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Abstract. In many clinical studies where time to failure is of primary interest, patients may fail or die from

one of many causes where failure time can be right censored. In some circumstances, it might also be the

case that patients are known to die but the cause of death information is not available for some patients.

Under the assumption that cause of death is missing at random, we compare the Goetghebeur and Ryan

(1995, Biometrika, 82, 821–833) partial likelihood approach with the Dewanji (1992, Biometrika, 79,

855–857)partial likelihood approach. We show that the estimator for the regression coefficients based on

the Dewanji partial likelihood is not only consistent and asymptotically normal, but also semiparametric

efficient. While the Goetghebeur and Ryan estimator is more robust than the Dewanji partial likelihood

estimator against misspecification of proportional baseline hazards, the Dewanji partial likelihood esti-

mator allows the probability of missing cause of failure to depend on covariate information without the

need to model the missingness mechanism. Tests for proportional baseline hazards are also suggested and

a robust variance estimator is derived.
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1. Introduction

In a typical survival data analysis, a group of individuals are observed from some
entry time until the occurrence of some particular event such as death. Often the
observation of time to occurrence of the event is right-censored for some individuals
as a result of staggered entry, finite study duration, withdrawal from the study, or
loss to follow-up. Sometimes, the event can be classified into one of several cate-
gories, typically causes of death or other failures. For example, in a clinical trial that
compares different therapies for breast cancer, interest may focus on death from
breast cancer even though patients may die from other causes. In such cases, the
theory of competing risks can be applied to assess the effects of prognostic factors on
the cause-specific hazard of interest, for example, perform a standard proportional
hazards analysis treating failure types which are not of interest as censored obser-
vations (Prentice and Kalbfleisch, 1978; Cox and Oakes, 1984). In some circum-
stances, patients are known to die but the cause of death information is not available
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for some individuals, for example, whether death is attributable to the cause of
interest or other causes may require documentation with information that is not
collected or lost or cause may be difficult for investigators to determine for some
patients (Anderson et al., 1996). In such cases, excluding the missing observations
from the analysis or treating them as censored may yield biased estimates and
erroneous inferences. Under the assumption that the probability of missing cause of
death may depend on time but not on covariates and that the baseline cause-specific
hazards are proportional, Goetghebeur and Ryan (1995) proposed an approach that
utilizes two types of partial likelihood, L and L�. They showed that the resulting
estimator is robust against misspecification of the proportional baseline hazards
assumption and retains high efficiency with respect to the estimator based on the
Dewanji partial likelihood L� only. However, when the missingness probability
depends also on covariates, the Goetghebeur and Ryan method needs to model the
missingness mechanism explicitly (e.g., assuming a logistic model) and estimate the
associated parameters along with other model parameters. Therefore, their estimator
might be biased under the misspecification of the missingness mechanism.
The partial likelihood L� has been studied by many investigators (cf., Holt, 1978;

Kalbfleisch and Prentice, 1980; Dewanji, 1992). We show that the estimator based on
L� is not only consistent and asymptotically normal but also semiparametric efficient
and does not require modeling of the missingness mechanism even when missingness
depends on covariate information.
Notation and assumptions similar to those used in Goetghebeur and Ryan (1995)

but extended to cover more general cases are described in Section 2. In Section 3, we
show that the estimator based on the Dewanji partial likelihood is semiparametric
efficient. In Section 4, we demonstrate that the Goetghebeur and Ryan estimator is
more robust than the Dewanji partial likelihood estimator against misspecification of
proportional baseline hazards, and suggest approaches to model the relationship
between two baseline hazards. In Section 5, robust variance estimator is derived for
the two partial likelihood estimators under misspecification of the relationship
between two baseline hazards. In Section 6, we show that the Dewanji partial like-
lihood estimator is robust against misspecification of the missingness mechanism
provided that cause of failure is missing at random. The article is concluded by a
brief discussion.

