The simplest method for fitting such models uses the
Laplace approximation (Tierney et al. 1989) and is called penalized quasi-likelihood
(PQL; Breslow and Clayton 1993). If we apply the Laplace approximation to the
integrated quasi-likelihood (2), estimates of [αT ,bT ]T for fixed θ are obtained by
maximizing the penalized quasi log-likelihood

− 1

2φ

n∑
i=1

di (yi ;µb
i )− 1

2
bT R−1b

or equivalently by solving the following estimating equations

Uα = XT W−1(Y − µb) = 0 (3)

Ub = ZT W−1(Y − µb)− R−1b = 0 (4)

where W = diag
{
φ a−1

i v(µb
i )[g′(µb

i )]2
}

. The solution to (3) and (4) is equivalently

obtained by iteratively solving the linear system:

[
XT W−1X XT W−1Z
ZT W−1X R−1 + ZT W−1Z

] [
α

b

]
=
[

XT W−1Y∗
ZT W−1Y∗

]
(5)

where Y∗ = ηb + (Y − µb)[g′(µb
i )]n×1, the so-called working vector (McCullagh

and Nelder 1989). The linear system (5) is readily recognizable as the mixed model
equations of Harville (1977) for the normal theory model Y∗ = Xα + Zb + ε, where
ε ∼ N (0,W), b ∼ N (0,R), ε and b are independent so that Y∗ ∼ N (Xα,V), with
V = W + ZRZT . Due to this relationship it is simple to show that for fixed values of
α and θ , estimates for the random effects are given by b̂ = RZT V−1(Y∗ − Xα). Sim-
ilarly, restricted maximum likelihood (REML) estimating equations for θ are given
by Uθ = [Uθ1, . . . ,Uθr ]T = 0 where

Uθs = (Y∗ − Xα̂)T V−1 ∂V
∂θs

V−1(Y∗ − Xα̂)− tr

(
P
∂V
∂θs

)
= 0 (6)

with P = V−1 − V−1X
(
XT V−1X

)−1
XT V−1. A robust and efficient algorithm for

finding estimates α̂, b̂ and θ̂ is carried out by solving (3) and (4) for an initial starting
value θold of θ . The value of θ is then updated to θnew by a single Newton step (for
example, Breslow and Clayton 1993)

θnew = θold + H−1Uθold

where H = {hi j }r×r with hi j = tr
(
P∂V/∂θi P∂V/∂θ j

)
evaluated at θold. This process

is repeated until convergence. Numerical stability of the algorithm can be improved
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by working with the non-zero elements of the Cholesky factor, L, a lower triangular
matrix, obtained from the decomposition R = LLT , which ensures that R remains
positive definite (Lindstrom and Bates 1988). Alternatively one could also work with
the reciprocal of the non-zero eigenvalues and their associated eigenvectors, the
so-called Moore-Penrose inverse (Harville 1977), but this approach is less compu-
tationally efficient.

Breslow and Clayton (1993) was a highly influential paper allowing the adoption of
several variance components in mixed Poisson and binomial models. Application areas
for these models are widespread and the PQL approach affords the scientific commu-
nity the ability to handle complicated analyses with relative ease. Science indicators
of innovation and excellence typically rate the most cited papers in a 10-year period.
In 2004, the ISI Essential Science Indicator identified Breslow and Clayton (1993) as
the most cited paper in mathematics over the previous decade.

There are many approximations made in deriving the PQL estimators but even so
they generally work very well for discrete data analysis with moderate to large cell fre-
quencies. When data are sparse, Breslow and Clayton (1993) demonstrate that PQL has
the potential to seriously underestimate parameters, especially variance components.
For binary regression models with nested random effects, for example, the approxima-
tion of the conditional deviance by the Pearson chi-square statistic is unsatisfactory,
and the ignored higher order terms in the Taylor expansion of the Laplace approxi-
mation are not negligible even as the sample size increases. So caution when using
PQL for inference needs to be taken, particularly with binary outcomes. Breslow and
Lin (1995) and Lin and Breslow (1996) develop bias-corrected terms for sparse data
scenarios. The correction is derived by taking a Taylor expansion of the PQL variance
estimating equations (6) about θ = 0. For the case of a single variance component,
the bias-correction is based on the fact that asymptotic bias is approximately a linear
function of θ in the neighborhood of the origin. The proposed bias corrections often
inflate variances, especially when both the variance component and sample size are
small. However, bias corrections are quite advantageous for the difficult binary data
context when the sample size is even moderately large. Raudenbush et al. (2000) also
investigate bias reduction in the GLMM context by retaining the higher order terms
of the Taylor expansion in the Laplace approximation (Shun and McCullagh 1995).
These remainder terms are functions of multivariate normal random variables and so
closed form expressions of the expectations can be obtained, though these expressions
are complicated functions of the higher order derivatives of the quasi log-likelihood.
Their results are promising and in simulations compare favorably to full maximum
likelihood.

