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Abstract. Multivariate event time data are common in medical studies and have received much attention

recently. In such data, each study subject may potentially experience several types of events or recurrences

of the same type of event, or event times may be clustered. Marginal distributions are specified for the

multivariate event times in multiple events and clustered events data, and for the gap times in recurrent

events data, using the semiparametric linear transformation models while leaving the dependence struc-

tures for related events unspecified. We propose several estimating equations for simultaneous estimation

of the regression parameters and the transformation function. It is shown that the resulting regression

estimators are asymptotically normal, with variance–covariance matrix that has a closed form and can be

consistently estimated by the usual plug-in method. Simulation studies show that the proposed approach is

appropriate for practical use. An application to the well-known bladder cancer tumor recurrences data is

also given to illustrate the methodology.

Keywords: cluster event times, estimating equations, informative cluster size, linear transformation models,

multiple events, recurrent events

1. Introduction

Multivariate event time data are commonly encountered in many medical studies
because each study subject can potentially experience multiple events or failures or
the events times may be grouped or clustered, which leads to dependencies within
the same cluster. As usual, we refer to the former situation as multiple events data
and the latter as clustered events data. A very special case of multiple events data
is recurrent events data, in which subjects often experience repeated occurrences of
the same type of event. Since the dependence structure among the event times for
the same subject or cluster is often complicated, much of the focus has been on
modeling the marginal distributions of event times, e.g. Wei et al. (1989). Lin
(1994) provided a review of the marginal approach based on Cox-regression mod-
els (Cox, 1972). More recent research was conducted by Pepe and Cai (1993),
Lawless et al. (1997), Prentice and Hsu (1997), Spiekerman and Lin (1998) and
Lin et al. (2000) among others.
As noted by many authors, the proportional hazards model may not be appro-

priate for modeling survival times in some medical studies. For example, if the
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hazard functions for the two treatment groups converge to the same limit, the
proportional odds model is more preferable than the proportional hazards model
to fit such data. See Pettitt (1982, 1984), Bennett (1983), Dabrowska and Doksum
(1988) and Murphy et al. (1997).
More generally, a class of linear transformation models (Clayton and Cuz-

ick, 1985; Bickel et al., 1993; Cheng et al., 1995; Fine et al., 1998) may be
used for survival times. The semiparametric linear transformation model is
specified by

HðTÞ ¼ �b0Zþ �; ð1Þ

where H is an unknown monotone increasing function, b a p-dimensional regres-
sion parameter vector and � the error term with a known continuous distribution
that is independent of censoring variable C and covariate vector Z. If � is chosen
to follow the extreme value distribution, then (1) becomes the proportional haz-
ards model. On the other hand, if � follows the logistic distribution, then it be-
comes the proportional odds model.
For univariate failure time data, a number of methods have been proposed for

analysis of the linear transformation models. Specifically, Cheng et al. (1995) pro-
posed a general estimating equation approach, which was further developed by
Cheng et al. (1997) and Fine et al. (1998). A key assumption in their methods is
that the censoring times are independent of covariates, which is often too restric-
tive. More recently, Chen et al. (2002) made use of a martingale integral represen-
tation in constructing estimating equations, which does not require the common
censoring distribution assumption.
In this article, we study the marginal linear transformation models for multivari-

ate event time data. Our approach is motivated by the recent work of Chen et al.
(2002). Several estimating equations are proposed for simultaneous estimation of
the regression parameters and the transformation function. The resultant estima-
tors are proven to be consistent and asymptotically normal. Furthermore, the
asymptotic variance–covariance matrix has a closed form and can be consistently
estimated by the usual plug-in method.
The extension of Chen et al.’s (2002) approach to multiple events data is

straightforward, like the usual WLW method for the marginal proportional haz-
ards model (Wei et al., 1989), and is sketched in Section 2. Section 3 presents the
models and the corresponding inference procedures for clustered events data when
the cluster size is both noninformative and informative. Models and methods for
recurrent events data are discussed in Section 4. Section 5 is devoted to numerical
studies. Some concluding remarks are given in Section 6. All the proof are rele-
gated to the Appendix.
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2. Multiple Events Data

