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Abstract Babies born live under 2,500 g or with a gestational age under
37 weeks are often inadequately developed and have elevated risks of infant
mortality, congenital malformations, mental retardation, and other physical and
neurological impairments. In this paper, we model birth weight as a first hit-
ting time (FHT) of a birthing boundary in a Wiener process representing fetal
development. We associate the parameters of the process and boundary with
covariates describing maternal characteristics and the birthing environment us-
ing a relatively new regression methodology called threshold regression. Two
FHT models for birth weight are developed. One is a mixture model and the
other a competing risks model. These models are tested in a case demonstration
using a 4%-systematic sample of the more than four million live births in the
United States in 2002. An extensive data set for these births was provided by
the National Center for Health Statistics. The focus of this paper is on the con-
ceptual framework, models and methodology. A full empirical study is deferred
to a later occasion.
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1 Introduction

The maturity of newborns is often judged by their birth weight and gestational
age (age at birth measured from conception). Low weight and preterm babies
are found to have elevated risks of infant mortality, congenital malformations,
mental retardation, and other physical and neurological impairments. Conven-
tional cutoffs for birth weight and gestational age are babies born live under
2,500 g or under 37 weeks, respectively. Medical concerns with low weight and
preterm births have a long history and a huge literature. A study by the National
Center for Health Statistics (NCHS 1980), for example, provided a statistical
overview of the problem three decades ago. Yet, that study report seems to have
been written yesterday when judged by the slow progress that has been made
in dealing with the medical challenges associated with these kinds of births. The
effects of these births are better understood today but progress has been slow
in discovering and tackling their root causes. For an overview of the current
situation with respect to U.S. births, available official data, and background
studies and research on this topic, the reader is referred to NCHS (2003) and
the 125 references cited there. For a perceptive review of the measurement
issues related to the course and outcome of pregnancy, the reader is referred to
Savitz et al. (2002).

In this paper, we study a 4%-systematic sample of the more than four million
live births in the United States in 2002. We model birth weight as a first hitting
time of a birthing boundary in a Wiener process representing fetal development.
We associate the parameters of the boundary and process with covariates repre-
senting characteristics of the mother and the birthing environment. We employ
a regression methodology called threshold regression to link the parameters to
these covariates. The word ‘threshold’ here refers to the birthing boundary that
defines the first hitting time. This usage is not to be confused with applications
in fields where phenomena have a threshold level of response, as in toxicology
for example.

The study of regression structures for first hitting times in Wiener processes is
not new (see, for example, Whitmore 1983). It takes on its more modern form in
Lee et al. (2000) and Lee et al. (2004). Lee and Whitmore (2004, forthcoming)
contain reviews of threshold regression for first hitting times.

We develop two first hitting time models for birth weights here. These are
tested in a regression case demonstration using the 4%-systematic sample of
U.S. live births in 2002. The focus of this paper is on the conceptual framework,
the models and their associated methods. A full empirical study of the data set
is deferred to later research. The data are so extensive and involve so many
health and medical technicalities that the requisite research and reporting will
require several separate publications to other audiences.

2 Demographic and clinical variables associated with low birth weight

Final microdata for U.S. live births in 2002 are available from the NCHS in a
CD format (NCHS 2003). The variables covered by this NCHS data set are



Lifetime Data Anal (2007) 13:161–190 163

traditional demographic and clinical variables that have been used for decades
in statistical reporting by the NCHS. The following partial listing illustrates the
range and nature of variables covered by the 2002 data set.

Maternal demographic characteristics State and county of residence, place of
birth; numbers of live births now living and dead, interval since last live birth,
age, live-birth order, race, Hispanic origin, marital status, and educational attain-
ment.
Paternal demographic characteristics Age, race, Hispanic origin.
Maternal medical characteristics Medical risk factors, weight gain during preg-
nancy, tobacco, and alcohol use.
Medical care utilization by pregnant women Prenatal care, obstetric procedures,
complications of labor and/or delivery, attendant at birth, and method of deliv-
ery.
Infant characteristics State and county of birth, sex, date of birth, gestational
duration, birth weight, Apgar score, abnormal conditions, congenital anomalies
and multiple births.

The listing reminds us of the many covariates that have been found to be
associated with an infant’s medical condition at birth. Research has shown,
however, that none of these covariates accounts for a large portion of the var-
iability in outcomes and, indeed, even combinations of these variables are not
impressive in their predictive ability. The sole fact that a mother has had a
previous low weight or preterm birth is as strong a predictor as any variable
of the corresponding status of a current pregnancy. This observation suggests
that perhaps a major part of the explanation for low weight and preterm births
lies with the genomes of the infant or its parents and with the maternal fetal
environment, which are not yet monitored routinely. The traditional variables
(e.g., mother’s age or race) probably exhibit their limited correlations with these
birth conditions because of their weak associations with underlying genetic and
environmental factors.

3 Premature birth as an intermediate endpoint

Low weight and preterm births are often referred to as a leading cause of
infant morbidity and mortality. In fact, in relation to premature births, this exact
phrase appears in the opening sentence of the Background section for Research
Objectives in a recent NIH RFA call for proposals (National Institutes of Health
2004, p. 2). This kind of statement is representative of conventional thinking
that claims these kinds of births are a cause of physiological and neurological
problems for infants. The word ‘cause’, however, is inaccurate. A low weight or
preterm birth may indicate a poor prognosis for future health outcomes of the
infant but is not its cause. These conditions, where they are problems, are only
symptoms or outcomes of deeper root causes that remain to be discovered and
understood. Many authors have stressed this distinction between birth weight
as a symptom rather than a cause but the point has not always been heeded
(e.g., Wilcos 2001).
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It is also important to recognize that birth weight or gestational age is, in
fact, only an intermediate endpoint and not the final endpoint of concern. Our
emphasis on the word ‘intermediate’ here is intentional. Many studies have
analyzed births as if the birth weight or gestational age were the final endpoint
of interest. Yet, babies who share the same short gestational age or low birth
weight do not experience the same adverse health outcomes when they become
children and adults. The problems that do arise vary in their form and severity.
In addition, the adverse medical conditions of infants (e.g., forms of mental
retardation) that are often associated with low weight or preterm birth are not
limited to these kinds of cases.

In many studies of low weight or preterm birth, the outcome measure is a sim-
ple classifier of whether the gestational age is short or not (e.g., under 37 weeks)
or whether the birth weight is low or not (e.g., under 2,500 g). Methods such
as logistic regression are then used with these binary outcomes as response
variables. This binary classification is simple but for research purposes is rela-
tively insensitive. In our models, birth weight is taken as a continuous response
variable that adjusts in a smooth fashion to continuously varying causal effects.
Thus, for example, birth weight is expected to vary smoothly with covariates
such as maternal age or alcohol consumption. Of course, some covariates are
categorical variables ( e.g., mother’s race or birth delivery method). The benefit
of handling birth weight as a continuous outcome is improved sensitivity and
informativeness of response measurement. Other researchers have used con-
ventional regression models that treat birth weight as a continuous response
variable (see, for example, Kharrazi et al. 2004) but none of these models has
the conceptual unity offered by our modeling approach.

In addition to more refined measures of gestational outcomes, our concep-
tual framework is enriched in several other respects. We have already pointed
out the need to view low weight or preterm birth as an intermediate outcome.
The final endpoints of interest are the physiological and neurological effects
on the child and its development. Figure 1 shows the situation with a simple
schematic. The figure shows that root causes are distinct from measurements
(such as weight) that are made at birth. The figure also anticipates that some
causal forces may escape detection in traditional birth measurements and have
an impact on final outcomes directly. It may happen that other measures avail-
able at birth (besides gestational age and birth weight) may allow these bypass
effects to be monitored. The Apgar score is one such measure that contains
auxiliary information that is predictive of final outcome.

