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Abstract. Regression models for survival data are often specified from the hazard function while classical

regression analysis of quantitative outcomes focuses on the mean value (possibly after suitable transfor-

mations). Methods for regression analysis of mean survival time and the related quantity, the restricted

mean survival time, are reviewed and compared to a method based on pseudo-observations. Both Monte

Carlo simulations and two real data sets are studied. It is concluded that while existing methods may be

superior for analysis of the mean, pseudo-observations seem well suited when the restricted mean is

studied.
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1. Introduction

Regression models for survival data are frequently specified via the hazard function,
að�Þ, for the distribution of the survival time X. This is given by

aðt j ZÞ ¼ � d

dt
logSðt j ZÞ;

where Sðt j ZÞ ¼ prðX > t j ZÞ is the survival function given the covariates, Z.
Examples include the Cox (1972) proportional hazards model

aðt j ZÞ ¼ a0ðtÞ expðb>ZÞ ð1Þ
and Aalen’s (1980, 1989) non-parametric additive hazards model

aðt j ZÞ ¼ a0ðtÞ þ bðtÞ>Z; ð2Þ
where a0ðtÞ is an unspecified baseline hazard and bðtÞ a vector of unspecified
regression functions. A semi-parametric alternative to (2) is the Lin and Ying (1994)
model with bðtÞ ¼ b. In these models, effects of treatment and other covariates are
hazard ratios or hazard differences, respectively.
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In classical linear regression of quantitative outcomes, focus is on themean value and
covariate effects are differences between mean values. In some studies where survival
time is the outcome variable it would be appealing to be able to express covariate effects
on a mean survival time scale (alternatively, on a mean log-survival time scale).
Examples include studies in health economics where, for example, the costs associated
with patients being hospitalized are directly dependent on the average length of stay in
hospital, e.g., Li (1999). The mean survival time l ¼ EX (if it exists) is given by

l ¼
Z 1

0

SðtÞdt: ð3Þ

However, because of the inevitable right-censoring present in studies of survival
time, the tail of the survival time distribution, and thereby the mean survival time,
may often be ill-determined. As an alternative to l, it has been suggested to study the
restricted mean survival time which for any s > 0 is given by

lðsÞ ¼ EðX ^ sÞ ¼
Z s

0

SðtÞdt: ð4Þ

The first use of this functional seems to be by Irwin (1949).
Having specified a model aðt j ZÞ for the hazard, a model is also implied for the

survival function Sðt j ZÞ and, via (3) and (4), for the mean survival time lðZÞ and for
the restrictedmean survival time lðs;ZÞ:However, if a simple regressionmodel like (1)
or (2) holds for the hazard then the way in which the mean lðZÞ or the restricted mean
lðs;ZÞ depends on the covariates is generally not described by simple parameters.
Much research has gone into direct regression analysis of mean (log-) survival time,

one prominent class of models being the accelerated failure time models. This is an
important special case of the transformation model

hðXiÞ ¼ b0 þ b>Zi þ ei ð5Þ
(e.g., Dabrowska and Doksum, 1988; Fine et al., 1998), where h ¼ log. For h ¼ id,
the identity function, this is just a linear model for mean survival. In this repre-
sentation, the residuals ei; i ¼ 1; . . . ; n are independent and identically distributed
zero-mean random variables; i.e., for the accelerated failure time model,

EðlogXiÞ ¼ b0 þ b>Zi:

This is just a standard linear model for logXi but estimation procedures are needed
to account for right-censoring. For a parametric specification of the residuals
maximum likelihood estimation is straightforward and several computer packages
have implemented methods when the residuals have an extreme value distribution
(corresponding to the distribution of Xi being Weibull), or a log-normal or a log-
logistic distribution. For the semiparametric case when the residual distribution is
not specified, a generalized least squares procedure was developed by Buckley and
James (1979) with asymptotic results by Lai and Ying (1991). An alternative esti-
mation procedure based on rank tests (in fact, shown by Ritov, 1990, to be
asymptotically equivalent to the Buckley–James method) was studied by, among
others, Tsiatis (1990), Wei et al. (1990) and Ying (1993).
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Another line of research initiated by Leurgans (1987) uses so-called ‘‘synthetic
data’’ to analyse regression models for the mean survival time. In this approach,
suppose that the true uncensored survival times are Xi; i ¼ 1; . . . ; n; while the ob-
served data are ( eXi;DiÞ; i ¼ 1; . . . ; n; where Di ¼ IðXi ¼ eXiÞ are failure indicators and
Xi > eXi when Di ¼ 0. The idea is then to replace the observed times of observations
by a synthetic sample Xi