Suppose each study subject can potentially experience K types of events or fail-
ures, where K is a fixed integer. Let Tki be the time to the kth event of the ith
subject, where i=1,..., n; k=1,..., K. In addition, let Cki be the corresponding cen-
soring time, and Zki ” (Z1ki,..., Zpki)¢ be the corresponding p-dimensional vector
of covariates. We assume that (T1i,..., TKi) is independent of (C1i,..., CKi) given
(Z1i,..., ZKi). The observed data consist of ð ~Tki; dki;ZkiÞðk ¼ 1; . . . ;K; i ¼ 1; . . . ; nÞ,
where ~Tki ¼ Tki ^ Cki and dki ¼ IðTki � CkiÞ. Here and thereafter,
a ^ b ¼ minða; bÞ, and I(Æ) is the indicator function.
The marginal distributions of K types of event times are formulated with the lin-

ear transformation models. That is

HkðTkiÞ ¼ �b0kZki þ �ki; i ¼ 1; . . . ; n; k ¼ 1; . . . ;K; ð2Þ

where bk is a p-dimensional vector of unknown regression parameters, Hk is an un-
known monotone increasing function, and �ki is the error term with a known con-
tinuous distribution that is independent of censoring variable Cki and covariate
vector Zki. In addition, (�1i,..., �Ki) (i=1,..., n) are independent random vectors with
a common joint distribution. For example, if K=2, the joint distribution of (�1i,�2i)
(i=1,..., n) can be specified by the Gumbel (1960)’s bivariate distribution, i.e.
Fðx1; x2Þ ¼ F1ðx1ÞF2ðx2Þ½1þ hf1� F1ðx1Þgf1� F2ðx2Þg�, where �1 � h � 1, and
F1(Æ) and F2(Æ) are the two known marginal distributions for �1i and �2i, respectively.
In model (2), the event times of same type follows the usual linear transforma-

tion model. However, the event times from different types may have different dis-
tributions. For example, the event times from the first type may come from the
proportional hazards model while the event times from the second type may come
from the proportional odds model. Obviously, Chen et al.’s (2002) method can be
applied to event times from a single type. In addition, using the method of Wei
et al. (1989), it can be also generalized to carry out simultaneous inference on the
regression parameter b ¼ ðb01; . . . ; b0KÞ

0. Since the derivation is straightforward, the
details are omitted here.

3. Clustered Events Data

3.1. The Cluster Size is Noninformative

Suppose that a random sample of n clusters is chosen and there are Ki (i=1,...,n)
members in the ith cluster. Let Tik and Cik be the event time and censoring time
for the kth member of the ith cluster, and let Zik denote the corresponding p-
dimensional vector of covariates. We assume that Ti � ðTi1; . . . ; ;TiKi

Þ0 and
Ci � ðCi1; . . . ;CiKi

Þ0 are independent conditional on Zi � ðZ0i1; . . . ;Z0iKi
Þ0. And the

cluster size Ki is assumed to be independent of Ti and Ci, i.e. noninformative, and
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be small relative to n. Then the observed data consist of ð ~Tik; dik;ZikÞðk ¼ 1;
. . . ;Ki; i ¼ 1; . . . ; nÞ, where ~Tik ¼ Tik ^ Cik and dik ¼ IðTik � CikÞ.
We specify the marginal distributions of Tik with the linear transformation mod-

els. That is

HðTikÞ ¼ �b0Zik þ �ik; k ¼ 1; . . . ;Ki; i ¼ 1; . . . ; n; ð3Þ

where b is a p-dimensional vector of unknown regression parameters, H is an un-
known monotone increasing function, and �ik is the error term with a known con-
tinuous distribution that is independent of censoring variable Cik and covariate
vector Zik. In addition, (�i1,..., �iK_i) (i=1,..., n) are independent random vectors.
For each i, the error terms �i1,..., �iK_i are potentially correlated, but assumed to
be exchangeable with a common specified marginal distribution. And for any i
and j, and K � Ki ^ Kj, the vectors (�i1,..., �iK) and (�j1,..., �jK) have the same dis-
tribution. Let L denote the common cumulative hazard function for �ik (k=1,...,
Ki; i=1,..., n), i.e. Pð�ik > tÞ ¼ expf�KðtÞg.
Define the usual counting process NikðtÞ ¼ dikIð ~Tik � tÞ and at-risk process

YikðtÞ ¼ Ið ~Tik � tÞ. And let

MikðtÞ ¼ NikðtÞ �
Z t

0

YikðsÞdKfH0ðsÞ þ b00Zikg; k ¼ 1; . . . ;Ki; i ¼ 1; . . . ;n;