2. Notation and Assumptions

In this article, we consider a sample of n independent individuals, each of whom can
fail or die from one of two possible causes which we refer to as cause two and cause
one, respectively, or can be subject to a noninformative censoring mechanism.
Typically, the complete data for individual i can be summarized as ðTi;Di;AiÞ, where
Ti is the time to failure or censoring; Di is the failure-censoring indicator taking
values 2, 1 and 0 as the ith individual died from cause two, died from cause one, or
was censored, respectively. The prognostic covariates Ai are related to the
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cause-specific hazards and might be time dependent. Furthermore, let
kdðtjaÞ; d ¼ 2; 1; 0 be the cause-specific hazards for failures from cause two, failures
from cause one, or censored observations, respectively.
Suppose that the two cause-specific hazards for failures can be modeled by

kdðtjaÞ ¼ kðtÞrdðh; t; aÞ; d ¼ 1; 2; ð1Þ
where h is the unknown vector of regression coefficients. We assume that all infor-
mation about time common to the two cause-specific hazards has been incorporated
into kðtÞ and without loss of generality, we let kðtÞ be the unspecified baseline hazard
for failures from cause two. No assumptions are made on the cause-specific hazard
of censoring or the marginal distribution of covariates. When the competing risks are
independent, the cause-specific hazards will be the same as the net-specific hazards,
which is implicitly assumed in the sequel.
To make connections with the notation used in Goetghebeur and Ryan (1995), we

identify

k2ðtjZ;XÞ ¼ kðtÞe/Z; k1ðtjZ;XÞ ¼ kðtÞenþqX:

Therefore, A ¼ ðZ;XÞ, h ¼ ð/; q; nÞ, r2ðh; t; aÞ ¼ e/z, r1ðh; t; aÞ ¼ enþqx.
We could have formulated the model with separate regression parameter vectors

for the two failure causes as done in Goetghebeur and Ryan (1995). There may be
circumstances, however, where some parameters are common to the two failure
causes. For instance, we might be interested in looking at whether the effects of
covariates are the same or different across failure types (e.g., the example of time in
power for leaders of countries, Chapter 6, Allison, 1995). Therefore, by formulating
the model with one parameter vector which contains all different parameters
(Andersen et al., 1997, p. 478), we can test the hypothesis of equal covariate effects
across different failure types, say, using a likelihood ratio test.
Note that we allow the link functions frdð�Þ; d ¼ 2; 1g to depend on both time and

covariates through a finite set of parameters. This is a generalization of proportional
baseline hazards. For example, if k2ðtjz; xÞ ¼ kðtÞe/z, k1ðtjz; xÞ ¼ kðtÞenþctþqx, then
the baseline hazard functions for the two failure types are k2ðtÞ ¼ kðtÞ,
k1ðtÞ ¼ kðtÞenþct, respectively. Therefore, the ratio of the two baseline hazards is
equal to k1ðtÞ=k2ðtÞ ¼ enþct. If c 6¼ 0, then the ratio is loglinear over time. Another
useful example is given by the piecewise constant baseline hazards ratio.
In some circumstances, cause of failure might be missing for some individuals, in

which case, we useRi as the complete-case indicator for individual i, taking values one
or zero as cause of failure is known or missing. We assume that cause of failure is
missing at random in the sense of Rubin (1976), so that the probability of having a
complete case does not depend on the actual cause of failure that might be missing, i.e.