Low birth weight and premature birth are not synonymous terms. Moreover,
a low birth weight or a short gestational age does not automatically signal a
problem birth. Reproductive epidemiologists have engaged in much discus-
sion and analysis centered on these two kinds of outcomes (e.g., Wilcox 2001;
Savitz et al. 2002). Some babies with low birth weights will be in perfect health.
Short gestational ages may arise because of measurement errors. Interuterine
growth retardation (IUGR) is a term that has been invented to describe babies
who are light in weight for their gestational age (e.g., the 10th percentile weight
within each gestational age class). Still, even this kind of adjusted measure
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Fig. 1 Schematic showing gestational age and birth weight as intermediate endpoints positioned
between root causes and final outcomes of prenatal and postnatal development. Solid arrows denote
causal forces. Dashed arrows denote statistical associations. Neonatal death is one potential final
outcome

does not quite capture the concept of an under-developed or premature new-
born. The models we develop next will show that the modeling must be more
sophisticated.

4 Modeling fetal and postnatal development

In our research, we model gestational age and birth weight as joint outcomes
associated with a fetal development process {D(t)}, where t denotes the time
since conception and D is a multidimensional vector of physiological and other
measures or features that characterize fetal development and the fetal environ-
ment. Some of the components of D will be observable directly or indirectly
(e.g., fetal weight, fetal pulse), while others will be latent (unobservable) or
unknown (e.g., brain development). We will assume that birth occurs when the
fetal development process first reaches a birthing boundary B in the multidi-
mensional space. Hence, the gestational age of the newborn T is a first hitting
time or FHT, which is defined formally as follows:

T = min{t : D(t) ∈ B} (1)

The idea that a birth occurs when the fetal development process ‘hits a
boundary’ is a mathematical abstraction that corresponds to the real-life cir-
cumstances that trigger birth. In this paper, we are interested in plausible but
parsimonious models of the process {D(t)}, the birthing boundary B, and the
dependence of both of these entities on covariates available from a conven-
tional health statistics database. The purpose of the mathematical model is to
allow all of the elements of the birthing process to be related in a logical fashion
and to provide an analytical framework for studying the effects of explana-
tory variables, as will be described in more detail later. The point where the
fetal development process strikes the birthing boundary defines the physiolog-
ical and neurological characteristics of the newborn. In effect, the boundary
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has different regions that represent different medical states of the newborn.
For example, different Apgar scores would map probabilistically into different
regions of the birthing boundary.

Fetal weight is one of the physiological measures in vector D, say component
D1, and therefore undergoes evolution after conception according to a process
we call the fetal weight process. If D1(t) denotes the fetal weight at time t after
conception and T is the gestational age at birth then W = D1(T) represents
the birth weight. Figure 2 illustrates the situation. The schematic in the fig-
ure shows a two-dimensional fetal development process, with weight forming
one dimension and some other unspecified physiological variable forming the
other. Observe how birth is triggered when the process hits the boundary at
time T after conception. That FHT event determines the stopping time of all
components of the fetal development process, including the fetal weight. The
physiological measures at birth are thus determined by the fetal development
trajectory and its FHT.

It was stressed earlier that the condition at birth is an intermediate endpoint.
Figure 2 reflects this viewpoint by showing how the development continues after
birth as a postnatal development process for the child, essentially an analytical
extension with a change in name. Of course, some components of the develop-
ment process change as the physiology and environment of the fetus are not
the same as those of the child. The continuing development of the child will be
with or without medical complications, depending on individual circumstances.

The prenatal and postnatal development process will follow different sample
paths in each individual case because of inherent variability. More importantly,
the parameters of the process will vary systematically with characteristics of
the fetus and child, and their prenatal and postnatal environments, respectively.
This variation will be explained in part by the covariates in our data set. Also,
the shape and position of the boundary B will also vary with these same cova-

Fig. 2 The development process of the fetus and child in the prenatal and postnatal stages. Birth
is represented as the first hitting time of a boundary by the development process
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riates. This research studies the dependence of the model parameters on the
explanatory variables during the prenatal stage.

5 Mathematical models

Figure 2 provides a general conceptual framework for the birthing process but
is not specific enough to allow analysis and interpretation of data. In this sec-
tion, we introduce model specifications that support a statistical investigation.
At such a high level of abstraction, it is uncertain which model specifications
are correct. Thus, we provide a start to the investigation by considering two
parsimonious but realistic models.

5.1 Mixture model

We begin with the two-dimensional stochastic process illustrated in Fig. 2 where
{D(t)} = {D1(t), D2(t)}. Here D1(t) denotes the fetal weight at fetal age t and
D2(t) denotes some other (unspecified) latent development measure at the same
age. We shall refer to D2 simply as the latent fetal development measure. We set
both measures to zero at conception so D(0) = (0, 0). It is realistic to assume
that the weight component D1(t) of the fetal development process has a con-
tinuous and monotonically increasing sample path with respect to gestational
age t. Using this assumption, we will simplify the two-dimensional process to
a one-dimensional subordinated process by defining a new process {C(u)} as
follows:

{D2(t)} = {C(D1(t))} = {C(u)} (2)

where u = D1(t) denotes the weight of the unborn fetus at fetal age t. The fetal
weight process {D1(t)} is a directing process here and the new stochastic process
{C(u)} is the parent process. Observe that {C(u)} is the latent fetal development
measure defined as a function of the fetal weight u. The sample path shown
in Fig. 2 is, in fact, a representation of C(u) where the horizontal scale is fetal
weight u.

To give a specific form to the latent fetal development process {C(u)}, we
assume it is a Wiener process with mean parameter µ > 0 and unit variance.
We specify a unit variance because {C(u)} is a latent process and, hence, can be
given an arbitrary measurement unit. We choose the Wiener process because it
is mathematically tractable and flexible. It also exhibits the random fluctuation
and drift that is characteristic of fetal development. For the birthing boundary
B, we assume that it corresponds to a fixed level b > 0 of fetal development
in the C(u) dimension. In this model, birth occurs at birth weight W where
C(W) = b for the first time. Thus, birth weight W is a first hitting time or FHT
for a Wiener process. This FHT is known to have an inverse Gaussian distribu-
tion. We give its functional form later. Figure 3 shows a graphical representation
of the FHT setup in this case.
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Fig. 3 The fetal development process C(u) is a Wiener process defined in terms of fetal weight u.
Birth is triggered when the sample path first hits a fixed boundary b. The birth weight W is defined
by this event

We need to enrich our model somewhat to allow for the possibility that, while
most fetuses will undergo normal development, a few are at risk of undergoing
abnormal development. Recognizing this reality, we now consider the some-
what abstract but important idea that normal births (the vast majority) result
when fetal development follows a pristine natural course of evolution from con-
ception to birth. We assume that this natural course corresponds mathematically
to the sample path of a stable stochastic process and, more specifically, to the
Wiener FHT model that we have just described. In reality, of course, medical
and other intentional interventions may interfere with this natural course for
a birth and bring about an altered trajectory for process {D(t)} or an altered
birthing boundary B, which will imply that a simple model does not exactly fit
real data. And, of course, we cannot be sure that our Wiener model is the right
model (although evidence provided later is reassuring). In addition to normal
births, there will be an array of abnormal births that arise from aberrant fetal
development processes or birthing boundaries. These are births that do not
occur under pristine natural conditions. The appropriate statistical model for
abnormal births is likely to be more complicated than for normal births because
of the variety of aberrations that occur. Yet, we will use the same kind of simple
FHT model for abnormal births but assume that a different set of parameter
values apply. We capture the combined influence of normal and abnormal births
in the simplest possible way. Specifically, we postulate a population model for
births that is a birth weight mixture model. Before we describe this mixture
model, we wish to caution the reader that our use of the descriptors ‘normal’
and ‘abnormal’ is not intended to impart strong connotations to the words.
The reader might loosely associate the words with ‘healthy’ and ‘unhealthy’, or
‘natural’ and ‘unnatural’. The intention is to convey the idea that the birthing
process has departed from the path dictated by healthy human biology.