Other proposals for estimation include Monte Carlo EM; see, for example, Chen
et al. (2002) who also propose to relax the distributional assumptions of the random
effects and use a rejection sampling scheme to estimate parameters in the mean and
variance components. Zeger and Karim (1991) adopt Gibbs sampling (Casella and
George 1992), a Markovian updating scheme for estimating a posterior distribution.
Gibbs sampling is particularly useful when the conditional distribution of α given
b is approximated by a multivariate Gaussian distribution while the more difficult
conditional distribution of b given α, R and Y is also Gaussian approximated. Maxi-
mum likelihood with Monte Carlo EM, simulated method of moments and simulated

123



Lifetime Data Anal (2007) 13:497–512 503

maximum likelihood approaches have also been considered (McCulloch 1997; Jiang
1998). If the dimension of b is not too large, say less than 5, directly computing the
marginal likelihood by adaptive Gaussian quadrature can be done efficiently (Pinheiro
and Bates 2000).

When the regression objective is primary and the nature of the correlation and
variance components secondary, generalized estimating equations (Liang and Zeger
1986) provides a marginal estimation approach which is very popular and simple to
implement. GEEs are robust with respect to variance misspecification and offer con-
sistent estimates of α, under standard regularity conditions, provided that the model
for E[Y] = µ is correctly specified. An extension to GEEs and PQL using estimat-
ing equations involving first and second order conditional moments is discussed by
Vonesh et al. (2002). The variance-covariance parameters of the random effects are
estimated using a Gaussian posterior approximation of Laird and Louis (1982). Note
that few approaches are available which incorporate covariate effects into the variance
components. Lin et al. (1997) consider such a scenario with heterogeneous within-
cluster variances in a cluster analysis, the heterogeneity explained through regression
modeling.

Conditional approaches may also be used when random effects are not of prime
importance. Let s be a sufficient statistics for b for fixed and known α. Then f (y|b) =
f (y|s) f (s|b) and

L(α) = f (y|s)
∫

f (s|b) dF(b).

The first term is called the conditional likelihood and has been used for inference on
α. For example, consider a mixed Poisson model where, given the random effects
νi = exp(bi ), the distribution of Yi j is Poisson with mean νiµ(xi j ;α) = νiµi j where
xi j is a p × 1 vector of fixed covariates including a constant intercept term. Here
i might index individuals and j the times at which observations are recorded; or
i might represent clusters and j individuals within these clusters, j = 1, . . . , ei ,
i = 1, . . . , n. Given νi , the Yi j ’s, j = 1, . . . , ei are independent variates. Assume that
the νi ’s are i.i.d. random variables with probability density function m(ν; τ), depend-
ing on a parameter τ with mean 1 and variance τ . Unconditionally, E[Yi ] = µi
and V ar [Yi ] = diag

{
µi
} + τµiµ

T
i where here Yi = [Yi1, . . . ,Yiei ]T and µi =

[µi1, . . . , µiei ]T . When νi , i = 1, . . . , n is held fixed, Yi+ =∑ j Yi j , i = 1, . . . , n is
sufficient for b and the conditional likelihood is given by

exp
(∑

i, j yi j xT
i jα
)

∏
i

{∑
j exp(xT

i jα)
}yi+ .

Sartori and Severini (2004) discuss the use of conditional likelihoods and their
relationship to marginal likelihoods. They discuss a few important and simple special
cases to develop ideas in depth, including issues of identifiability. The conditional
likelihood approach has been successfully implemented in simple random intercept
models involving binary outcomes (Laird 1991; Tjur 1982).
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Recent work by Song et al. (2005) on algorithms for finding maximum likelihood
estimates when the structure of the log-likelihood yields a decomposition may facili-
tate new inferential techniques for GLMMs. The decomposition is such that one part of
the log-likelihood is more simply analyzed while the second, more complicated part, is
used to update estimates from the first. This also has implications for efficiency studies
where simpler components of the likelihood may provide highly efficient estimators
(Dean and Balshaw 1997).