PðRi ¼ 1jTi;Di;Ai;Di > 0Þ ¼ pðTi;AiÞ; ð2Þ
where p is an unknown function of time and covariates only, taking values in the unit
interval. Note that the Goetghebeur and Ryan method is based on the more
restrictive missing-at-random assumption which allows the function p to depend on
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time but not on covariates. If the function p depends on covariates, their method
requires joint modeling of missingness mechanism and competing risks. With
missing cause of failure, the observed data for the ith individual can be summarized
as fRi;Ti; IðDi ¼ 0Þ;RiIðDi ¼ 1Þ;RiIðDi ¼ 2Þ;Aig.
For an uncensored individual, one of the following three types of events can

occur at the time of failure, i.e., failure from cause one, failure from cause two, or
failure with an unknown cause. Let fNi1ðtÞ;Ni2ðtÞ;NiuðtÞg denote the counting
processes of failures, then by (1) and (2), the corresponding intensity processes are
given by

k�i1ðt;AiÞ ¼YiðtÞpðt;AiÞr1ðh0; t;AiÞkðtÞ;
k�i2ðt;AiÞ ¼YiðtÞpðt;AiÞr2ðh0; t;AiÞkðtÞ;
k�iuðt;AiÞ ¼YiðtÞpcðt;AiÞr�ðh0; t;AiÞkðtÞ;

respectively, where YiðtÞ ¼ IðTi � tÞ is the at-risk indicator,

pcðt;AiÞ ¼ 1� pðt;AiÞ;

r�ðh; t;AiÞ ¼ r1ðh; t;AiÞ þ r2ðh; t;AiÞ;
and h0 denotes the true value of h. Let Ni� ¼ Ni1 þNi2 þNiu denote the counting
process of overall failure, then its intensity process is given by

k�i�ðt;AiÞ ¼ k�i1ðt;AiÞ þ k�i2ðt;AiÞ þ k�iuðt;AiÞ ¼ YiðtÞr�ðh0; t;AiÞkðtÞ:
This will be used to motivate the estimation of cumulative baseline hazard for cause
two, KðtÞ ¼ R t

0 kðsÞds.
Suppose that the missingness mechanism is modeled by pðt;AiÞ ¼ pðw; t;AiÞ, then

applying the arguments of Cox (1975), the partial likelihood based on the condi-
tional probabilities of a specific event given that one event of that type occurs from
the risk set at that time is given by

L ¼
Y

t�0

Yn

i¼1

Y2

d¼1

pðw; t;AiÞrdðh; t;AiÞPn
j¼1 YjðtÞpðw; t;AjÞrdðh; t;AjÞ

( )dNidðtÞ
2

4

3

5

� pcðw; t;AiÞr�ðh; t;AiÞPn
j¼1 YjðtÞpcðw; t;AjÞr�ðh; t;AjÞ

( )dNiuðtÞ
;

where
Q

t�0 denotes product-integration (Gill and Johansen, 1990). The more
informative partial likelihood based on the conditional probabilities of an event of
specified type, given that one event occurs, but without conditioning on the type of
event, is given by

L� ¼
Y

t�0

Yn

i¼1

Y2

d¼1

pðw; t;AiÞrdðh; t;AiÞPn
j¼1 YjðtÞr�ðh; t;AjÞ

( )dNidðtÞ
2

4

3

5 pcðw; t;AiÞr�ðh; t;AiÞPn
j¼1 YjðtÞr�ðh; t;AjÞ

( )dNiuðtÞ
:
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Note that the second partial likelihood can be factorized into two parts, one related
to the missingness mechanism, and the other corresponding to the competing risks
model, i.e., L�ðw; hÞ ¼ L�ðwÞL�ðhÞ, where

L�ðwÞ ¼
Y

t�0

Yn

i¼1

pðw; t;AiÞfdNi2ðtÞþdNi1ðtÞgpcðw; t;AiÞdNiuðtÞ;

and

L�ðhÞ ¼
Y

t�0

Yn

i¼1

Q2
d¼1 rdðh; t;AiÞdNidðtÞ

n o
r�ðh; t;AiÞdNiuðtÞ

Pn
j¼1 YjðtÞr�ðh; t;AjÞ

n odNi�ðtÞ :