Now, turning to the mixture model, we let N be an indicator variable for a
normal birth so N = 1 if the birth is normal and N = 0 if it is not. We assume
that every conception has a probability p1 of leading to a normal birth and,
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hence, probability p0 = 1−p1 of leading to an abnormal birth. Subscripts 1 and
0 denote normal and abnormal, respectively. We further assume that whichever
outcome holds, the fetal development path will follow a Wiener process and
eventually hit a birthing barrier, producing the birth weight W. Each of these
processes, however, will have different mean and boundary parameters, say,
parameters µ1 and b1 for a normal case and µ0 and b0 for an abnormal case.
Thus, if F1(w) and F0(w) denote the cumulative distribution functions (c.d.f.s) of
the birth weight W for normal and abnormal cases, respectively, then the c.d.f.
of birth weight F(w) for the population of births is defined by the following
mixture:

F(w) = p1F1(w) + p0F0(w). (3)

Letting f1(w), f0(w) and f (w) denote the corresponding probability density
functions (p.d.f.s) of birth weight, then we have by differentiation of (3):

f (w) = p1f1(w) + p0f0(w). (4)

The preceding notation has suppressed the dependence of the functions on the
process parameters. Moreover, as we show later in applying threshold regres-
sion techniques, the parameters can be made to depend on covariates through
regression link functions.

5.2 Competing risks model

We also propose a second model, which is conceptually distinct from the mix-
ture model, but will tend to imitate birth weight data in a similar way. We
refer to this alternate model as the birth weight competing risks model. In this
model, we view the fetal development process as three-dimensional, as follows
{D(t)} = {D1(t), D2(t), D3(t)}. We again let u = D1(t) denote the fetal weight u
at fetal age t and redefine the fetal development process as a two-dimensional
subordinated process as follows:

{D2(t), D3(t)} = {C1(D1(t)), C0(D1(t))} = {C1(u), C0(u)} (5)

The components C1 and C0 of this subordinated process are, as before, latent
fetal development measures that are expressed as functions of fetal weight. In
the mixture model, a gamble at conception, with probabilities p1 and p0 = 1−p1,
determines whether the fetus follows a normal or abnormal development. In
contrast, in the competing risk model, we assume that the fetus develops con-
tinuously through time t in a two-dimensional space, undergoing stochastic
movements in one dimension {C1(t)} that represents normal development and,
simultaneously, undergoing stochastic movements in a second dimension {C0(t)}
that represents abnormal development. As before, we associate subscripts 1
and 0 with normal and abnormal. We assume that {C1(u), C0(u)} is a bivariate
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Fig. 4 The fetal development process {C1(u), C0(u)} is a bivariate Wiener process defined in terms
of fetal weight u. Birth is triggered when the sample path first hits one of the fixed boundaries
b1 or b0 in the two dimensions. Whether the birth is normal or abnormal is determined by which
boundary is encountered first. The birth weight W is defined by this event

Wiener diffusion process with mean parameters µ1 and µ0, respectively, and
unit variances. The mean parameters µ1 and µ0 are not restricted in sign. We
also assume that the respective boundaries are fixed levels b1 > 0 and b0 > 0
in the two dimensions. The two components C1 and C0 of the bivariate process
are assumed to be independent or uncorrelated. Figure 4 shows a graphical
representation of the FHT setup in this case.

Birth weight W for this bivariate process is defined as the smaller of the first
hitting times of the two birthing boundaries, as follows:

W = min{W1, W0} where WN = min{u : CN(u) ≥ bN} for N = 1, 0 (6)

Thus, the birth weight W and condition of the newborn (N = 0, 1) is determined
by the stochastic competition of these two development dimensions. Since the
components of the bivariate process {C1(u), C0(u)} are taken as independent,
the first hitting times W1 and W0 in (6) are independent. Thus, if the c.d.f. of
WN is given by FN(u), for N = 1, 0, then the c.d.f F(w) of W is given by

F(w) = 1 − [1 − F1(w)][1 − F0(w)]. (7)

If the p.d.f.s of WN and W are denoted by fN(w) and f (w), respectively, then, by
differentiating (7), we have that the p.d.f. of birth weight is

f (w) = f1(w)[1 − F0(w)] + f0(w)[1 − F1(w)]. (8)

The preceding notation has suppressed the dependence of the functions on the
process parameters. The formula for (8) has a similar structure to the corre-
sponding formula for the mixture model given in (4), in that it shows a weighted
sum of p.d.f.s f1(w) and f0(w). We study this correspondence more closely later
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and discover that the two models are indeed quite close. As in the mixture
model, the parameters can be made to depend on covariates through regres-
sion link functions.

5.3 Distribution formulas

We now present some formulas for the models that are required for later devel-
opment. References for these formulas include, for example, Cox and Miller
(1965) and Chhikara and Folks (1989).

Let the mean and variance parameters of a Wiener process be δ and ν, respec-
tively. Assume a fixed boundary is located at a > 0. The first hitting time X has
an inverse Gaussian distribution with the following p.d.f.:

h(x|δ, ν, a) =
√

a2

2πνx3 exp

[
− (δx − a)2

2νx

]
, for − ∞ < δ < ∞ and ν > 0.

(9)

If δ < 0 then the first hitting time is not certain to occur and the p.d.f. in (9) is
improper. Specifically, in this case, P(X = ∞) = 1 − exp(2aδ/ν). Conditioning
on the first hitting time being finite, random variable X has the same p.d.f. as in
(9) with δ replaced by |δ|.

The cumulative distribution function (c.d.f.) corresponding to (9) is

H(x|δ, ν, a) = �

[
(δx − a)√

νx

]
+ exp(2aδ/ν)�

[
− (δx + a)√

νx

]
, (10)

where �(·) is the c.d.f. of the standard normal distribution, which is a widely
programmed mathematical function. For later reference, we mention that the
mean and coefficient of variation (CV) of an inverse Gaussian variate X are

E(X) = a/δ, CV(X) = √
ν/(aδ) if δ > 0. (11)

One interesting property of an inverse Gaussian random variable X that we
will use later relates to the following transformation of X.

Z = δX − a√
νX

(12)

Variable Z is a form of standardized inverse Gaussian variable and has the
remarkable property that, for δ > 0, the squared value Z2 follows a χ2

1 distri-
bution, exactly like the square of a standard normal variable.

The components of the mixture model (4) and of the competing risks model
(8) can be matched to the preceding formulas. For the normal birth compo-
nent of the models, for instance, we equate w with x, µ1 with δ, b1 with a
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and set ν = 1 in the preceding formulas. Thus, f1(w) = h(w|µ1, 1, b1) and
F1(w) = H(w|µ1, 1, b1). Similar formulas allow us to compute f0(w) and F0(w).

5.4 Comments on the models

The mixture and competing risks models have no built-in criterion that defines
a low birth weight. We have given a mathematical structure to the models that
accommodates two component distributions for birth weight but otherwise al-
low each model to be self-calibrating with respect to the discrimination between
abnormal and normal birth weights. As will be seen later, the fitted models yield
a plausible characterization of normal and abnormal birth weights; one that is
quite close to the conventional definition of low birth weight. Moreover, the
regression structure offers a refined distinction between abnormal and normal
births. The models allow the definition of low birth weight, as characterized by
the normal and abnormal birth weight distributions, to vary as a function of the
covariates of the birthing circumstances.