�; i ¼ 1; . . . ; n; such that EXi ¼ EX�
i and on which regression

analysis may be performed. This sample may be obtained as

X�
ðiÞ ¼ gXð1Þ þ

Z fXðiÞ

fXð1Þ
f dHðsÞg�1ds; ð6Þ

where dHðsÞ is the Kaplan–Meier estimator for the censoring distribution andgXð1Þ � � � � � gXðnÞ are the ordered times of observation. This approach was further
developed by Zhou (1992) and Zheng (1995). It is seen that observed, true failure
times smaller than the smallest censored observation are left unchanged while larger
times of observation (both censored and uncensored) are spread out compared to the
observed data, the amount of spread depending on the number of smaller censored
observations. An example is given in Section 2.
In contrast, relatively little work has been done concerning regression analysis of

restricted mean survival. Karrison (1987) studied a proportional hazards model (1)
with a piecewise constant baseline hazard and used the implied regression model for
lðs;ZÞ obtained from (4). His approach was generalized by Zucker (1998) who took
the standard semi-parametric proportional hazards model as his starting point.
However, as mentioned above, in these models the relationship between lðs;ZÞ and
a given covariate is not described by simple regression parameters. Finally, Chen and
Tsiatis (2001) studied methods for comparing covariate-adjusted restricted mean
survival times between two treatment groups.
The purpose of the present paper is to study a different approach to analysis of

both mean and restricted mean survival, namely by using so-called pseudo-observa-
tions, see Andersen et al. (2003). We will investigate the performance of estimators
based on pseudo-observations for both mean and restricted mean survival time using
Monte Carlo simulations and we will compare with other methods for the mean. The
use of pseudo-observations will also be illustrated using two real data sets.
The structure of the paper is as follows. In Section 2 we introduce pseudo-obser-

vations, specialize to mean and restricted mean survival, and present the examples.
Section 3 contains the simulation study and some concluding remarks and further
discussion are found in Section 4.

2. Pseudo-Observations

Following Andersen et al. (2003), pseudo-observations are defined in the following
way. Let Xi; i ¼ 1; . . . ; n; be independent and identically distributed random vari-
ables, let h be a parameter of the form

REGRESSION ANALYSIS OF RESTRICTED MEAN SURVIVAL TIME 337



h ¼ EfðXiÞ ð7Þ
and assume that we have an (at least approximately) unbiased estimator bh for this
parameter. Let, furthermore, Zi; i ¼ 1; . . . ; n; be independent and identically dis-
tributed covariates and define the conditional expectation

hi ¼ EffðXiÞ j Zig:
The ith pseudo-observation is then

bhi ¼ n � bh� ðn� 1Þ � ch�i; ð8Þ
where ch�i is the ‘‘leave-one-out’’ estimator for h based on Xj; j 6¼ i. Note that if all Xi

are observed then h may be estimated by the average of the fðXiÞ in which case bhi is
simply fðXiÞ. We shall be using this approach in a situation where only a censored
sample of the Xi is available.
A regression model for the parameter h corresponds to a specification of how hi

depends on Zi and this may done via a generalized linear model

gðhiÞ ¼ bTZi ð9Þ
with link function gð�Þ (where a column Zi0 ¼ 1 has been added to Zi corresponding
to an intercept, b0). The regression coefficients, b, may now be estimated from the
generalized estimating equations

UðbÞ ¼
Xn
i¼1

UiðbÞ

¼
Xn
i¼1

�
@

@b
g�1ðbTZiÞÞV�1

i ðbhi � g�1ðbTZiÞ
�

¼0: ð10Þ
In the general situation, h may be multivariate in which case Vi is a working
covariance matrix for bhi (Liang and Zeger, 1986; Zeger and Liang, 1986). In our
present application, h is a scalar and Vi is just a working variance of bhi.
Andersen et al. (2003) showed that consistent estimates of b could be obtained

from (10) and that variance estimates for the solution bb could be obtained from the
standard sandwich estimator

R̂ ¼ IðbbÞ�1 ^varfUðbÞgIðbbÞ�1; ð11Þ
where

IðbÞ ¼
X
i

@g�1ðbTZiÞ
@b

� �>
V�1

i

@g�1ðbTZiÞ
@b

� �
;