Therefore, if the parameters modeling the missingness mechanism, w, and those for
the competing risks model, h, are separate, one can estimate h based on L�ðhÞ only.
On the contrary, the function pð�Þ can not be factorized out of the partial likeli-

hood L unless it does not depend on covariates Ai, in which case, Lðw; hÞ reduces to
LðhÞ, where

LðhÞ ¼
Y

t�0

Yn

i¼1

Y2

d¼1

rdðh; t;AiÞPn
j¼1 YjðtÞrdðh; t;AjÞ

( )dNidðtÞ
2

4

3

5 r�ðh; t;AiÞPn
j¼1 YjðtÞr�ðh; t;AjÞ

( )dNiuðtÞ
:

3. Semiparametric Efficiency

Let fr0dðh; t; aÞ; r00dðh; t; aÞg denote the first two partial derivatives of rdðh; t; aÞ with
respect to h, and with similar notation defined for the partial derivatives of r�ðh; t; aÞ,
we write

mðh; tÞ ¼
Pn

j¼1 YjðtÞr0�ðh; t;AjÞ
Pn

j¼1 YjðtÞr�ðh; t;AjÞ ;

then the score vector corresponding to the partial likelihood L�ðhÞ is

UðhÞ ¼
Xn

i¼1

X2

d¼1

Z
r0dðh; t;AiÞ
rdðh; t;AiÞ dNidðtÞ þ

Z
r0�ðh; t;AiÞ
r�ðh; t;AiÞ dNiuðtÞ �

Z
mðh; tÞdNi�ðtÞ

" #

:

Note that Uðh0Þ is the realization of a martingale process at t ¼ 1, and by mar-
tingale theory (Fleming and Harrington, 1991), under certain regularity conditions,
the resulting estimator of h from solving the estimating equations, UðhÞ ¼ 0, denoted
by ĥn, is consistent and asymptotically normal (c.f., Andersen and Gill, 1982). It is
also straightforward to show that, when evaluated at the truth, the observed
information matrix, IðhÞ ¼ �@UðhÞ=@h, has the same expectation as the predictable
covariation process of the score vector, i.e., EfIðh0Þg ¼ Ef Uðh0Þ;Uðh0Þh ig. Conse-
quently, the variance of ĥn can be estimated by I�1ðĥnÞ.
Using semiparametric theory (e.g., Newey, 1990; Bickel et al., 1993; Robins et al.,

1994), we can further show that the influence function of the Dewanji partial like-
lihood estimator, ĥn, is the most efficient influence function among all regular and
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asymptotically linear (RAL) estimators for h, so that ĥn is semiparametric efficient
within the class of RAL estimators. The proof is outlined in the Appendix A.

4. Proportional Baseline Hazards

Goetghebeur and Ryan (1995) shows that there exists situations where the score test
based on their estimating equations is valid while the score test derived from the
efficient partial likelihood is biased. Specifically, they considered the score test for
/ ¼ 0 in the following model

k2ðtjzÞ ¼ kðtÞe/z; k1ðtjzÞ ¼ kðtÞenðtÞ;
and score test statistics were constructed under the misspecified model of propor-
tional baseline hazards

k2ðtjzÞ ¼ kðtÞe/z; k1ðtjzÞ ¼ kðtÞen� :
Assume that cause of failure is missing at random and the missingness probability
depends only on t, then as shown in Appendix 1 of their paper, under the null
hypothesis, the Goetghebeur and Ryan score statistic has expectation zero, i.e.,
Eð@‘=@/Þ ¼ 0, while the score statistic derived from the Dewanji partial likeli-
hood has non-zero expectation, i.e., Eð@‘�=@/Þ 6¼ 0, where ‘ and ‘� are the log
partial likelihoods corresponding to LðhÞ and L�ðhÞ, respectively. In fact, the
compensator of the Dewanji score statistic divided by sample size n converges in
probability to