Other researchers have recognized that the birth weight distribution might
be modeled as a mixture of distributions. The model proposed by Wilcox and
Russell (1983), for example, has generated considerable research and discus-
sion. For a more recent discussion, see Wilcox (2001). This earlier research
proposes a mixture model for the frequency distribution of birth weights which
consists of a ‘predominant distribution’ that follows a normal p.d.f. and a ‘resid-
ual distribution’. The predominant distribution represents the vast majority of
births and, hence, corresponds to our normal birth weight distribution (distri-
bution f1(w) in our mixture model). The residual distribution represents the
remainder of births (mostly low birth weight cases) and, hence, corresponds to
our abnormal birth weight distribution. The normal p.d.f. for the predominant
distribution provides a remarkably close fit to the data and an adequate working
model but is not totally satisfactory from a theoretical perspective because the
normal p.d.f. admits negative outcomes. Our inverse Gaussian distribution can
assume a shape that is very close to normal and does so for the birth weight com-
ponent for normal births as our later results will show. Thus, in some respects,
our mixture model is a mathematical refinement of this earlier mixture model.
More importantly, perhaps, our model sets the mixture distribution within a
mathematically coherent framework and also adds a regression structure to the
analysis.

6 Statistical inference using threshold regression

6.1 Regression structure and link functions

Every birth has its own characteristics, some of which are captured by the huge
array of characteristics monitored in health statistics records (such as maternal
age, for example). We now introduce these characteristics as a covariate vector,
say, vector z = (1, z1, . . . , zk), where the leading 1 allows for a constant term
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in regression models. We add a subscript to z and let vector zi represent the
covariate vector for birth i. In mixture model (4), these covariates may influence
any of the five independent parameters of the model : p1, µ1, b1, µ0, b0. Note
that we have arbitrarily chosen parameter p1 rather than p0 = 1 − p1 in this
list. Letting symbol θ denote any one of these five parameters, we will choose
a suitable mathematical link function to relate the parameter θi for birth i to a
linear combination of its covariates zi, as follows:

gθ (θi) = ziβ,

where β = (β0, . . . , βk)’. Here the apostrophe denotes a vector transpose. The
regression link function gθ will be chosen for each parameter. Our choices map
the parameter domains onto the whole real line. Thus, we choose gθ (θ) to be an
identity function for µ1 and µ0, a natural logarithmic function ln(b) for b1 and
b0, and a natural logit function ln[p1/(1 − p1)] for p1.

6.2 Model estimation

We estimate model parameters using the method of maximum likelihood. Let-
ting wi, i = 1, . . . , n, be a sample of n independent birth weights and zi, i =
1, . . . , n, their corresponding covariate vectors, the sample log-likelihood func-
tion is given by

ln L(θ) =
n∑

i=1

ln f (wi|zi), (13)

where θ is the parameter vector for the particular model under consideration.
The righthand side shows the sample data but, again, the parameter notation
is suppressed. The maximum likelihood estimates are derived using a program
written in version 7 of Stata. The optimization is carried out using a numeri-
cal gradient method, which works quite efficiently. Initial values for regression
intercepts (one for each parameter) are chosen after a heuristic search for
starting values that give a computable (finite) likelihood value. Finding such a
feasible starting point is generally quite easy. All regression coefficients asso-
ciated with covariates are initially set to zero (i.e., their values under the null
hypothesis). Version 7 of the maximum likelihood routine in Stata also under-
takes some internal scaling to improve the convergence speed of the numerical
optimization routine. Likelihood functions for some mixture models have local
maxima for small sample sizes. The large sample size here seems to eliminate
this problem. We have introduced several well-separated starting points for
fitting each of our regression models and all have converged to the same final
estimates.

The two FHT models are fully identifiable when the components are mathe-
matically distinct. The recognition of which component is associated with nor-
mal births and which with abnormal births is based on their relative positions
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on the birth weight scale. Although model identification poses no problem, the
regression parameters of these two FHT models have varying degrees of multi-
collinearity, which is a common condition in non-linear multivariate regression
models. The appropriate parameterization remains a subject for future research.

6.3 Bayes analysis

The mixture and competing risks models have an implicit Bayesian interpre-
tation. We consider the mixture model first and a birthing situation having
covariate vector z. We now incorporate the conditioning on the covariate vec-
tor explicitly in the notation.

Recall that N denotes an indicator variable for whether a birth is ‘normal’.
The mixture model (4) specifies P(N = 1|z) = p1(z) as the prior probability that
a birth with covariate vector z will be normal, without knowledge of the birth
weight. It follows that P(N = 0|z) = p0(z) = 1 − P(N = 1|z) = 1 − p1(z) is the
prior probability of an abnormal birth and the prior odds favoring an abnormal
birth for a birth situation with covariate vector z are

Odds(z) = P(N = 0|z)
P(N = 1|z) = p0(z)

p1(z)
(14)

If the newborn has weight W = w, then it follows that the posterior probability
of an abnormal birth is given by

P(N = 0|w, z) = p0(z)f0(w|z)
f (w|z) (15)

and the posterior odds become

Odds(w, z) = P(N = 0|w, z)
P(N = 1|w, z)

= p0(z)f0(w|z)
p1(z)f1(w|z) . (16)

A similar Bayesian interpretation can be given to the competing risks model
(8). The respective prior and posterior probabilities for an abnormal birth are
given by

P(N = 0|z) =
∫ ∞

0
f0(w|z)[1 − F1(w|z)]dw, (17)

P(N = 0|w, z) = f0(w|z)[1 − F1(w|z)]
f (w|z) . (18)

The integral defining the prior probability P(N = 0|z) in (17) does not have a
closed form and, hence, must be evaluated numerically for each case.
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7 Case demonstration

7.1 Sample data set

We will examine the preceding models using the 4%-systematic sample of U.S.
live births for 2002 mentioned earlier. The purpose of the case demonstration
is not to provide a definitive analysis of U.S. birth data for 2002 but rather to
explore the kinds of insights that might come from the mixture and compet-
ing risks models for birth weight using threshold regression. The paper uses
a 4%-systematic sample because the intention is to provide only a case dem-
onstration. The data are so extensive and involve so many health and medical
technicalities that the requisite research and reporting will require several pub-
lications for other audiences. We have reserved 96% of the full data set for
confirmatory analysis of more refined regression models that will be developed
in further empirical research. The choice of 4%, rather than, say, 5% or some
other fraction, is somewhat arbitrary. This 4% fragment includes 160,577 births,
after eliminating 518 births with missing data—a data set that is more than
large enough for our statistical purposes. Our systematic sample includes births
numbered 1, 26, 51, etc. from the data file (i.e., every 25th birth starting from
birth 1). The starting point was not a random choice.

7.2 Regression covariates and response variable

We had previously classified the variables in the NCHS data set according to
their demographic and clinical characteristics. We now classify the variables
according to their statistical characteristics as covariates. The classification is in
keeping with the scheme presented in Fig. 2. The covariates in this sample data
set fall into the following three categories: (1) baseline covariates, (2) interven-
tions, and (3) covarying processes. Baseline covariates are characteristics that
are fixed at or before the moment of conception and relate to maternal and
paternal characteristics. Interventions describe actions that occur between con-
ception and birth. Covarying processes are stochastic processes that operate in
parallel with fetal development and are statistically associated with it (possibly
because of direct causal influences). The following is a rough classification of
the covariates in the NCHS database.

1. Baseline covariates: Mother’s state and county of residence, numbers of pre-
vious live births (now living and dead), interval since last live birth, mother’s
age, live-birth order, mother’s race, mother’s Hispanic origin, mother’s mari-
tal status, mother’s educational attainment, father’s age, father’s race, father’s
Hispanic origin.