In the following section we illustrate the utility of GLMMs and extensions of
GLMMs through several motivating examples.

3 Some special cases and extensions

3.1 Generalized mixed Poisson models

Let Y1, . . . ,Yn , conditional on subject specific random effects νi , be independent Pois-
son random variables with means νiµi where log(µi ) = exp{xi α}; a conditional log-

linear Poisson regression model. Further assume that the Vi
i.i.d∼ G I G(τ, ω) where

G I G(τ, ω) denotes the generalized inverse Gaussian distribution (Jørgensen 1982)
with density,

m(y; τ, ω) = 1

2Kτ (ω)
yτ−1 exp

{
−1

2
ω(y−1 + y)

}
1(y > 0) on

	 =
⎧⎨
⎩
ω ≥ 0, τ > 0
ω > 0, τ = 0
ω ≥ 0, τ < 0

and Kτ (·) is the modified Bessel function of the second kind (Abramowitz and Stegun
1984). This is a very flexible class of distributions that includes as special cases: the
gamma (ω → 0, τ > 0), the reciprocal gamma (ω → 0, τ < 0), the inverse Gaussian
(τ = −1/2), the reciprocal inverse Gaussian (τ = 1/2) and the hyperbola distribution
(τ = 0). The unconditional distribution of each Yi is then given by

fYi (yi ; τ, ω) =
∫ ∞

0

(νiµi )
yi exp {−νiµi }

yi ! m(νi ; τ, ω) dνi

= µ
yi
i

yi !

(
ω√

ω2 + 2ωµi

)τ+yi Kτ+yi

(√
ω2 + 2ωµi

)
Kτ (ω)

(7)

for yi = 0, 1, . . . . This is the so-called Sichel distribution (Sichel 1974) with mean
E[Yi ] = Rτ (ω)µi where Rτ (ω) = Kτ+1(ω)/Kτ (ω) and variance

V [Yi ] = Rτ (ω)µi +
(

Kτ+2(ω)/Kτ (ω)− Rτ (ω)
2
)
µ2

i .

123



Lifetime Data Anal (2007) 13:497–512 505

Special cases of this mixed Poisson regression model of interest are the negative bino-
mial (Lawless 1987)

lim
ω→0

fYi (yi ; τ, ω) = 
(yi + τ)

yi ! 
(τ)
(

µi

τ + µi

)yi
(

τ

τ + µi

)τ
, τ > 0

and Poisson inverse Gaussian distributions (Dean et al. 1989) when τ = −1/2.

3.2 Zero-inflated count models

Although a modest number of excess zeros can be accommodated in usual mixed
Poisson regression models, these models are generally unable to handle zero-heavi-
ness beyond a certain threshold, or situations where zero-heaviness leads to a bi-modal
distribution. In such situations, or when there is scientific reasoning to postulate that
there is a subset of the population which generates only zero counts, mixed Poisson
models are not appropriate. An alternative approach utilizes a finite mixture model
whereby one component is a degenerate distribution with mass at zero and the other
a non-degenerate distribution such as a mixed Poisson model. A simple zero-inflated
model for count data was introduced by Lambert (1992) as a mixture of degenerate
and Poisson distributions, the so-called “zero-inflated Poisson” (ZIP) model.

Let Y1, . . . ,Yn be independent random variables such that

Yi ∼
{

0, with probabilitypi

fYi (yi ; τ, ω), with probability1 − pi

where fYi (yi ; τ, ω) is Sichel defined in (7) with log(µi ) = x1iα1 and log (pi/(1 − pi ))

= x2iα2; x j i and α j i , j = 1, 2 being vectors of covariate effects and their associated
parameters. This defines a class of zero-inflated count regression models including the
popular zero-inflated negative binomial (ZINB) model (Nodtvedt et al. 2002; Simons
et al. 2006; Martin et al. 2005) and ZIP models. Zero-inflated models for geo-refer-
enced data are considered by Ainsworth and Dean (2007). This class of models is
interesting as it can be viewed as a mixture model where the mixing distribution has
both discrete and continuous components.