D ¼
Z

en
� � enðtÞ

1þ en
�

� �

lZðtÞPðT � tÞpðtÞkðtÞdt;

where en
�
is the probability limit of e

~n�n ¼ ðPi

R
dNi1Þ=ð

P
i

R
dNi2Þ, or

en
� ¼

R
enðtÞPðT � tÞpðtÞkðtÞdt� �

R
PðT � tÞpðtÞkðtÞdt� �

:

Similarly, lZðtÞ is the probability limit of mZðtÞ ¼
P

i ZiYiðtÞ=
P

i YiðtÞ, or
lZðtÞ ¼ EfZPðT � tjZÞg=PðT � tÞ:

Note that if the censoring distribution does not depend on Z, then by the assumption
of noninformative censoring and independent competing risks, under the null
hypothesis, PðT � tjZÞ ¼ PðT2 � tjZÞPðT1 � tjZÞPðC � tjZÞ ¼ PðT2 � tÞPðT1 � tÞ
PðC � tÞ ¼ PðT � tÞ does not depend on Z, hence lZðtÞ ¼ EðZÞ does not depend on
t, so that D ¼ 0, which implies that the efficient score statistic is asymptotically
unbiased. A small scale simulation confirmed these results.
It is interesting to note that although the Goetghebeur and Ryan score test for/ ¼ 0

is unbiased in this case, if the true value /0 of / deviates from zero, then the
Goetghebeur andRyan score statistic for/ ¼ /0ð6¼ 0Þ and hence theGoetghebeur and
Ryan estimator, ~/n, will be biased. To see this, let h ¼ ð/; nÞ, and assume ~hn ¼ ð~/n;

~nnÞ
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solve the Goetghebeur and Ryan estimating equation, TðhÞ ¼ ð@‘=@/; @‘�=@nÞ ¼ 0,

then, under suitable regularity conditions, ~hn !p ~h ¼ ð~/; ~nÞ, where ~h satisfies
limn!1 n�1TðhÞ ¼ 0.
Consider the special case where the covariate Z � Bernoullið0:5Þ. Given Z, time to

failure from cause two, T2, and time to failure from cause one, T1, are conditionally
independent, where T2 follows an exponential distribution with hazard
k2ðtjzÞ ¼ ke/z, and T1 follows a Gompertz distribution with hazard k1ðtjzÞ ¼ kenþct.
For simplicity, assume there is no censoring. Let T ¼ minðT2;T1Þ be the observed
failure time, and D ¼ 2 or 1 indicate the cause of failure. In addition, assume cause of
failure is missing completely at random, i.e., PðR ¼ 1jT;D;ZÞ � p. For k ¼ 1,
/ ¼ 0:8, n ¼ �1, c ¼ 1, and p ¼ 0:5, the estimating equations yield ~/ ¼ 0:8051,
indicating bias of the Goetghebeur and Ryan estimator.
Similar arguments can be applied to the Dewanji partial likelihood approach. For

the special case described above, the Dewanji partial likelihood estimator of /
converges in probability to /� ¼ 0:8482, indicating a larger bias compared to the
Goetghebeur and Ryan estimator.
The bias of the Dewanji partial likelihood estimator results from exploitation of

the information that type one failures provide about / through the assumption
relating the two baseline cause-specific hazards, which is the very part of the model
being misspecified. The better we model the relationship between two baseline
hazards, the more precise the Dewanji partial likelihood estimator will get. The
multiple imputation method proposed by Lu and Tsiatis (2001) provides a simple
way to estimate the two baseline hazards, where we first treat cause two as the cause
of interest to get an estimate for k2ðtÞ ¼ kðtÞ, then treat cause one as the cause of
interest to get an estimate for k1ðtÞ. Examination of the plot of k̂1ðtÞ versus k̂2ðtÞmay
aid us in choosing a plausible parametric model for the ratio of two baseline hazards,
for example, log-polynomial or piecewise constant. The score statistic similar to that
in Grambsch and Therneau (1994) can then be used to test c ¼ 0 in the parametric
model, nðtÞ ¼ nþ cgðtÞ, for some given function of time gð�Þ.