2. Interventions: Prenatal care, obstetric procedures, complications of labor
and/or delivery, attendant at birth, method of delivery.

3. Covarying processes: Mother’s weight gain during pregnancy, tobacco and
alcohol use.
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The classification of these variables is not always clearcut. The difficulties of
classification are illustrated by covariates such as prenatal care that may be
viewed as a covarying process in one form or as an intervention in another.

Several variables in the NCHS data set represent birth outcomes. Outcomes
are characteristics of the newborn or the birth event that are revealed at the
time of birth or shortly afterwards and are determined by the conception event
and subsequent causal influences, both good and bad. The following is a list of
outcome variables in the NCHS database.

Outcomes: State and county of birth, sex of newborn, date of birth, gesta-
tional duration, birth weight, Apgar score, abnormal conditions, congenital
anomalies, multiple births.

As with covariates, the classification of variables as outcomes is not always
clearcut. For example, the sex of the newborn might be taken to be a baseline
covariate which can be known if desired. Moreover, practices that predetermine
the sex of the newborn may disqualify this variable as an outcome measure.

We have selected the following covariates for the threshold regressions in
this case demonstration. The first three are baseline covariates and the fourth
is an intervention covariate.

1. m_age: Age of mother, in years (NCHS variable DMAGE).
2. m_race: Race of mother, coded 1 if white and 0 otherwise (one category of

NCHS variable MRACE).
3. prev_births: Number of previous live births, whether now living or dead (cor-

responds to the sum of NCHS variables NLBLD and NLBND,
representing numbers of live births, now living and now dead). The num-
ber excludes the current birth.

4. vag_birth: Method of delivery, coded 1 if vaginal without previous C-section
and 0 otherwise (one category of NCHS variable DELMETH5).

The outcome of interest in this case demonstration, i.e., our response variable
for threshold regression analysis, is birth weight, defined as follows.

b_weight: Birth weight, in kilograms. (NCHS variable DBIRWT, which is
reported in grams)

Table 1 gives brief summary statistics for the covariates and response variable
that we have selected for our regression analysis. These summary statistics assist
in judging the potential magnitudes and ranges of regression effects. A look at
the magnitudes of the Min and Max values for birth weight might suggest
they are implausible. We have no basis, however, for concluding that any of
the observations are in error. The minimum birth weight of 0.227 kg is exactly
one-half pound. There is a slight concentration of eight cases at this weight but
nearby values are also small. Moreover, eliminating the smallest values has only
slight effects on the regression findings. Similarly, the largest value (7.002 kg) is
well separated from the second largest (6.265 kg) but the mixture model has a
slim right tail and such an extreme outcome is plausible. Again, omission of this
extreme value from the regression analysis has a minute effect on the reported
results.
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Table 1 Summary statistics for the response variable and covariates used in the threshold regres-
sions. All variables have 160,577 readings

Type Variable Statistics

Name Units Mean SD Min. Max.

Response b_weight Kilograms 3.2984 0.60432 0.227 7.002
Covariates m_age Years 27.3618 6.18485 12 54

prev_births Births 1.0645 1.24266 0 17
m_race Indicator (0,1) 0.7908
vag_birth Indicator (0,1) 0.7206

8 Threshold regression results for case demonstration

Tables 2 and 3 show the threshold regression results for the mixture and com-
peting risks models, respectively. The label constant represents the regression
intercept in each case. The regression models in Tables 2 and 3 take no account
of possible interactions (e.g., between mother’s race and delivery method), cur-
vilinear effects (e.g., for mother’s age), or multiple births. The point estimates
for regression parameters of the mixture and competing risks models shown
in the tables are maximum likelihood estimates and the standard errors are
asymptotic estimates derived from a numerical estimate of the negative inverse
Hessian matrix for the likelihood surface at its maximum. The P-values assume
that the parameter estimate vectors are multivariate normal.

Tables 2 and 3 include linear regression results for parameters ln(bN) and
µN for N = 0, 1. These results can be converted easily into regression results
for the mean birth weight E(WN) and coefficient of variation of birth weight
CV(WN) for normal and abnormal births by using the relationships presented
in (11). Since the dynamic ranges of the estimates for parameters ln(bN) and
µN over the data set are small, it follows that both E(WN) and CV(WN) have
nearly linear regression functions for the same covariates, for both normal and
abnormal births.

8.1 Regression results for mixture model

Table 2 gives results for the mixture model. The comments that follow focus on
statistically significant effects as shown by very small P-values.

1. The birthing barriers b1 and b0 for normal and abnormal births both tend
to increase with mother’s age (m_age), leading to larger birth weights (other
factors being unchanged). For example, normal birth weights rise by about
0.14 percent for each year of age (0.001394 on the natural log-scale). There
is also a hint that the probability of a normal birth p1 declines slightly with
age.

2. All parameters are positively associated with the mother’s race being white
(m_race), although this association is not firm for the mean parameter µ0 of
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Table 2 Threshold regression for a 4%-systematic sample of US birth weights in 2002, using the
mixture model

Parameter Variable Estimate SE P-value

ln(b1) m_age 0.001394 0.0003408 0.000
m_race 0.087230 0.0055857 0.000
prev_births 0.002328 0.0018432 0.207
vag_birth 0.093775 0.0062312 0.000
constant 2.385137 0.0121147 0.000

µ1 m_age −0.0024 0.001297 0.064
m_race 0.135931 0.0207441 0.000
prev_births −0.006207 0.006932 0.371
vag_birth 0.387638 0.0220058 0.000
constant 3.526771 0.0448503 0.000

ln(b0) m_age 0.004252 0.0011628 0.000
m_race 0.210166 0.0178501 0.000
prev_births 0.033335 0.0050999 0.000
vag_birth −0.140316 0.0163735 0.000
constant 0.735839 0.0367198 0.000

µ0 m_age 0.000002 0.0020418 0.999
m_race 0.077311 0.0309055 0.012
prev_births 0.018960 0.0088821 0.033
vag_birth −0.196094 0.0267596 0.000
constant 1.288762 0.0649473 0.000

logit(p1) m_age −0.007151 0.0028154 0.011
m_race 0.217659 0.0375524 0.000
prev_births −0.128130 0.0133089 0.000
vag_birth 1.275465 0.0357383 0.000
constant 2.092567 0.0837875 0.000

abnormal births. The net effect of the simultaneous higher birthing barrier
and mean parameter for births to white mothers is such that the mean birth
weight is higher for both normal and abnormal births. The coefficient of
variation (CV) of birth weights is smaller for babies born to white moth-
ers for both types of births, implying that birth weights are relatively more
concentrated for this race.

3. The birthing barrier for abnormal births b0 increases with the number of
previous live births for a mother (prev_births), which implies that the birth
weights of abnormal births rise slightly with more previous births. On the
other hand, the probability of a normal birth p1 tends to fall with more pre-
vious births. Specifically, logit(p1) declines by an estimated −0.128 for each
previous birth (other factors being unchanged).