^varfUðbÞg ¼
X
i

UiðbbÞUiðbbÞT:
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This means that once the pseudo-observations are computed, estimation of b and R
may be carried out using standard statistical software like SAS’s PROC GENMOD.
The purpose of the present paper is to use this approach for analysis of the mean

survival time lðZÞ and the restricted mean survival time lðs;ZÞ defined in (3) and
(4). Let dSðtÞ be the Kaplan–Meier (1958) estimator for the survival function SðtÞ
based on a right-censored sample eXi; i ¼ 1; . . . ; n; of the survival times
Xi; i ¼ 1; . . . ; n: Following Gill (1983), who studied the large-sample properties of
estimates for l obtained by plugging dSðtÞ into (3), we will use the version of dSðtÞ
which is set to 0 for t > gXðnÞ, the largest observation time. We will, therefore, base
our inference for l and lðsÞ on the estimators obtained using this version of the
Kaplan–Meier estimator

blðsÞ ¼
Z s

0

dSðtÞdt

with bl ¼ blð1Þ ¼ blðgXðnÞÞ. Pseudo-observations are defined accordingly from (8) and
analysed using (10) and (11) with the simple choice, Vi ¼ 1, of working variance.
We will now first, for illustration, show both the synthetic data (6) and the pseudo-

observations (8) for the classical Freireich data (e.g., Cox, 1972) and next present
two examples comparing the pseudo-observation method to other approaches.
Briefly, Freireich’s data deal with a trial in childhood leukemia comparing length

of remission in (paired) groups treated with 6-MP or placebo. In the placebo group,

Table 1. Remission times from the 6-MP treatment group of Freireich’s data (+ denotes a censored

observation) together with synthetic data (6) and pseudo-observations (8).

Observed Remission Length (weeks) Synthetic Data Pseudo-Observation

6,6,6 6 6

6+ 6 26.17

7 7.1 5.8

9+ 9.2 27.44

10 10.3 7.67

10+ 10.3 28.85

11+ 11.5 28.85

13 14.1 7.86

16 18.0 11.89

17+ 19.3 32.65

19+ 22.2 32.65

20+ 23.8 32.65

22 27.5 13.62

23 29.4 15.64

25+ 33.1 39.86

32+, 32+ 49.3 39.86

34+ 58.6 39.86

35+ 67.9 39.86
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no observations were censored. Table 1 shows the observed times in remission for the
6-MP treatment group together with the synthetic data and the pseudo-observations.
It is seen that while the transformation into synthetic values are similar for censored
and uncensored data the pseudo-observations are quite different for the two types of
data. A censored time gives rise to a large pseudo-value while pseudo-observations
for uncensored data are smaller than the actually observed value. Note also that the
pseudo-observations for all censored observations between two successive failure
times and larger than the largest failure time are identical. That the pseudo-obser-
vation for the largest censored observation, gXðnÞ, is the same as for gXðn�1Þ is due to
the fact that we always integrate to gXðnÞ when estimating the mean.

Example 1. The CSL1 Trial in Liver Cirrhosis

CSL1 was a double blind multicentre randomised clinical trial with the purpose of
studying the effect of prednisone treatment versus placebo on survival in patients
with liver cirrhosis. The accrual period ranged from 1962 to 1969 and the patients
were followed to death, censoring or to September 1974, 292 patients were observed
to die. Schlichting et al. (1983) and Christensen et al. (1985) analysed data from 488
patients recruited in this period of whom 102 had ascites (excess fluid in the abdo-
men). One of the early findings from this trial (CSL, 1974) was that patients without
ascites seemed to benefit from the prednisone treatment while this treatment was
harmful for patients with ascites. This is illustrated by fitting a Cox regression model
to the data also adjusting for age (see Table 2).
For patients without ascites the estimated hazard ratio for treatment (prednisone

vs. placebo) is 0.77 while that for patients with ascites is 1.61. The partial likelihood
ratio test for no interaction is 8.96 (1 d.f., P < 0:005). In the same model the hazard
ratio for ascites vs. no ascites in the placebo group is 1.45 and that for age is 1.04 per
year.

Table 2. Estimated effects (with 95% confidence limits) for prednisone treatment, ascites and age based on

the CSL1 data. W: ‘‘Weibull’’ regression model (5), P: pseudo-observations using estimating equations

(10). For the Cox model estimates are hazard ratios, for the models for log X (middle panel) estimates are

multiplicative effects on the life length, and for the models for X (lower panel) estimates are additive effects

(in years) on the life length.