5. Robust Variance Estimator

When the model (1) is incorrect, one can apply the techniques used in the proofs of
Lemma 3.1 and Theorem 4.2 of Anderson and Gill (1982) to show that, under
sufficient regularity conditions, the Dewanji partial likelihood estimator ĥn converges
in probability to a vector of constants h�, where h� is the unique solution to the
system of equations

X2

d¼1

Z
E

r0dðh; t;AÞ
rdðh; t;AÞ � lðh; tÞ

� �

YðtÞpðt;AÞkdðtjAÞ
� �

dt

þ
Z

E
r0�ðh; t;AÞ
r�ðh; t;AÞ � lðh; tÞ

� �

YðtÞpcðt;AÞk�ðtjAÞ
� �

dt ¼ 0;
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where

lðh; tÞ ¼ EfYðtÞr0�ðh; t;AÞg
EfYðtÞr�ðh; t;AÞg ;

and fkdðtjAÞ; d ¼ 1; 2g are the true cause-specific hazards, k�ðtjAÞ ¼ k1ðtjAÞþ
k2ðtjAÞ. A specific example is given in Section 4.
Now, let

K̂ðh; tÞ ¼
Z t

0

P
dNj�ðsÞP

YjðsÞr�ðh; s;AjÞ
be the Breslow estimate of the cumulative baseline hazard for failures from cause two
(c.f., Section 4, Goetghebeur and Ryan, 1995), and define

WiðhÞ ¼
X2

d¼1

Z
r0dðh; t;AiÞ
rdðh; t;AiÞ dNidðtÞ þ

Z
r0�ðh; t;AiÞ
r�ðh; t;AiÞ dNiuðtÞ �

Z
mðh; tÞdNi�ðtÞ

�
Z

r0�ðh; t;AiÞ �mðh; tÞr�ðh; t;AiÞ
� �

YiðtÞdK̂ðh; tÞ;

then closely following Lin and Wei (1989), one can show that the random vector
n1=2ðĥn � h�Þ is asymptotically normal with mean 0 and with a covariance matrix that
can be consistently estimated by V̂ðĥnÞ ¼ Â�1ðĥnÞB̂ðĥnÞÂ�1ðĥnÞ, where
ÂðhÞ ¼ n�1IðhÞ, B̂ðhÞ ¼ n�1

P
WiðhÞ�2.

For the Goetghebeur and Ryan estimator ~hn ¼ ð~/n; ~qn; ~nnÞ, similar arguments can
be used to show that, under suitable regularity conditions, ~hn converges in proba-
bility to a vector of constants ~h ¼ ð~/; ~q; ~nÞ, where ~h is the unique solution to a system
of estimating equations, with a specific example provided by Section 4. The robust
variance estimator for n1=2ð~hn � ~hÞ is given by R̂ð~hnÞ ¼ Ĉ�1ð~hnÞD̂ð~hnÞĈ�1ð~hnÞ, where
ĈðhÞ ¼ n�1T0ðhÞ, D̂ðhÞ ¼ n�1

P
KiðhÞ�2, and KiðhÞ is a three-component column

vector with components corresponding to / and q similar to those given by Equation
(6) of Goetghebeur and Ryan (1995) but with the counting processes subtracted
by their estimated compensators based on the partial likelihood L, and the com-
ponent corresponding to n is the same as that of WiðhÞ. Note we have assumed that
the probability of missing cause of failure does not depend on covariate information,
otherwise, the system of estimating equations, TðhÞ ¼ 0, are biased as shown in the
next section, in which case, we need to model the missingness mechanism in addition
to the competing risks model.