4. The indicator variable for vaginal delivery without previous C-section
(vag_birth) is associated positively with both parameters for normal births
and negatively with both parameters for abnormal births. To interpret one
regression coefficient for vag_birth, the regression coefficient of 0.093775
for ln(b1), for example, indicates that the birthing boundary is about 10%
higher, on average, with vaginal delivery (other factors being unchanged).
Vaginal delivery is also strongly associated in a positive direction with the
probability of normal birth p1. Decreases in both the mean and CV of



Lifetime Data Anal (2007) 13:161–190 179

Table 3 Threshold regression for a 4%-systematic sample of US birth weights in 2002, using the
competing risks model

Parameter Variable Estimate SE P-value

ln(b1) m_age 0.001748 0.0003562 0.000
m_race 0.087879 0.0057006 0.000
prev_births 0.005355 0.0019248 0.005
vag_birth 0.072704 0.0062237 0.000
constant 2.419734 0.0122377 0.000

µ1 m_age −0.001513 0.0013483 0.262
m_race 0.139636 0.0212256 0.000
prev_births −0.003261 0.0071978 0.651
vag_birth 0.361791 0.0219853 0.000
constant 3.60822 0.0453646 0.000

ln(b0) m_age 0.004558 0.0009199 0.000
m_race 0.223207 0.0136575 0.000
prev_births 0.042902 0.0041954 0.000
vag_birth −0.003503 0.0126968 0.783
constant 0.583726 0.0284521 0.000

µ0 m_age 0.007303 0.0016109 0.000
m_race 0.176233 0.0216575 0.000
prev_births 0.096471 0.0074348 0.000
vag_birth −0.389698 0.0209808 0.000
constant −0.443521 0.0479385 0.000

normal birth weights are associated with vaginal delivery. The opposite hap-
pens with abnormal births, with increases in both measures.

5. By averaging the estimates of p0(z) = 1 − p1(z) for all cases, we obtain an
estimate of the population proportion of abnormal births. This average is
0.065 or 6.5% for the mixture model. The individual estimates of p0(z) range
from 3.0% to 49.3% as the covariates vary over the sample cases. As an
interesting comparison, we note that 7.8% of all birth weights are under
2,500 g, the usual cutoff for low birth weights.

6. The Apgar score is a routine evaluation of the newborn on five clinical
parameters, namely, heart rate (pulse), breathing (rate and effort), activity
and muscle tone, grimace response (reflex irritability), and appearance (skin
coloration). Each parameter is assigned a value from 0 to 2, with a total score
ranging from 0 to 10. A score of 9 or 10 indicates excellent health; 7 or more,
good health. The Apgar score may be considered as the outcome of the
newborn’s first clinical examination. We consider the score that is recorded
five minutes after birth. All states reported 5-min Apgar scores for births in
2002 except California and Texas. In total, Apgar scores were available for
77% of births in our sample. Table 4 shows the mean of the estimated prob-
abilities P(N = 0|w, z) for abnormal birth derived from our fitted regression
functions for the mixture model, classified by several Apgar categories that
are traditionally used to grade a birth. None of the parameters of the Apgar
score relates directly to birth weight or to any of the covariates that have
been used in our illustrative regression model. Thus, it is an independent
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Table 4 Relation of the Apgar score to the estimated probability of abnormal birth, averaged for
all cases in each category. Estimates are derived from the fitted mixture model

Apgar score Missing 0–3 4–6 7–8 9–10

Number of cases 36,585 513 1185 10,417 111,877
Mean probability P(N = 0|w, z) 0.060 0.729 0.390 0.192 0.048

outcome variable. As expected, we see that the estimated mean probability
of abnormal birth descends steeply as we move to higher Apgar categories.
The table confirms a strong association of clinical condition with the model’s
estimated probability of abnormal birth. The association is not strong enough
to make the Apgar score a strong predictor of whether a birth is abnormal of
not but it does show that the mixture model has clinical validity and that the
Apgar score might be a useful supplemental outcome variable. We comment
a little more on this issue in the later section Birth Weight z-score.

8.2 Regression results for competing risk model

Table 3 gives results for the corresponding competing risks model. When appro-
priately interpreted, the results are not much different than those for the mix-
ture model. The following remarks focus on a comparison and contrast of the
regression results in the two tables.

1. The estimated distributions of normal birth weight are nearly the same as
that of the mixture model across the range of covariate values. This fact is
shown by the almost identical estimated regression functions for parameters
ln(b1) and µ1. This result is reassuring because it implies that the two models
capture this feature of the data set in a similar way.

2. The estimated distributions of abnormal birth weight in the two models are
not as close as they are for normal weights, but the comparison is somewhat
complicated for the following reasons.
(a) The mean parameter µ0 for abnormal births is negative for about 85%

of births. A negative value for µ0 implies that the fetal development
process tends to drift away from the abnormal birthing barrier, making
abnormal birth a less competitive risk. In this situation, an abnormal
birth has a positive probability of never occurring. This drift away from
the abnormal birthing barrier is a major determinant of the percentage
of normal births because of the reduced risk of an abnormal outcome.

(b) The mixture model has an extra parameter (parameter p1) relative to the
competing risks model. Looking at the tables, we see that the regression
structures for parameter ln(b0) are roughly similar for the mixture and
competing risks models, except for the indicator variable vag_birth which
has an insignificant regression coefficient in the competing risks model.
The regression coefficients of the covariates for the mean parameter
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µ0 have matching signs to those of the mixture model but are larger in
magnitude. The constant terms for µ0 in the two models differ markedly.
The reason for these shifting regression coefficients for the abnormal
birth parameters is the fact that the two parameters ln(b0) and µ0 of the
competing risks model must capture the effects of the three parameters
ln(b0), µ0 and p1 of the mixture model. As we will see later, however,
the net effects of these shifts virtually wash out and yield almost identi-
cal overall fits to the birth weight distribution. In terms of the number
of independent model parameters, the competing risks model is more
parsimonious.

3. The effect of vaginal delivery deserves an extra comment for the competing
risks model. As with the mixture model, the indicator variable for vaginal
delivery without previous C-section (vag_birth) has a positive association
with both parameters for normal births and a negative association with the
mean parameter for abnormal births. The net effect is that the mean and CV
of birth weights tend to be smaller for normal births. A substantial decrease
in the incidence of abnormal birth weights is associated with vaginal delivery
because the regression coefficient for µ0 is large and negative.

8.3 Regression results for one scenario

Interpretation of some results in Tables 2 and 3 requires consideration of spe-
cific scenarios for baseline and intervention covariates. To demonstrate, we arbi-
trarily choose one scenario, namely, that of a 30-year-old non-white mother with
no previous live birth and a C-section delivery for this birth. Thus, m_age = 30,
m_race = prev_births = vag_birth = 0. These define covariate vector z. In our data
set, 175 births match this scenario. We have the following results under the two
models for this scenario.

1. The prior probability P(N = 1|z) = p1(z) is estimated to be 0.867 for the
mixture model. Thus, an estimated 87% of births are from the normal com-
ponent according to this model. Interestingly, the prior probability (17)
gives almost the same probability for the competing risks model, namely,
P(N = 1|z) = 0.845.

2. The estimated probability densities f0(w|z) and f1(w|z) are approximately
equal at birth weight w = 2.45 or 2,450 g under the mixture model. This cor-
responds closely to the conventional cutoff of 2,500 g for low weight births.
For the competing risks model, the two densities are equal at 2,260 g, a little
lower value than for the mixture model. Alternatively, we can also look at
the posterior probabilities. The posterior probability P(N = 1|w, z) in (15) is
50% when w = 2.16 or 2,160 g under the mixture model. The corresponding
probability in (18) is 50% when w = 2.27 or 2,270 g under the competing risks
model. The posterior probability suggests that the odds favor a declaration
of normal birth when the birth weight is above 2,160 or 2,270 g, depending
on the chosen model. Both of these cutoffs are lower than the conventional
value of 2,500 g.
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Fig. 5 The estimated probability density function for birth weight under (a) the mixture model
and (b) the competing risks model, for 30-year-old non-white mothers with no previous live birth
and a C-section birth (m_age = 30, m_race = prev_births = vag_birth = 0)

3. The estimated mean birth weights for normal births under the mixture and
competing risks models for this scenario are 3,280 and 3,330 g, respectively.
In the case of the competing risks model, the parameter is interpreted as the
mean that would prevail without competition from abnormal births.