Method Prednisone:

No Ascites

Prednisone Ascites Ascites Placebo Age Per Year

Cox Model 0.77 (0.59, 1.01) 1.61 (1.08, 2.40) 1.45 (1.17, 1.80) 1.04 (1.03, 1.06)

W:E (log X) 1.32(0.97, 1.79) 0.57(0.37, 0.89) 0.66(0.52, 0.84) 0.95(0.94, 0.97)

P:E (log X) 1.25 (0.97, 1.61) 0.52 (0.27, 1.01) 0.53 (0.30, 0.92) 0.96 (0.95, 0.97)

P:E log (X L 5) 1.17 (0.96, 1.43) 0.56 (0.31, 1.02) 0.58 (0.36, 0.95) 0.97 (0.96, 0.98)

W:E (X) 1.11 (0.18, 2.03) )1.34 ()2.74, 0.07) )1.25 ()2.00, )0.51) )0.16 ()0.21, )0.12)
P:E (X) 0.76 ()0.32, 1.84) )1.46 ()3.20, 0.28) )1.41 ()3.13, 0.31) )0.15 ()0.20, )0.11)
P:E (X L 5) 0.38 (0.01, 0.75) )0.83 ()1.61, )0.05) )0.63 ()1.31, 0.05) )0.05 ()0.07, )0.04)
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It is of interest to see how the treatment effects for patients with or without
ascites are when mean survival time (or mean log survival time) is the parameter of
interest. To evaluate this we fitted parametric models of the form (5) with ei
extreme value distributed and with h ¼ identity and h ¼ log using
SAS PROC LIFEREG. When h ¼ log these are Weibull regression models. The
resulting estimates are found in Table 2. It is seen that, in the model for mean log
survival, prednisone treatment increases survival by a factor of 1.32 ð¼ expðbbÞÞ for
patients without ascites and by a factor 0.57 for patients with ascites. For the
model for mean survival the treatment effect is bb ¼ +1.11 years (0.18, 2.03) and
)1.34 years ()2.74,0.07), respectively, in the two groups. The latter estimates and
their confidence limits may be directly compared with the results obtained using
pseudo-observations where we find +0.76 years ()0.32, 1.84) and )1.46 years
()3.20, 0.28) (Table 2). To analyse EðlogðXÞÞ using pseudo-observations an
approximately unbiased estimator for this parameter based on the whole sample is
needed. Using integration by parts it is seen that this may be obtained from the
integrated Kaplan–Meier estimator for logX as

logðgXð1ÞÞ þ
Z logðfXðnÞÞ

logðfXð1ÞÞ
bSðlÞdl: ð12Þ

The treatment effects were quite close to those based on the Weibull distribution:
1.25 (0.97, 1.61) and 0.52 (0.27, 1.01), respectively (Table 2).
All the results quoted so far make assumptions about the mean of the survival

time distribution, either that the distribution is Weibull or that blðgXðnÞÞ provides a
sensible estimate. However, since the estimated survival probability at the largest
observation time is 0.19 at 13.4 years in the placebo group and 0.15 at 12.2 years in
the prednisone group one may argue that too little information is available to
analyse the mean. Therefore, also analyses of the restricted mean at s ¼ 5 years are
presented (Table 2) both for X and for logX. For X we find that prednisone
treated patients without ascites gain 0.38 years (0.01, 0.75) during the first 5 years
of treatment compared to the placebo group while prednisone treated patients with
ascites lose 0.83 years ()1.61, )0.05). The same pattern is seen when analysing
logX. Provided that an additive model for the restriced mean is reasonable these
results may be more reliable than those for the mean. To evaluate the model for
the restricted mean the pseudo-observations were plotted against age in each of the
four treatment by ascites groups with a lowess scatterplot smoother superimposed
(see Figure 1).
The smooth curves should be approximately parallel straight lines which seems to

be a reasonable approximation. Similar curves of average pseudo-values in three age
groups (Figure 2) also suggest a satisfactory fit of the model.
In conclusion, using pseudo-observations we have been able to re-analyze the mean

survival time in the CSL1 trial and compare with classical parametric models and,
furthermore, we have been able to study regression models for the restricted mean
survival time.
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Figure 1. Pseudo-observations for the restricted mean life time plotted against age with a lowess

smoother, CSL1 data.
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Example 2. The Department of Biostatistics Dart League

In the mid-1990s a game of dart was played every day at lunch time at the
Department of Biostatistics, University of Copenhagen. It varied from day to day
which players took part in the game. On each day it was recorded who played that
day, who finished the game, and how many rounds it took to finish that day’s game.
Thus, every player ‘‘runs his own race’’ but is stopped when the game is finished and,
therefore, the data for each player (followed over time) consisted of the number of
rounds played each day and an indicator of whether he or she finished the game that
day. These data can be treated as a right-censored sample of the time (number of
rounds) until the player finished the day’s game and they can be summarized as a