6. Missingness Mechanism

It is apparent from the factorization of L�ðh;wÞ in Section 2 that the estimating
equations based on the efficient partial likelihood L�ðhÞ yield consistent parameter
estimator without the need to model the missingness mechanism provided that cause
of failure is missing at random. In contrast, when the missingness depends on

LU AND TSIATIS36



covariates, the partial likelihood Lðh;wÞ does not permit a separation of parameters
of interest for the competing risks model, h, from the nuisance parameters for the
missingness mechanism, w, and the estimating equations based on the partial like-
lihood LðhÞ alone are biased. For example, consider the model for the two cause-
specific hazards k2ðtjzÞ ¼ kðtÞe/z, k1ðtjzÞ ¼ kðtÞen, and the model for the mechanism
of missing cause of failure, PðR ¼ 1jT ¼ t;Z ¼ z;D ¼ d;D > 0Þ ¼ pðt; zÞ, and sup-
pose that the missingness model was misspecified as pðt; zÞ ¼ pðtÞ so that the esti-
mating equations, TðhÞ ¼ ð@‘=@/; @‘�=@nÞ ¼ 0, were used. Under suitable regularity
conditions, the estimator ~hn ¼ ð~/n;

~nnÞ converges in probability to ~h ¼ ð~/; ~nÞ, where
~h satisfies limn!1 n�1TðhÞ ¼ 0.
For example, consider the case where Z � Bernoullið0:5Þ. Given Z ¼ z, T2 and T1

are conditionally independent with k2ðtjzÞ ¼ ke/z, k1ðtjzÞ ¼ ken, where k ¼ 1,
/ ¼ 0:8, and n ¼ 1. Assume that there is no censoring. Let T ¼ minðT2;T1Þ be the
observed failure time, and D ¼ 2 or 1 indicate the cause of failure. In addition,
assume that cause of failure is missing at random with pðt; zÞ ¼ pðzÞ, where
pð1Þ ¼ 0:8, pð0Þ ¼ 0:5. Then ~/ ¼ 0:6876, so that biasð~/nÞ ! �0:1124. A small scale
simulation confirmed this theoretical result.

7. Discussion

Since the work of Goetghebeur and Ryan (1995), there have been several papers
concerning the problem of hypothesis testing or parameter estimation when some
failure types are missing. For example, Flehinger et al. (1998) developed a 2-stage
approach for the situation in which systems are subject to independent competing
risks and the hazards of various risks are proportional to each other. Their approach
is applicable when there is a second stage of definitive diagnosis for a small sample of
missing causes of failure. Recently, Lu and Tsiatis (2001) and Tsiatis et al. (2002)
addressed the problem using multiple imputation method, where they postulate a
parametric model for the probability of a failure from cause of interest given a failure
occurred and estimate the parameters from complete cases. Theoretically, the per-
formance of the multiple imputation estimator depends on the validity of the
parametric model, although their simulation results suggest the approach is quite
robust against model misspecification. For situations where one observes a set of
possible failure types containing the true type if a failure type is not observed,
Dewanji and Sengupta (2003) considered the EM algorithm and proposed a Nelson–
Aalen type estimator when certain information on the conditional probability of the
true type given the set of possible failure types is available.
Goetghebeur and Ryan (1995) partial likelihood approach has an appealing fea-

ture that individuals with known failure types make the same contributions as they
would to a standard proportional hazards analysis, while contributions from indi-
viduals with unknown failure types are weighted according to the probability that
they failed from the cause of interest. In comparison with the Dewanji partial like-
lihood approach, their approach is quite robust against misspecification of
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proportional baseline hazards and reduces to the usual estimator when there is no
missing causes of failure. However, their approach is not as efficient as the Dewanji
partial likelihood approach and may become complicated and subject to bias when
probability of missing cause of failure depends on covariate information. It would be
interesting to develop doubly robust estimators which remain valid when either the
parametric model for the missingness mechanism or the parametric model relating
the two competing causes of failure are correctly specified.
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Appendix A: Proof of Semiparametric Efficiency of the Dewanji Partial Likelihood