3.3 Generalized additive mixed spline models

Lin and Zhang (1999) proposed the use of generalized additive mixed models to pro-
vide greater flexibility in the manner in which covariate effects modulate the mean.
The very general formulation they use models the linear predictor as

g(µb
i ) = α0 + f1(xi1)+ · · · + f p(xip)+ zT

i b

where f1, . . . , f p are assumed to be twice differentiable functions modeled as
smoothing splines Gree and Silverman 1994, α0 is a fixed intercept and all other
quantities are as previously defined. In matrix notation this can then be written as
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ηb = 1α0 + Q1f1 + · · · + Qpfp + Zb

where f j = [ f j (x1 j ), . . . , f j (xr j , j )]T , a vector of values of f j evaluated at the r j

distinct ordered values of xi j/max j {xi j }, i = 1, . . . , r j , 1 is a vector of ones and Q j is
an n × r j matrix such that the i th component of Q j f j is f j (xi j ). The f j are assumed
centered so the restriction 1T f j = 0 is enforced, j = 1, . . . , p and f j can be expressed
as

f j = T jγ j + E j c j

where T j is a r j × 1 vector of the centered, ordered distinct values of xi j/max j {xi j },
E j = L j (LT

j L j )
−1 where L j is the full rank r j ×(r j −2)matrix satisfying K j = L j LT

j
with K j = {ki j }r×r being the usual penalty matrix for a smoothing spline with this
parameterization (Eq. 2.3; Green and Silverman 1994) and derived using the penalty
operator

∫
( f ′′)2. Given this specification, estimates of α0, γ = [γ1, . . . , γp]T ,b and

c j , j = 1, . . . , p are found by maximizing

− 1

2φ

n∑
i=1

di (yi ;µb
i )− 1

2
bT R−1b − cT Pc (8)

where P = diag
{
τ1Ir1, . . . , τpIrp

}
and c = [cT

1 , . . . , cT
p ]T . From (8) it is clear why

Lin and Zhang (1999) refer to this method as double PQL (DPQL) as there are penal-
ties for both the spline terms and the random effects. This extends the work of Hastie
and Tibshirani (1999) by incorporating random effects to deal with clustering or spa-
tial correlations, for example, and also results in automatic selection of the amount of
smoothing by estimating the smoothing parameters τ j , j = 1, . . . , p via REML.

Henderson and Shimakura (2003) describe a study of patient controlled analgesia
which permits patients to administer pain relief according to individual needs after sur-
gery. The 30 patients in the control and the 35 in the treatment group receive morphine
with those in the treatment group receiving half the dosage (1 mg) at any treatment
request. The patients were followed for 48 h with the number of requests per 4-h
period recorded. Note there are restrictions to prevent overdose but no patient seemed
constrained by these with the maximum number of requests substantially lower than
constraints would provide.

Lin and Zhang’s (1999) additive mixed spline model was fit to this data with con-
trol f1(t) and treatment effects f2(t) modeled by temporal splines and incorporating
individual-specific subject effects. Estimates of f1(t) and f2(t) with 95% confidence
intervals are provided in Fig. 1. These plots indicate that the overall intake of mor-
phine is generally decreasing for both treatments with the (low dose) treatment group
requesting the drug at a slightly higher rate but much less than twice as often.

3.4 Clustered mixed nonhomogeneous Poisson process spline models for panel data

Let {Yi (t), t ∈ [Ti0, Tiei )} be a counting process governing the number of events
experienced by subject i over the period of observation, [Ti0, Tiei ). Suppose that the
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Fig. 1 Plots of estimates of f1(t) (control—black line) overlayed with that for f2(t) (treatment—gray
line) along with their associated 95% point-wise confidence intervals

process is not followed continuously and only panel data are available, i.e. Yi j =
Yi [Ti( j−1), Ti j ), representing the number of events occurring between follow-up times
Ti0 < Ti1 < Ti2 < · · · < Tiei , i = 1, . . . , n, j = 1, . . . , ei . Where counts arise from
latent classes Nielsen and Dean (2007) describe such processes by assuming that the
counts for subject i are generated by a counting process Yi (t) =∑G

g=1 zgi Cgi (t), t ∈
[0, Tiei ) where events for each subject are assumed to be generated from one of G
sub-processes Cgi (t) and zgi denotes an unknown indicator of sub-group membership.
Conditional on group-specific individual frailty terms, νgi , each Cgi (t) is assumed to
follow a nonhomogeneous Poisson process with intensity function νgi λgi (t). Group
frailties νgi , are used to account for within cluster extra-Poisson variation and are
assumed to be independent and identically distributed from a density mg with mean 1
and variance τg . To allow for the flexible modeling of temporal trends and time-vary-
ing covariate effects the intensity function of each sub-process is assumed to have the
form