ð4Þ

where (b0, H0) are the true values of (b,H). It is easy to show that Mik(t) is a
mean zero process. Therefore, we proposed the following two estimating equa-
tions for H and b, respectively

Xn
i¼1

XKi

k¼1
½dNikðtÞ � YikðtÞdKfHðtÞ þ b0Zikg� ¼ 0; t � 0; Hð0Þ ¼ �1; ð5Þ

Xn
i¼1

XKi

k¼1

Z s

0

Zik½dNikðtÞ � YikðtÞdKfHðtÞ þ b0Zikg� ¼ 0: ð6Þ

where s denote the duration of the study. And we assume that Pð ~Tik > sjZikÞ > �
for any fixed value of Zik, where � is a positive constant. For any fixed b, the solu-
tion to (5) is unique, denoted by Ĥð�; bÞ. Here like Chen et al. (2002), (5) can be
solved in two different ways to obtain Ĥð�; bÞ. The first method is based on the
numerical differences of transformation function H at the observed failure times;
while the second method directly gives a closed solution by replacing
dKfHðtÞ þ b0Zikg in (5) with kfHðt�Þ þ b0ZikgdHðtÞ. The two different methods
give equivalent solutions in theory. However, from our experience in numerical
studies, the first method is more stable than the second one for obtaining Ĥ in finite
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sample. Therefore, in this paper, only the first method was applied to solve (5). Then
the estimator b̂ of b can be obtained by solving the following estimating equation

Xn
i¼1

XKi

k¼1

Z s

0

Zik½dNikðtÞ � YikðtÞdKfĤðt; bÞ þ b0Zikg� ¼ 0: ð7Þ

We first introduce some notations and then the consistency and asymptotic nor-
mality of b̂ will be established in the following theorem. For any t, s 2(0, s],
define

B2ðtÞ ¼ lim
n!1

1

n

Xn
i¼1

XKi

k¼1
kfH0ðtÞ þ b00ZikgYikðtÞ;

b1ðtÞ ¼ lim
n!1

1

n

Xn
i¼1

XKi

k¼1

_kfH0ðtÞ þ b00ZikgYikðtÞ;

Bðt; sÞ ¼ exp

Z t

s

b1ðuÞ
B2ðuÞ

dH0ðuÞ
� �

;

lZðtÞ ¼
limn!1

1
n

Pn
i¼1
PKi

k¼1 ZikkfH0ð ~TikÞ þ b00ZikgYikðtÞBðt; ~TikÞ
B2ðtÞ

;

and

A ¼ lim
n!1

1

n

Xn
i¼1

XKi

k¼1

Z s

0

fZik � lZðtÞgZ0ik _kfH0ðtÞ þ b00ZikgYikðtÞdH0ðtÞ; ð8Þ

R ¼ lim
n!1

1

n

Xn
i¼1

XKi

k¼1

Z s

0

fZik � lZðtÞgdMikðtÞ
XKi

k0¼1

Z s

0

fZik0 � lZðsÞg0dMik0 ðsÞ
" #

;

ð9Þ

Assume that A and S are finite and nonsingular.

THEOREM 1 Under suitable regularity conditions, we have that

n
1
2ðb̂� b0Þ ! Nf0;A�1RðA�1Þ0g ð10Þ

in distribution, as n!1. Moreover, A and S can be consistently estimated by
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Â ¼ 1

n

Xn
i¼1

XKi

k¼1

Z s

0

fZik � �ZðtÞgZ0ik _kfĤðtÞ þ b̂0ZikgYikðtÞdĤðtÞ;

R̂ ¼ 1

n

Xn
i¼1

XKi

k¼1

Z s

0

fZik � �ZðtÞgdM̂ikðtÞ
XKi

k0¼1

Z s

0

fZik0 � �ZðsÞg0dM̂ik0 ðsÞ
" #

;

respectively, where

�ZðtÞ ¼
Pn

i¼1
PKi

k¼1 ZikkfĤð ~TikÞ þ b̂0ZikgYikðtÞB̂ðt; ~TikÞPn
i¼1
PKi

k¼1 kfĤðtÞ þ b̂0ZikgYikðtÞ
;

B̂ðt; sÞ ¼ exp

Z t

s

Pn
i¼1
PKi

k¼1
_kfĤðuÞ þ b̂0ZikgYikðuÞPn

i¼1
PKi

k¼1 kfĤðuÞ þ b̂0ZikgYikðuÞ
dĤðuÞ

 !
;

M̂ikðtÞ ¼ NikðtÞ �
Z t

0

YikðsÞdKfĤðsÞ þ b̂0Zikg:

for s, t 2[0,s].
Similarly, a natural estimator for H0 is Ĥð�Þ ¼ Ĥð�; b̂Þ, which can be shown to

be consistent and converge weakly to a Gaussian process.