4. Panels (a) and (b) of Fig. 5 show the estimated probability density functions
for birth weight under the mixture and competing risks models for this sce-
nario, respectively. The two models have produced very similar estimates.
They differ slightly at the junction of the abnormal and normal components.

9 Model checking

Three basic sources of error must be considered in model checking: (1) devia-
tion from the true model caused by sampling error, (2) an incorrectly specified
parametric model and (3) an incorrectly specified regression structure for the
parametric model. Figure 6 illustrates these sources of error for one birthing
scenario in our case demonstration. The figure is derived from the 2,836 births
to 19-year-old white mothers who are having their first birth by vaginal deliv-
ery (m_age = 19, m_race = 1, prev_births = 0, vag_birth = 1). This subset of the
sample happens to be the modal configuration of these covariates. The figure
compares the empirical birth weight c.d.f. for this subset with two fitted c.d.f.s
derived from the mixture model. In panel (a), the mixture model is fitted using
the regression structure of the case demonstration, which is estimated from
all 160,577 births in the sample and has the estimates displayed in Table 2.
Small gaps are visible between the empirical and fitted c.d.f.s. The differences
are attributable to all three sources of error. In panel (b), the mixture model
is fitted using a saturated regression model. In this instance, estimation of the
model parameters is carried out without regression covariates using only the
2,836 births in the scenario subset. (The parameter estimates are not presented
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Fig. 6 A comparison of an empirical c.d.f. of the birth weight distribution with a fitted c.d.f. based
on the mixture model for (a) the regression structure of the case demonstration and (b) a full-
model estimate (a saturated regression model). The comparison is for 2,836 births of 19-year-old
white mothers having their first birth by vaginal delivery (m_age = 19, m_race = 1, prev_births = 0,
vag_birth = 1)

here.) The empirical and fitted c.d.f.s now coincide quite closely. The saturated
regression model is equivalent to using the true regression structure and, thus,
eliminates the third source of error. The figure is typical of what is found for
other subsets (although others involve smaller numbers of births and, hence,
larger sampling errors). Figure 7 compares the empirical and fitted survival
probabilities in a probability plot that highlights the differences found in panel
(b) of Fig. 6. The differences in the c.d.f.s range from −0.037 to 0.016 and have
some regularity. For example, the differences have a slight wave in the lower
region of the probability plot. The wave suggests that the fitted model predicts
more very low birth weights than appear in the data set. As the data set con-
siders only live births, the discrepancy may very well reflect the absence in the
data of weights for still births. We discuss this issue further in the last section.

The model checking results suggest that the mixture model is reasonably good
but needs some fine-tuning. The regression structure in the case demonstration,
on the other hand, needs much further development in terms of the choice of
covariates and/or the selection of their mathematical forms in the regression
model. For example, we know that mother’s age (covariate m_age) needs to
appear in the model with a curvature effect. The model-checking results for the
competing risks model are similar but not identical. More research is needed
to determine which of these models is superior or to discover if some refined
hybrid model is better than either one of them. For the present, however, the
results in Figs. 6 and 7, and similar results for other scenarios in the data set,
suggest that our modeling efforts are moving in the right direction.

Tables 2 and 3 provide point estimates, asymptotic standard errors and
P-values for parameters of the mixture and competing risks models. To confirm
the validity of these asymptotic results, we have also obtained inferences using
a more robust procedure, namely, inferences from subsamples. Specifically, the
regression models were re-run for 32 non-overlapping and equal subsamples
of our 4%-systematic sample. By this construction, the 32 sets of regression
estimates are identically distributed draws from the same underlying sampling
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Fig. 7 A probability plot comparing the empirical and fitted survival probabilities for the saturated
regression model shown in panel (b) of Figure 6. The comparison is for 2836 births of 19-year-old
white mothers having their first birth by vaginal delivery (m_age = 19, m_race = 1, prev_births = 0,
vag_birth = 1)

distribution. By calculating the means of the parameter estimates and testing
whether they differ significantly from zero, we obtain a check on the reliabil-
ity of our previous P-values. The number of subsamples was set at 32 because
32 evenly divides the sample into adequately large subsamples (about 5,000
observations each) while maintaining a reasonable number of degrees of free-
dom (df = 32 − 1 = 31) for the tests. These sample subsets provide robust
estimates and inferences for model parameters that do not depend greatly on
the underlying sampling error properties of the models. Table 5 gives the mean
parameter estimates and P-values for each model. Comparisons with the full-
sample maximum likelihood estimates and P-values in Tables 2 and 3 shows
generally good agreement with respect to magnitudes of significance effects.
The subsample P-values for parameter ln(b0) for the mixture model are larger
for several covariates which suggests that the parameter estimates are some-
what over-dispersed among the subsamples. Also, under the competing risks
model, the level of significance of the effect of m_age on µ0 shows some erosion
under the subsample procedure. We note that this subsampling method gives
robust estimates of variance that are much like those produced by so-called
sandwich estimators.

10 Birth weight z-score

We noted earlier that Wilcox and Russell (1983) proposed a mixture model in
which the ‘predominant distribution’ (our birth weight distribution for normal
births) has a normal p.d.f.. They then point out the value of looking at a z-score,
the number of standard deviations that a birth weight lies from the mean of the
predominant distribution for a given reference group. The corresponding score
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Table 5 Regression results for 32 subsets of the 4%-systematic sample of US birth weights in 2002
for the mixture and competing risks models. The table reports the mean estimates and P-values of
tests for zero effects based on t-tests with 31 degrees of freedom

Parameter Variable Mixture model Competing risks model

Mean estimate P-value Mean estimate P-value

ln(b1) m_age 0.001421 0.001 0.001655 0.000
m_race 0.087581 0.000 0.086904 0.000
prev_births 0.003235 0.213 0.006394 0.017
vag_birth 0.090116 0.000 0.070776 0.000
constant 2.391919 0.000 2.428129 0.000

µ1 m_age −0.002307 0.127 −0.001825 0.221
m_race 0.137048 0.000 0.135699 0.000
prev_births −0.002687 0.766 −0.000231 0.980
vag_birth 0.375088 0.000 0.354598 0.000
constant 3.552884 0.000 3.639945 0.000

ln(b0) m_age 0.005448 0.028 0.004840 0.010
m_race 0.213401 0.000 0.219821 0.000
prev_births 0.034156 0.005 0.045276 0.000
vag_birth −0.112027 0.002 0.010872 0.624
constant 0.714408 0.000 0.584972 0.000

µ0 m_age 0.001603 0.506 0.007507 0.016
m_race 0.080888 0.003 0.177970 0.000
prev_births 0.028457 0.031 0.103805 0.000
vag_birth −0.166199 0.000 −0.366020 0.000
constant 1.262559 0.000 −0.444823 0.000

logit(p1) m_age −0.007892 0.012 − −
m_race 0.194776 0.000 − −
prev_births −0.129026 0.000 − −
vag_birth 1.257793 0.000 − −
constant 2.120913 0.000 − −

for our mixture model is given by (12), which takes the following form in our
notation:

z = µ1w − b1√
w

(19)