λgi (t) = exp

⎧⎨
⎩γg0(t)+

p∑
q=1

xiqγgq(t)

⎫⎬
⎭

where the γ ’s are modeled as penalized cubic B-splines, γgq(t) = ∑k+4
r=1 ψgqr Br (t),

ψgqr being the spline coefficients and Br (t)’s, the B-spline basis functions. Knots

123



508 Lifetime Data Anal (2007) 13:497–512

are placed at all unique panel midpoints,
{

Ti( j−1)+Ti j
2

}
and the penalties for each

spline are chosen so that as the magnitude of the penalization increases the functions
γgi (t) tend to constants. A special case is then the proportional intensity model which
occurs when γgq(t) = γgq , q = 1, . . . , p. Under these modeling assumptions the
expected number of events generated during [Ti( j−1), Ti j ) by the gth sub-group is

given by µgi j = ∫ Ti j
Ti( j−1)

λgi (t)dt . The unconditional expected number of counts in
[Ti( j−1), Ti j ) is thus given by

µi j =
G∑

g=1

pgµgi j =
G∑

g=1

pg

∫ Ti j

Ti( j−1)

λgi (t) dt (9)

where pg = E[zgi ], the probability of group membership. Estimation for the model
is carried out using an adaptation of the expectation-solution (ES) algorithm (Rosen
et al. 2000) where the sub-group process parameters are estimated by PQL given the
individual-specific group membership probabilities (solution step); these probabilities
are then updated with empirical Bayes posterior expectations (expectation step) given
the other parameters. This procedure is repeated until convergence. This sort of clus-
tering model is helpful in situations where hidden sub-groups may behave differently
to treatments and it is of interest to model and isolate such trends. It is most useful
where there are scientific bases for postulating the hidden sub-groups as discussed in
the example considered in Nielsen and Dean(2007). The model may also be useful
as an exploratory tool as illustrated through the analysis of the data considered in the
previous section using a two-component clustered mixed NHPP.

Figure 2 presents the estimates of the overall control arm (high dose) intensity∑2
g=1 pgλg0(t) with 95% point-wise coverage probabilities in the top left panel and

the corresponding estimated group specific intensities λg0(t) in the top right panel.
The bottom two panels of Fig. 2 reflect similar quantities for the treatment arm (low
dose) λ1(t) =∑2

g=1 pgλg1(t) with λg1(t) = exp
{
γg0(t)+ γg1(t)

}
. Estimates of the

overall intensities agree with the trends observed from the analysis in Sect. 3.3. In
addition, the group-specific intensities convey interesting information as they indicate
that there are two underlying sub-populations across both arms; those that decrease
their dosage over time, around 0.381 (s.e. 0.067) of the population, and a group, about
0.619 (s.e. 0.067) of the patients that seems to medicate regularly. It should be noted
that these results are simply exploratory and interaction with the scientific investiga-
tors is required before any conclusions can be drawn. However, these findings merit
further scientific exploration.

4 Diagnostics and testing

Though many complicated hierarchical models have been developed, methods for
model assessment are sparse. Ideally diagnostics would consider each layer of the
hierarchy and each assumption at the specific layers. This would help target model
refinement strategies to those assumptions which seem least appropriate. In many
cases where diagnostics have been developed the model is assessed based on the
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Fig. 2 (Top row) Plot of the estimated overall intensity for the control (high dose) arm λ0(t) along with 95%
point-wise confidence intervals in the left panel and plots of the corresponding estimated group intensities
λg0(t) on the right (g = 1, black line; g = 2, gray line). (Bottom row) Plot of the estimated overall intensity
for the treatment (low dose) arm λ1(t) along with 95% point-wise confidence intervals in the left panel and
plots of the corresponding estimated group intensities λg1(t)

whole ensemble of assumptions and no sub-models nested in such complex hierarchy
are verified. This black-box approach to goodness-of-fit can be very unsatisfactory,
and certainly this is an important area for future research. Here we highlight a few
techniques including relatively recent and novel procedures.