3.2. The Cluster Size is Informative

When cluster size is informative, the proposed estimating equations (5) and (6) are
no longer valid. Different methods have been proposed for the marginal analysis
of clustered data when cluster size is informative (e.g. the within-cluster resam-
pling approach of Hoffman, et al. (2001) and the cluster weighted generalized esti-
mating equations approach of Williamson, et al. (2003)). Here like Williamson,
et al. (2003), we propose several weighted estimating equations based on (5) and
(6) for the analysis of clustered events data. To be specific, use the following two
estimating equations for H and b, respectively

Xn
i¼1

1

Ki

XKi

k¼1
½dNikðtÞ � YikðtÞdKfHðtÞ þ b0Zig� ¼ 0; t � 0; Hð0Þ ¼ �1; ð11Þ

Xn
i¼1

1

Ki

XKi

k¼1

Z s

0

Zi½dNikðtÞ � YikðtÞdKfHðtÞ þ b0Zig� ¼ 0: ð12Þ

The large sample results for the resulting estimator b̂ will be established in Theo-
rem 2 below after introducing some notations. For any t, s 2(0, s], define
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B2ðtÞ ¼ lim
n!1

1

n

Xn
i¼1

1

Ki

XKi

k¼1
kfH0ðtÞ þ b00ZigYikðtÞ;

b1ðtÞ ¼ lim
n!1

1

n

Xn
i¼1

1

Ki

XKi

k¼1

_kfH0ðtÞ þ b00ZigYikðtÞ;

Bðt; sÞ ¼ exp

Z t

s

b1ðuÞ
B2ðuÞ

dH0ðuÞ
� �

;

lZðtÞ ¼
lim

n!11
n

Pn

i¼1
1
Ki

PKi

k¼1 ZikfH0ð ~TikÞþb00ZigYikðtÞBðt; ~TikÞ

B2ðtÞ
;

and

A ¼ lim
n!1

1

n

Xn
i¼1

1

Ki

XKi

k¼1

Z s

0

fZi � lZðtÞgZ0i _kfH0ðtÞ þ b00ZigYikðtÞdH0ðtÞ; ð13Þ

R ¼ lim
n!1

1

n

Xn
i¼1

1

Ki

XKi

k¼1

Z s

0

fZi � lZðtÞgdMikðtÞ
1

Ki

XKi

k0¼1

Z s

0

fZi � lZðsÞg0dMik0 ðsÞ
" #

;

ð14Þ

Assume that A and S are finite and nonsingular.

THEOREM 2 Under suitable regularity conditions, we have that

n
1
2ðb̂� b0Þ ! Nf0;A�1RðA�1Þ0g ð15Þ

in distribution, as n!1. Moreover, A and S can be consistently estimated by

Â ¼ 1

n

Xn
i¼1

1

Ki

XKi

k¼1

Z s

0

fZi � �ZðtÞgZ0i _kfĤðtÞ þ b̂0ZigYikðtÞdĤðtÞ;

R̂ ¼ 1

n

Xn
i¼1

1

Ki

XKi

k¼1

Z s

0

fZi � �ZðtÞgdM̂ikðtÞ
1

Ki

XKi

k0¼1

Z s

0

fZi � �ZðsÞg0dM̂ik0 ðsÞ
" #

;

respectively, where
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�ZðtÞ ¼
Pn

i¼1
1
Ki

PKi

k¼1 ZikfĤð ~TikÞ þ b̂igYikðtÞB̂ðt; ~TikÞPn
i¼1

1
Ki

PKi

k¼1 kfĤðtÞ þ b̂0ZigYikðtÞ
;

B̂ðt; sÞ ¼ exp

Z t

s

Pn
i¼1

1
Ki

PKi

k¼1
_kfĤðuÞ þ b̂0ZigYikðuÞPn

i¼1
1
Ki

PKi

k¼1 kfĤðuÞ þ b̂0ZigYikðuÞ
dĤðuÞ

 !
;

M̂ikðtÞ ¼ NikðtÞ �
Z t

0

YikðsÞdKfĤðsÞ þ b̂0Zig:

for s, t 2[0,s].