Estimator

The model is characterized by the q� 1 parameter of interest h and the infinite
dimensional nuisance parameters fkðtÞ; k0ðtjaÞ; pAðaÞ; pðt; aÞg, where
pAðaÞ ¼ PðA ¼ aÞ. Similar to Newey (1990), Bickel et al. (1993), and Robins et al.
(1994), we consider the Hilbert space H of all q-dimensional mean zero and square-
integrable measurable functions of the observed data for a typical subject
fR;T; IðD ¼ 0Þ;RIðD ¼ 1Þ;RIðD ¼ 2Þ;Ag. The nuisance tangent space K is the linear
subspace of H spanned by the scores for the nuisance parameters of all parametric
submodels and their mean-square closure. It follows from the semiparametric theory
that the solution to the estimating equation based on the efficient score is most
efficient among all semiparametric estimators, where the efficient score is defined as
the residual of the score vector for h after being projected onto the nuisance tangent
space, i.e., Seff ¼ Sh �PðShjKÞ. To establish the semiparametric efficiency, we only
need to identify the score vector Sh, the nuisance tangent space K, carry out the
projection, and verify the asymptotic equivalency of the estimating equation based
on the efficient score and the estimating equation used to obtain the efficient partial
likelihood estimator.
It is straightforward to show that the log likelihood for a single observation is

given by

‘ðhÞ ¼IðR ¼ 1;D > 0Þ log pðT;AÞ þ IðR ¼ 0Þ logf1� pðT;AÞg
þ log pAðAÞ þ IðD ¼ 0Þ log k0ðTjAÞ � K0ðTjAÞ þ IðD > 0Þ log kðTÞ

þ
X2

d¼1

IðR ¼ 1;D ¼ dÞ log rdðh;T;AÞ

þ IðR ¼ 0Þ log r�ðh;T;AÞ �
Z

kðtÞr�ðh; t;AÞYðtÞdt;
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where fKdðtjaÞ; d ¼ 2; 1; 0g are the cumulative cause-specific hazards.
Since the nuisance parameters are functionally independent and separate from each

other in the log likelihood, the nuisance tangent space can be written as a direct sum
of four orthogonal spaces,

K ¼ K1s 	 K2s 	 K3s 	 K4s;

where K1s is associated with kðtÞ, K2s associated with k0ðtjaÞ, K3s associated with
pAðaÞ, and K4s associated with pðt; aÞ.
Let dMdðtÞ ¼ dNdðtÞ � k�dðtjAÞdt denote the martingale increments for the corre-

sponding counting processes, then standard techniques of semiparametric theory can
be used to show that a typical element of K1s is given by

Z
aðtÞdM�ðtÞ;

where M� ¼ M1 þM2 þMu, and að�Þ is some arbitrary q� 1 function of t.
To simplify notation, write rdðt; aÞ ¼ rdðh0; t; aÞ, then the score vector for h eval-

uated at the truth is given by

Sh ¼
X2

d¼1

Z
r0dðt;AÞ
rdðt;AÞ dMdðtÞ þ

Z
r0�ðt;AÞ
r�ðt;AÞ dMuðtÞ:

Note that this is orthogonal to K2s;K3s and K4s. Therefore, by the projection theo-
rem, the efficient score, derived as the residual after projecting Sh onto K, or in this
case, K1s, is given by

Seff ¼
X2

d¼1

Z
r0dðt;AÞ
rdðt;AÞ dMdðtÞ þ

Z
r0�ðt;AÞ
r�ðt;AÞ dMuðtÞ �

Z
a�ðtÞdM�ðtÞ;

where

a�ðtÞ ¼ EfYðtÞr0�ðt;AÞg
EfYðtÞr�ðt;AÞg :

The corresponding estimating equation is asymptotically equivalent to UðhÞ ¼ 0, so
that the Dewanji partial likelihood estimator is semiparametric efficient.
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