For GLMMs, Pearson, Anscombe and deviance residuals (McCullagh and Nelder
1989) may be created for the marginal means µ or the conditional means µb. Both
require that the assumptions on the random effects, b, are valid. A visual check on
such assumptions could be performed using a normal q–q plot based on L̂−1b̂. Here
R = V ar [b] = LLT , so that b = Lz where z ∼ N (0, I). Tchetgen and Coull (2006)
derive a test for a misspecification of the random effects distribution of a GLMM. The
test statistic is based on the difference between the marginal and conditional maximum
likelihood estimates of the fixed effects parameters α, with the idea being that if the
random effects are properly specified, then both conditional and marginal methods are
consistent so αm = αc under such a scenario.
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Resampling methods may also be used for goodness-of-fit with respect to certain
gross quantities. For example, with the zero-heavy model resampling methods may
compare observed and simulated estimates of the expected number of zeros.

Two typical approaches to formal testing of goodness-of-fit rely on (i) nesting the
model under consideration in an alternative more complex model and (ii) the devel-
opment of omnibus tests via the probability integral transformation. For example, the
generalized inverse Gaussian family in Sect. 3 may be used to test the appropriateness
of the negative binomial model. Chen et al. (2002) relax the assumption of multivariate
normal random effects and assume that b = Lz where z has seminonparametric den-
sity hK (z) = Pk(z)2ψ(z), ψ(z) being the density of a d dimensional standard normal
and Pk(z) =∑0≤γ1+···+γd≤k aγ zγ1

1 zγ2
2 . . . zγd

d with a00...0 = 1. A test that all aγ ’s are
0 (excluding a00...0 defined as 1) would assess the appropriateness of the assumption
of multivariate normal random effects. A recent example of approach (ii) above is Wa-
agepetersen (2006) who uses the empirical process to test the normality assumption
of the random effects via the Andersen-Darling statistic; p-values are computed by
simulation.

Note that there is scope for much further work in the arena of diagnostics for
GLMMs. What is required in the toolkit for the analysis of count data are mecha-
nisms for graphical exploratory analyses and model checks which fine-tune specific
model components. For example, in spatial analyses of zero-heavy data, zeros may
arise as spatially correlated indicating regions where there is less susceptibility for the
event, or isolated zeros in regions with larger counts, indicating small clusters of indi-
vidual-specific resistance. Diagnostics which help in discriminating which of these
predominate would assist in the building of covariance structures of the zero-mixing
component. Where there are many random effects in a model, it is often difficult to
isolate goodness-of-fit techniques which consider each separately.

5 Some remarks on software

Generalized linear mixed and additive models are now fundamental tools in the analy-
sis of longitudinal data. Software for their analysis is readily available: the GLIMMIX
macro in SAS (SAS Institute 2007), SAS macro spmm (available at www.hsph.harvard.
edu/xlin/software.html) and several packages in R (R Development Core Team 2006),
for example, glmmPQL() in the MASS package (Venables and Ripley 2002) or lmer()
in the lme4 package (Bates and Sarkar 2007) and mgcv() for generalized additive
models in the mgcv package (Wood 2006).

Acknowledgements Research was supported by the Natural Sciences and Engineering Research Council
of Canada, the National Program on Complex Data Structures and Geomatics for Informed Decisions, a
Networks of Centres of Excellence program.

References

Abramowitz M, Stegun IA (eds) (1984) Handbook of mathematical functions with formulas, graphs, and
mathematical tables. A Wiley-Interscience Publication, John Wiley, New York

Ainsworth L, Dean CB (2007) Detection of local and global outliers in mapping studies. Environmetrics.
doi:10.1002/env.851

123

www.hsph.harvard.edu/xlin/software.html
www.hsph.harvard.edu/xlin/software.html
http://dx.doi.org/10.1002/env.851


Lifetime Data Anal (2007) 13:497–512 511

Barndorff-Nielsen O, Cox DR (1979) Edgeworth and saddle-point approximations with statistical applica-
tions (with discussion). J R Stat Soc Ser B: Methodol 41:279–299

Bates D, Sarkar D (2007) lme4: Linear mixed-effects models using S4 classes. R package version 0.99875–1
Breslow N (1989) Score tests in overdispersed GLM’s. In: Decarli A, Francis BJ, Gilchrist R, Seeber GUH,

(eds) Statistical modelling. Springer-Verlag Inc., pp 64–74
Breslow NE, Clayton DG (1993) Approximate inference in generalized linear mixed models. J Am Stat

Assoc 88:9–25
Breslow NE, Lin X (1995) Bias correction in generalised linear mixed models with a single component of

dispersion. Biometrika 82:81–91
Casella G, George EI (1992) Explaining the Gibbs sampler. Am Stat 46:167–174
Chen J, Zhang D, Davidian M (2002) A Monte Carlo EM algorithm for generalized linear mixed models

with flexible random effects distribution. Biostatistics (Oxford) 3:347–360
Cheng KF, Wu JW (1994) Testing goodness of fit for a parametric family of link functions. J Am Stat Assoc