4. Recurrent Events Data

Let T�ik be the gap time between the (k)1)th and kth events on the ith subject,
where i=1,..., n and k=1,2,.... And let Ci be the corresponding follow-up or cen-
soring time and Zi the p-dimensional vector of covariates. Assume that Ci is inde-
pendent of T�ik (k=1,2,...) conditional on Zi. For i=1,...,n, let Mi be the number
of observed events for subject i, i.e.

PMi

j¼1 T
�
ij � Ci and

PMiþ1
j¼1 T�ij > Ci, where

P
1
0

” 0. Then the observed data consist of ðT�ij : j ¼ 1; . . . ;Mi;Ci;ZiÞ, which are n iid
copies of ðT�j : j ¼ 1; . . . ;M;C;ZÞ.
We formulate the marginal distribution of gap time T�ik with the linear transfor-

mation models. That is

HðT�ikÞ ¼ �b0Zi þ �ik; k ¼ 1; 2; . . . ; i ¼ 1; . . . ; n; ð16Þ

where b is a p-dimensional vector of unknown regression parameters, H is an un-
known monotone increasing function, and �ik is the error term with a known con-
tinuous distribution that is independent of censoring variable Ci and covariate
vector Zi. In addition, (�i1,�i2,...) (i=1,..., n) are n iid random vectors. For each i
and any k „ j, the error terms �ik and �ij are potentially correlated, but assumed
to be exchangeable with a common specified marginal distribution. Let L denote
the common cumulative hazard function for �ik (k=1,2,...; i=1,..., n), i.e.
P ð�ik > tÞ ¼ expf�KðtÞg. If L(t)=exp (t), then (16) specifies the proportional
hazards model for the gap times, which was the model studied by Huang and
Chen (2003).
Like Wang and Chang (1999) and Huang and Chen (2003), we establish a con-

nection between a subset of the observed gap times and clustered events data. A
key observation of Wang and Chang (1999) is that, for individual i and given Ci,
Mi, TþiðMiÞ � Ci �

PMi

j¼1 T
�
ij, the observed complete gap times, T�ij, j=1,...,Mi are

identically distributed, which suggests that we can treat a subset of observed gap

WENBIN LU396



times as clustered events data with informative cluster size. Specifically, define
dik ¼ IðMi � 1Þ, Ki=max(Mi,1), and

Tik ¼ T�ik if dik ¼ 1;i if dik ¼ 0:f

where k=1,...,Ki and i=1,...,n. Then the subset consist of ðTik; dik;ZiÞ (k=1,...,Ki;
i=1,...,n).
Since the first gap time is subject to independent censoring, the estimating equa-

tions proposed by Chen et al. (2002) can be applied to the time-to-the-first-event
data, i.e. ðTi1; di1;ZiÞ, i=1,...,n. Specifically, the estimating equations for H and b
are given by

Xn
i¼1
½dNi1ðtÞ � Yi1ðtÞdKfHðtÞ þ b0Zig� ¼ 0; t � 0; Hð0Þ ¼ �1; ð17Þ

and

Xn
i¼1

Z s

0

Zi½dNi1ðtÞ � Yi1ðtÞdKfHðtÞ þ b0Zig� ¼ 0: ð18Þ

respectively, where Nik(t) and Yik(t) (k=1,...,Ki; i=1,...,n) are the counting and
at-risk processes defined as before. Let b̂ð1Þ be the estimator for b obtained
from (17) and (18). Then b̂ð1Þ is known to be consistent and asymptotically
normal. However, it may lose much efficiency since only the first event times
are used.
As noted by Huang and Chen (2003), the first event time may be replaced by a

random choice from the same cluster. Thus, weighted estimating equations, like
(11) and (12), among different gap times within the same cluster may yield more
efficient estimation. It is easy to show that the limits of 1/n multiplying the left-
hand side of (11) and (12) are the same as those of 1/n multiplying the left-hand
side of (17) and (18) as n goes to infinity. Since the consistency and asymptotic
normality of b̂ð1Þ are determined by the above two limits, the solutions of (11) and
(12) also give the valid estimator for b. In addition, the asymptotic properties of
the resulting estimators can still be summarized in Theorem 2, since the two equa-
tions used here are the same as those used for clustered events data with informa-
tive cluster size.