This z-score is zero when the birth weight equals the mean for normal births
and roughly behaves like a standard normal number, as does the Wilcox and
Russell z-score. Wilcox (2001) points out that when infant mortality is plotted
against the z-score scale for different conditions, one can make a valid com-
parison of infant mortality rates as a function of birth weight. The underlying
reason is that the z-score standardizes the predominant distribution so it is
invariant for comparison groups. Thus, observed differences in infant mortal-
ity must be attributable to what they call the ‘residual distribution’ (our birth
weight distribution for abnormal births). We are not studying infant mortal-
ity here but if we plot the posterior probability of abnormal birth against our
z-score, as defined in (19), we obtain a plot that is similar to what appears
in Wilcox (2001). Figure 8 shows such a plot for 19-year-old white mothers
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Fig. 8 Posterior probability
of an abnormal birth plotted
against the z-score of the birth
weight based on the transform
in (19). The vertical scale is
logarithmic. The plot is for
19-year-old white mothers
having their first birth by
vaginal delivery (m_age = 19,
m_race = 1, prev_births = 0,
vag_birth = 1)

having their first birth by vaginal delivery (m_age=19, m_race=1, prev_births = 0,
vag_birth=1). This group was featured in our earlier discussions. The horizontal
scale of the figure shows our z-score. The vertical scale is a logarithmic scale
that shows the posterior probability of an abnormal birth, based on the fitted
mixture model. This probability corresponds to P(N = 0|w, z) in (15). A plausi-
ble feature that is evident from the figure is that the risk of an abnormal birth is
present at every birth weight. The risk is small in the neighborhood of zero on
the z-score scale but does not vanish. We also see a feature in the plot that was
not noted earlier, namely, the tendency of the probability of an abnormal birth
to rise when birth weights are well above the mean. Wilcox noted that infant
mortality rises slightly at large birth weights. Our mixture model implies that
large birth weights may arise from abnormal fetal development and birthing
conditions. The fact that these abnormal cases do not tend to be life threatening
for the newborn may explain why infant mortality does not rise as sharply in
the upper weight range as our graph shows. In connection with Table 4 given
earlier, we note that Apgar scores also show a tendency to drop at large birth
weights, which adds clinical weight to the observation that the probability of an
abnormal birth is higher at large birth weights.

11 Birth weight and gestational age

Gestational age, denoted earlier by the first hitting time T in Fig. 2, is another
outcome measure that is frequently used as an indicator of premature birth. We
have postponed consideration of this response measure to future research but
have a few remarks to make at this point.

The NCHS variable for gestational age (GESTAT in their data base) is (a)
computed using the birth date and the date of the last normal menses, (b)
imputed from the date of the last normal menses, (c) estimated clinically, or (d)
set to ‘unknown’ when the data are insufficient to impute the age or no valid
clinical estimate is available. Gestational age is therefore subject to potential
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measurement error that should be taken into account in analysis. The uncertain
time of conception might be accommodated as a random variable T0 so the state
of the fetal development process at calendar time t is given by D(t − T0). One
advantage of birth weight as an outcome measure is that measurement error for
date of conception does not affect it. The fetal weight is zero at conception and,
hence, the origin of the birth weight scale is known. The measurement error in
gestational age and the discrete recording of gestational age (in whole weeks)
require special handling.

We recognize that the joint distribution of birth weight and gestational age
represents a more refined outcome profile for births than either measure taken
by itself. To give a sense of what would be required in a study of the joint
outcome of birth weight W and gestational age T (see Fig. 2), one would need
to consider, say, a mixture of two bivariate distributions defined for the joint
outcome (W, T). This mixture would have a dominant component for normal
births and a second component representing abnormal births. In birth weight
studies, the birth weight variable is often adjusted for gestational age. In effect,
this adjustment involves a study of the conditional outcome variable W|T. Infer-
ences drawn from a study of W|T are conceptually distinct from those drawn
from the unconditional variable W. For example, the conditional birth weight
W|T, adjusted for gestational age, is likely to depend on covariates differently
than the unconditional birth weight W. It is the latter that is being studied in
our case demonstration. Other outcome measures, such as the newborn’s Apgar
score, can be added to W and T to further refine the outcome profile. These
topics requires further investigation.

12 Concluding remarks

The NCHS data set we have used includes only live births and, therefore, is
truncated with respect to prenatal conditions that lead to still births or sponta-
neous abortions. In essence, these events are unaccounted for and ignored in
our models and inferences. The events affect the abnormal birth component of
the models and may explain some of the model discrepancies found in Fig. 7.
Our models can be extended to include still births or spontaneous abortions if
these data become available. The basic mathematical extension involves view-
ing conceptions as having competing outcomes in the form of being a live birth,
still birth or spontaneous abortion. Our modeling also ignores the effects of
multiple births. The data show clear evidence that the total weight of multiple
births increases with multiplicity but at a declining rate. As a consequence, birth
weight for each infant declines with multiplicity—see NCHS (2003), Table K,
p.22. Our models can be extended to include a probabilistic component for
multiple births. This extension is left to future research.

One observation that stands out clearly in our results is the striking differ-
ential effects on birth weights associated with vaginal and cesarean delivery
methods. NCHS birth data show that the cesarean rate is rising. As noted in
NCHS (2002, p. 15), “The escalation in the total cesarean rate is fueled by both
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the rise in the primary cesarean rate and the steep decline in the rate of vag-
inal birth after cesarean (VBAC) delivery. Controversy continues to stimulate
research and discussion on the risks, benefits, and long-term consequences
of cesarean (medically indicated or elective) delivery and VBAC delivery...".
See Lydon-Rochelle et al. (2001), Gregory et al. (2001) and Scott (2002).

Mixture models have been used to describe population distributions for other
physiological features. For example, Harlow and Zeger (1991) proposed that
the menstrual cycle of women is a mixture of a dominant normal pattern and an
abnormal pattern. In a recent study, Guo et al. (2006) use a mixture distribution
for menstrual cycles consisting of a normal distribution for ’standard cycles’ and
a shifted Weibull distribution for ’nonstandard cycles’ A mixture of two inverse
Gaussian distributions has been proposed in other settings. Balka (2005), for
example, has proposed such a model for survival data with a cure rate.

The International Journal of Epidemiology devoted a recent issue to the topic
of obesity. In an editorial, Lawlor and Chaturvedi (2006) speak of the critical
influence of the perinatal period on obesity in later life. They observe that the
mechanisms of association between maternal weight and weight gain during
pregnancy and obesity in offspring are becoming clearer. In the same issue,
Chen et al. (2006) show a strong association between maternal smoking during
pregnancy and early childhood obesity. The model we propose here provides
an ideal structure for the examination of the link between maternal weight and
smoking habits and birth weight. Extension of the model to consider health out-
comes in early childhood (such as obesity) would add greatly to its usefulness.
The connection of birth weight and other birth outcomes to childhood obesity
requires much further study.

Our aim in this research report is to use modeling and analysis to under-
stand better the statistical nature of low weight births. Much research remains
to be done and the NCHS data base is an exceptionally good resource for this
work. Our research postulates a model for the development trajectory of a fetus
and its consequent birth weight. The model distinguishes between normal and
abnormal birth trajectories as reflected in birth weights. We then use threshold
regression to examine the correlation of model parameters with various cova-
riates that are recorded routinely in health statistic databases for births. Some
of the practical advantages of our modeling approach may be summarized as
follows.

1. The approach offers a rich and unified conceptual framework for future re-
search on fetal development, birth and, even, early childhood development.
For instance, the model can be used when measurements of fetal growth
become available (e.g., measurements derived from ultrasound images of
the fetus). The model may also be extended to correlate birth outcomes with
early childhood development (e.g., the connection to obesity).

2. There is great value in knowing which covariates are associated with the
parameters ln(b0) and µ0 of the abnormal component of the model. Likewise,
in the case of the mixture model, the influence of covariates on parameter
p0, representing the proportion of abnormal births, is of interest.
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3. The new z-score defined in (19) is an important practical tool for examining
and comparing abnormal births in different reference populations.

4. The model does not provide a forecast of whether any birth is normal or
abnormal. But it does provide a probability for this event, conditional on
birth weight w and the given covariate values z for the case—see expressions
(15) and (18).

5. As the model and regression structure are completely general, the proposed
model can accommodate in-depth investigations of associations between
birth weight and covariates that go well beyond the case demonstration
reported here. The extension to other outcome measures (such as gesta-
tional age) is natural and conceptually straightforward.
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