89:657–664
Cook RD, Weisberg S (1989) Regression diagnostics with dynamic graphics (C/R: P293–311). Techno-

metrics 31:277–291
Davidian M, Carroll RJ (1987) Variance function estimation. J Am Stat Assoc 82:1079–1091
Dean CB, Balshaw R (1997) Efficiency lost by analyzing counts rather than event times in Poisson and

overdispersed Poisson regression models. J Am Stat Assoc 92:1387–1398
Dean C, Lawless JF, Willmot GE (1989) A mixed Poisson-inverse–Gaussian regression model. Can J Stat

17:171–181
Dubin JA, Han L, Fried TR (2007) Triggered sampling could help improve longitudinal studies of persons

with elevated mortality risk. J Clin Epidemiol 60:288–93
Green PJ, Silverman BW (1994) Nonparametric regression and generalized linear models: a roughness

penalty approach. Chapman & Hall Ltd.
Harville DA (1977) Maximum likelihood approaches to variance component estimation and to related prob-

lems. J Am Stat Assoc 72:320–338
Hastie T, Tibshirani R (1999) Generalized additive models. Chapman & Hall Ltd.
Henderson R, Shimakura S (2003) A serially correlated gamma frailty model for longitudinal count data.

Biometrika 90:355–366
Insightful Corporation (2007) S-PLUS 8. Insightful Corporation, Seattle, WA. URL http://www.insightful.

com, accessed on 25 October 2007
Jiang J (1998) Consistent estimators in generalized linear mixed models. J Am Stat Assoc 93:720–729
Jørgensen B (1982) Statistical properties of the generalized inverse Gaussian distribution. Lecture Notes in

Statistics, vol 9. Springer-Verlag, New York
Kleinman K, Lazarus R, Platt R (2004) A generalized linear mixed models approach for detecting inci-

dent clusters of disease in small areas, with an application to biological terrorism. Am J Epidemiol
159:217–24

Laird NM (1991) Topics in likelihood-based methods for longitudinal data analysis. Statistica Sinica 1:33–
50

Laird NM, Louis TA (1982) Approximate posterior distributions for incomplete data problems. J R Stat
Soc Ser B: Methodol 44:190–200

Lambert D (1992) Zero-inflated Poisson regression, with an application to defects in manufacturing. Tech-
nometrics 34:1–14

Lawless JF (1987) Negative binomial and mixed Poisson regression. Can J Stat 15:209–225
Lawless JF, Zhan M (1998) Analysis of interval-grouped recurrent-event data using piecewise constant rate

functions. Can J Stat 26:549–565
Liang K-Y, Zeger SL (1986) Longitudinal data analysis using generalized linear models. Biometrika 73:13–

22
Lin X, Breslow NE (1996) Bias correction in generalized linear mixed models with multiple components

of dispersion. J Am Stat Assoc 91:1007–1016
Lin X, Zhang D (1999) Inference in generalized additive mixed models by using smoothing splines. J R

Stat Soc Ser B: Stat Methodol 61:381–400
Lin X, Harlow SD, Raz J, Harlow SD (1997) Linear mixed models with heterogeneous within-cluster

variances. Biometrics 53:910–923
Lindstrom MJ, Bates DM (1988) Newton-Raphson and EM algorithms for linear mixed-effects models for

repeated-measures data. J Am Stat Assoc 83:1014–1022, Corr: 94V89, p 1572

123

http://www.insightful.com
http://www.insightful.com


512 Lifetime Data Anal (2007) 13:497–512

Martin TG, Wintle BA, Rhodes JR, Kuhnert PM, Field SA, Low-Choy SJ, Tyre AJ, Possingham
HP (2005) Zero tolerance ecology: improving ecological inference by modelling the source of zero
observations. Ecol Lett 8:1235–1246

McCullagh P, Nelder JA (1989) Generalized linear models. Chapman & Hall Ltd.
McCulloch CE (1997) Maximum likelihood algorithms for generalized linear mixed models. J Am Stat