5. Numerical Results

5.1. Simulations

We carried out a series of simulation studies to evaluate the small-sample perfor-
mance of the methods developed in Sections 3 and 4. For each study, the sample
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size n=100 and the hazard function of error term � is chosen as the form
kðt; rÞ ¼ expðtÞ=f1þ r expðtÞg, with r=0,1 (Dabrowska and Doksum, 1988; Chen
et al.2002). Note that the proportional hazards and proportional odds model cor-
respond to r=0 and r=1, respectively. For r=0, we choose H0(t)=log (t), while
for r=1, H0ðtÞ ¼ logfexpðtÞ � 1g.
For clustered events data, suppose that there were two event times within each clus-

ter. And the corresponding two error terms were generated from Gumbel (1960)’s
bivariate distribution: Fðx1; x2Þ ¼ F1ðx1ÞF2ðx2Þ½1þ hf1� F1ðx1Þgf1� F2ðx2Þg�,
where �1 � h � 1 and F1ðxÞ ¼ F2ðxÞ ¼ 1� expf�Kðx; rÞg. Then the correlation be-
tween �1 and �2 is just h /4. Let Zi ¼ ðZi1;Zi2Þ0 be the covariate vector, where Zi1 were
uniformly distributed on ()1, 1) and Zi2 were Bernoulli with 0.5 success probability.
The regression coefficient was chosen as b=(0.5, )1.0). The censoring times were
generated from the uniform (0, c) distribution with desired level of censoring.
For recurrent events data, the covariates were generated in the same manner as

above. And the regression coefficient was still chosen as b=(0.5, )1.0). The two suc-
cessive gap times were generated from the same Gumbel’s bivariate distribution
considered above. The follow-up times were generated from uniform (0, 7) distribu-
tion. For r=0, it yielded an average of approximately 2.35, 2.50 and 2.76 events per
subject for h=)1, 0 and 1, respectively; while for r=1, it yielded an average of
approximately 2.65, 2.79 and 3.04 events per subject for h=)1, 0 and 1, respectively.
Tables 1 and 2 summarize the results on the estimation of regression coefficients.

Each entry in the table was based on 500 simulated datasets. The simulation
results show that the proposed methods perform well in small samples. The
parameter estimators are essentially unbiased and the means of the estimated stan-
dard error are quite close to the empirical standard errors of the parameter
estimators. The 95% confidence intervals also have reasonable coverage rate.

5.2. Application to the Bladder Cancer Data

We also apply our estimation procedure to the well-known bladder cancer data
originally reported by Byar (1980). The dataset was obtained from a randomized
clinical trial assessing the effect of treatment thiotepa on the recurrence of bladder
tumors. There were 38 patients in the thiotepa group with a total of 45 observed
recurrence times, and 48 placebo patients with a total 87 observed recurrences.
Here the gap times between any successive recurrences are modeled with the mar-
ginal linear transformation models (16) with three covariates: treatment indicator
(1 for thiotepa and 0 for placebo), number of initial tumors and size of the largest
initial tumor. The extreme value and logistic distributions (r=0 or 1, respectively)
are chosen for the error term in (16).
Table 3 displays the results of our analysis. We find that the results for the pro-

portional hazards model (r=0) are similar to those reported in Huang and Chen
(2003), and are also consistent with those for the proportional odds model (r=1).
In both cases, the number of initial tumor appears to be significant factor while
the size of initial tumor does not appear to be influential.
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Table 1. Simulation results for clustered events dataa.

Model h Censoring

b1=0.5 b2=)1.0

Bias SD SE CP Bias SD SE CP

r = 0 0 25% 0.014 0.149 0.145 94.8 )0.012 0.179 0.174 95.0

50% 0.018 0.183 0.177 93.0 )0.014 0.212 0.212 95.4

1 25% 0.012 0.148 0.145 95.0 )0.011 0.178 0.175 95.4

50% 0.008 0.181 0.177 93.8 )0.010 0.212 0.212 96.0

r = 1 0 25% 0.020 0.255 0.246 93.6 )0.015 0.303 0.291 93.4

50% 0.019 0.269 0.256 93.6 )0.014 0.296 0.302 96.2

1 25% 0.011 0.254 0.246 92.8 )0.011 0.301 0.291 95.2

50% 0.008 0.257 0.257 94.0 )0.017 0.294 0.301 96.8

aSD, sample standard deviation; SE, mean of estimated standard error; CP, empirical coverage probability

of 95% confidence interval for b.

Table 2. Simulation results for recurrent events dataa.