Assoc 92:162–170
Nelder JA, Pregibon D (1987) An extended quasi-likelihood function. Biometrika 74:221–232
Nielsen JD, Dean CB (2007) Clustered mixed nonhomogeneous Poisson process spline models for the

analysis of recurrent event panel data. Biometrics. doi:10.1111/j.1541-0420.2007.00940.x
Nodtvedt A, Dohoo I, Sanchez J, Conboy G, DesCjteaux L, Keefe G, Leslie K, Campbell J (2002) The use

of negative binomial modelling in a longitudinal study of gastrointestinal parasite burdens in Canadian
dairy cows. Can J Vet Res 66:249–257

Pierce DA, Schafer DW (1986) Residuals in generalized linear models. J Am Stat Assoc 81:977–986
Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-PLUS. Springer-Verlag Inc.
R Development Core Team (2006) R: a language and environment for statistical computing. R Foundation

for Statistical Computing, Vienna, Austria. URL http://www.R-project.org, accessed on 25 October
2007

Raudenbush SW, Yang M-L, Yosef M (2000) Maximum likelihood for generalized linear models with
nested random effects via high-order, multivariate Laplace approximation. J Comput Graph Stat 9:141–
157

Rich-Edwards JW, Kleinman KP, Strong EF, Oken E, Gillman MW (2005) Preterm delivery in Boston
before and after September 11th, 2001. Epidemiology 16:323–327

Rosen O, Jiang W, Tanner MA (2000) Mixtures of marginal models. Biometrika 87:391–404
Sartori N, Severini TA (2004) Conditional likelihood inference in generalized linear mixed models. Statis-

tica Sinica 14:349–360
SAS Institute (2007) PROC GLIMMIX. SAS Institute Inc. URL http://www.sas.com, accessed on 25

October 2007
Shun Z, McCullagh P (1995) Laplace approximation of high dimensional integrals. J R Stat Soc Ser B:

Methodol 57:749–760
Sichel HS (1974) On a distribution representing sentence-length in written prose. J R Stat Soc Ser A

137:25–34
Simons JS, Neal DJ, Gaher RM (2006) Risk for marijuana-related problems among college students: an

application of zero-inflated negative binomial regression. Am J Drug Alcohol Abuse 32:41–53
Song PX-K, Fan Y, Kalbfleisch JD (2005) Maximization by parts in likelihood inference. J Am Stat Assoc

100:1145–1158
Stangle DE, Smith DR, Beaudin SA, Strawderman MS, Levitsky DA, Strupp BJ (2007) Succimer chelation

improves learning, attention, and arousal regulation in lead-exposed rats but produces lasting cognitive
impairment in the absence of lead exposure. Environ Health Perspect 115:201–209

Tchetgen EJ, Coull BA (2006) A diagnostic test for the mixing distribution in a generalised linear mixed
model. Biometrika 93:1003–1010

Tierney L, Kass RE, Kadane JB (1989) Approximate marginal densities of nonlinear functions. Biometrika
76:425–433, Corr: V78, p233–234

Tjur T (1982) A connection between Rasch’s item analysis model and a multiplicative Poisson model.
Scand J Stat 9:23–30

Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York. URL
http://www.stats.ox.ac.uk/pub/MASS4, accessed on 25 October 2007

Vonesh EF, Wang H, Nie L, Majumdar D (2002) Conditional second-order generalized estimating equations
for generalized linear and nonlinear mixed-effects models. J Am Stat Assoc 97:271–283

Waagepetersen R (2006) A simulation-based goodness-of-fit test for random effects in generalized linear
mixed models. Scand J Stat 33:721–731

Wedderburn RWM (1974) Quasi-likelihood functions, generalized linear models, and the Gauss–Newton
method. Biometrika 61:439–447

White H (1982) Maximum likelihood estimation of misspecified models. Econometrica 50:1–26
Wood S (2006) mgcv: GAMs with GCV smoothness estimation and GAMMs by REML/PQL. R package

version 1.3–24
Zeger SL, Karim MR (1991) Generalized linear models with random effects: a Gibbs sampling approach.

J Am Stat Assoc 86:79–86

123

http://dx.doi.org/10.1111/j.1541-0420.2007.00940.x
http://www.R-project.org
http://www.sas.com
http://www.stats.ox.ac.uk/pub/MASS4

	Generalized linear mixed models: a review and some extensions
	Abstract
	Introduction
	Generalized linear mixed models
	Some special cases and extensions
	Generalized mixed Poisson models
	Zero-inflated count models
	Generalized additive mixed spline models
	Clustered mixed nonhomogeneous Poisson process spline models for panel data
	Diagnostics and testing
	Some remarks on software
	Acknowledgements
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