Model h

b1=0.5 b2=)1.0

Bias SD SE CP Bias SD SE CP

r = 0 )1 0.010 0.172 0.170 94.8 )0.022 0.219 0.210 95.2

0 0.006 0.190 0.174 91.6 )0.019 0.218 0.214 94.8

1 0.002 0.200 0.181 92.0 0.012 0.242 0.221 93.0

r = 1 )1 )0.002 0.280 0.261 93.0 )0.013 0.334 0.313 92.2

0 )0.013 0.316 0.304 93.6 )0.000 0.379 0.367 94.2

1 0.017 0.351 0.315 91.0 0.001 0.405 0.377 92.6

aSD, sample standard deviation; SE, mean of estimated standard error; CP, empirical coverage probability

of 95% confidence interval for b.

Table 3. Marginal regression analysis of Bladder cancer data.

Error distribution Covariate Parameter estimate Estimated standard error 95% confidence interval

r = 0 Treatment )0.566 0.306 ()1.166, 0.034)
Initial number 0.221 0.070 (0.084, 0.358)

Initial size 0.049 0.088 ()0.123, 0.221)
r = 1 Treatment )0.768 0.430 ()1.611, 0.075)

Initial number 0.329 0.103 (0.127, 0.531)

Initial size 0.088 0.127 ()0.161, 0.337)
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6. Discussion and Further Work

Although Cox-regression model is widely used for the analysis of survival data be-
cause of its simplicity, it is desirable to consider a more general class of semipara-
metric regression models, such as the linear transformation models, for several
reasons. First, the proportional hazards model may not be appropriate for model-
ing some survival data as we mentioned before. Secondly, the linear transforma-
tion models generalize the Box–Cox transformation model with Gaussian error,
whereas the hazard function modeled by the Cox-regression has no practical inter-
pretation when the censored response variable is not survival time.
In this article, we formulate the marginal distribution of multivariate event times

or gap times with the linear transformation model. And motivated by the recent
work of Chen et al. (2002), the proposed estimating equation approach has the
advantage of dealing with a large class of semiparametric regression models for
multivariate event time data in a unified way. It does not require the covariate
independent censoring assumption. The estimating equations are relatively simple
to implement and allow a rigorous development of asymptotic normality with an
explicit formula for the variance–covariance matrix, which can be consistently
estimated by the usual plug-in method.
For theoretical and computational simplicity, we only considered independence

working assumptions in the construction of estimating equations. More efficient esti-
mator can be derived by taking into account the correlation structure. In addition,
the approach proposed in this paper is limited to time-independent covariates only. A
primary reason for the limitation is that the transformation formulation only handles
time-independent covariates. These topics certainly warrant future research.

7. Appendix

n this appendix, we prove the theorems established in Sections 3 and 4. We follow
the main steps of the Appendix of Chen et al. (2002), which deals with the linear
transformation model for the univariate failure time data. To avoid delicate tech-
nical issues associated with smoothness and tail fluctuation, we assume that
related functions are sufficiently smooth and make similar tail restrictions as in
Chen et al. (2002).

Proof of Theorem 1 Let Ĥ0ðtÞ ¼ Ĥðt; b0Þ. We first show that Ĥ0 is consistent.
Since Ĥ0 is monotone, it suffices to show that its limiting function is unique. Sup-
pose that ~H is a limiting function. By (5) and the law of large numbers, it must
satisfy

~NðtÞ ¼
Z t

0

mðs; b0; ~HÞd ~HðsÞ:

where ~NðtÞ ¼ limn!1ð1=nÞ
Pn

i¼1
PKi

k¼1 NikðtÞ and
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mðt; b0; ~HÞ ¼ lim
n!1

1

n

Xn
i¼1

XKi

k¼1
YikðtÞkf ~HðtÞ þ b0

0Zikg:

This implies that ~H is differentiable and must satisfy

d ~HðtÞ
dt
¼ d ~NðtÞ

dt

�
mðt; b0; ~HÞ; ðA:1Þ

which is a smooth function of t and ~HðtÞ. Since (A.1) is a Cauchy problem, its
solution exists and is unique under local smoothness assumptions (Reinhard, 1987,
Theorem 3.4.1). For t in a compact subset of the interior of the support of ~T, we
can show that the derivative of Ĥðt; bÞ with respect to b is bounded in a neighbor-
hood of b0. Therefore, Ĥðt; bnÞ converges to H0(t) provided bn converges to b0. In
particular, Ĥðt; b̂Þ consistently estimates H0(t) provided b̂ is a consistent estimator.
Furthermore, let U(b) be the left-hand side of equation (7). And let _uðbÞ denote the
derivative of U(b) with respect to b. By repeatedly applying the uniform law of large
numbers (Pollard, 1990), we can show that, for b in a neighborhood of b0, U(b) and
_uðbÞ converge uniformly to u(b) and _uðbÞ, where _uðbÞ is the derivative of u(b).
Suppose that _uðb0Þ is nonsingular. Then there exist lower and upper bounds r

and R, which are bounded away from 0 and ¥ in probability, such that, for b1

and b2 in a neighborhood of b0, rkb1 � b2k � kUðb1Þ �Uðb2Þk � Rkb1 � b2k.
Since Uðb̂Þ ¼ 0 and Uðb0Þ ! uðb0Þ ¼ 0 as n fi ¥, it follows that b̂ converges to
b0 in probability.
Let a > 0 and b be fixed finite numbers. Define

k�fH0ðtÞg ¼ Bðt; aÞ; K�ðtÞ ¼
Z t

b

k�ðsÞds:

where B(t,s) is defined before Theorem 1. Mimicking Steps A2 and A3 in the
Appendix of Chen et al. (2002), we have

K�fĤ0ðtÞg � K�fH0ðtÞg ¼
1

n

Xn
i¼1

XKi

k¼1

Z t

0

k�fH0ðsÞg
B2ðsÞ

dMikðsÞ þ opðn�1=2Þ; ðA:2Þ

and

@

@b
Ĥðt; bÞjb¼b0

¼ �
Z t

0

Bðs; tÞmzðsÞ
B2ðsÞ

dH0ðsÞ þ opð1Þ; ðA:3Þ

where

mzðtÞ ¼ lim
n!1

1

n

Xn
i¼1

XKi

k¼1
YikðtÞZik

_kfH0ðtÞ þ b0
0Zikg:
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Then it follows the law of large numbers that

1

n

@

@b
UðbÞjb¼b0

¼�1
n

Xn
i¼1

XKi

k¼1
ZikkfĤð ~Tik;b0Þþb00Zikg Zikþ

@

@b
Ĥðt;bÞjb¼b0

� �0
þopð1Þ

¼�1
n

Xn
i¼1

XKi

k¼1
ZikkfĤð ~Tik;b0Þþb00Zikg Zik�

Z ~Tik

0

Bðs; ~TikÞ
mzðsÞ
B2ðsÞ

dH0ðsÞ
 !0

þopð1Þ

¼�1
n

Xn
i¼1

XKi

k¼1

Z s

0

fZik�lZðtÞgZ0ik _kfH0ðtÞþb00ZikgYikðtÞdH0ðtÞþopð1Þ

¼�Aþopð1Þ

where A is defined in (8).
And following Step A4 in the Appendix of Chen et al. (2002), we have

Uðb0Þ

¼
Xn
i¼1

XKi

k¼1

Z s

0

ZikdMikðtÞ�
Xn
i¼1

XKi

k¼1
Zik½KfĤ0ð ~TikÞþb00Zikg�KfH0ð ~TikÞþb00Zikg�

¼
Xn
i¼1

XKi

k¼1

Z s

0

ZikdMikðtÞ�
ZikkfH0ð ~TikÞþb00Zikg

k�fH0ð ~TikÞg
½K�fĤ0ð ~TikÞg�K�fH0ð ~TikÞg�

� �

þopðn1=2Þ

¼
Xn
i¼1

XKi

k¼1

Z
ik

0

dMikðtÞ

�
Xn
i¼1

XKi

k¼1

ZikkfH0ð ~TikÞþb00Zikg
k�fH0ð ~TikÞg

1

n

Xn
i0¼1

XKi

k0¼1

Z ~Tik

0

k�fH0ðtÞg
B2ðtÞ

dMi
0 ðtÞþopðn1=2Þ

¼
Xn
i¼1

XKi

k¼1

Z s

0

fZik�lZðtÞgdMikðtÞþopðn1=2Þ

It then follows that n�1=2Uðb0Þ ! Nð0;RÞ, where S is defined in (9). Therefore,
Theorem 1 holds by the Taylor expansion and some empirical process approxima-
tion techniques.

Proof of Theorem 2 The proof of Theorem 2 is much similar as that given in A.1.
And it is omitted here.
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