Figure 2. Average values of pseudo-observations for the restricted mean life time in three age groups

plotted against age, CSL1 data.
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survival curve. Since all games were truncated at 12 rounds the area under the
survival curve up to s ¼ 12 rounds was taken as a measure of how well the player
performed; this number is the estimated restricted mean up to 12 rounds. Several
factors could influence the number of rounds a player needs to finish the game on a
given day and thereby the score. These include the number of players playing that
day (a large number of players could sharpen competition and reduce the number of
rounds), the day of the week, and the player’s ‘‘handicap’’ on that day. To equalize
the playing field, players with many victories were given one of two levels of
handicap to make it more difficult for them to win.
Here we analyze the data from one player (the first author of the present paper,

PKA) who played 212 times in 1994–1996 and finished in 82 games giving a score of
9.042. We shall examine the effect of the number of players on a day (� 5, 6–7, � 8)
and the level of handicap (none, first level, second level) on PKA’s ability to finish
the game. The simplest model to use would be a discrete-time Cox regression model
with a complementary log–log link. However, the Cox model is modelling the rate at
which a player is finishing and not the parameter of interest, the player’s score.
Regression models for this parameter are easier to interpret since they tell us how
many additional or fewer rounds the player needs to finish. We focus on the score of
PKA and compute pseudo-values for the mean time to finishing truncated at 12
rounds. Due to the discrete nature of the data there are few different values of the
pseudo-observations corresponding to a finish or a censoring after 4, 5, . . . ,12
rounds. These values are depicted in Figure 3. Like for the Freireich data of Table 1
we see that pseudo-observations for uncensored data points are somewhat smaller
than the observed times whereas those corresponding to censored observations are
substantially larger.
Applying the linear model (9) we find that the estimates for ‘‘handicap’’ were first

vs. none 0.80 (95% c.i. )0.04 to 1.63), second vs. none 1.13 (95% c.i. )0.08 to 2.34),
while the effect of ‘‘number of players’’ was quite small and insignificant. The two
degree of freedom Wald type test of no effect of handicap using (11) yields a chi-
square value of 5.14 (P ¼ 0:08) while a 1 d.f. Wald type test for trend yields a chi-
square value of 4.86 (P ¼ 0:03). The major advantage of this approach is that the
regression coefficients are directly interpretable as the number of extra rounds (up to
12) needed by PKA to finish the game with each of the two levels of handicap. The
corresponding hazard ratio estimates from the discrete time Cox model would have a
less direct interpretation.

3. Simulation Studies

3.1. Mean Survival Time

To study the behavior of estimators for mean survival time a number of Monte
Carlo simulations were conducted. Since the most frequently used model of the type
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(5) is the accelerated failure time model with h ¼ log, attention was focused on this
situation. That is, we looked at models for EðlogðXÞÞ using the identity link.
In the simulations n ¼ 250 lifetimes were generated from a model given by (5)

logXi ¼ b0 þ bbZb þ bGZG þ ei

with intercept b0 ¼ 0, a binary covariate Zb and an Nð0; 1Þ covariate ZG. The
parameters were p ¼ prðZb ¼ 1Þ ¼ 0:5, and bb; bG= 0 or 1. The distribution of the
residuals ei was either extreme value corresponding to that of Xi being Weibull with
shape parameter d ¼ 0.5, 1 or 2 or log-logistic with scale parameter q ¼ 0.5, 1 or 2.
Letting k ¼ expðb0 þ bbZb þ bGZGÞ the survival function for X in the Weibull case is
SðtÞ ¼ expð�ktdÞ and Ee ¼ �cd; where c ¼ 0:5772 . . . is Euler’s constant. For the
log-logistic model, SðtÞ ¼ ð1þ ðt=kÞqÞ�1 and Ee ¼ 0. Exponential censoring was
superimposed to obtain a censoring percentage of either roughly 25% or 50%. Each
combination was repeated 500 times.

Figure 3. Pseudo-observations for the score of PKA. Upper points correspond to censored observations,

lower points correspond to finished games.
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Each data set was analyzed in several ways

1. by fitting the correct parametric model (using SAS PROC LIFEREG),
2. by fitting an incorrect parametric model, i.e., a Weibull model for log-logistic data

and vice versa (again using SAS PROC LIFEREG),
3. by using the Buckley–James method (using the S-PLUS function bj),
4. by using synthetic data, cf. (6),
5. by using pseudo-observations.

The results for 25% censoring, summarized in Tables 3 and 4, are average bb-values.
The bias when estimating EðlogXÞ using (12) is also given. The empirical standard
deviations over the 500 replications (not shown) were similar for all methods and
close to the estimated standard errors (for pseudo-observations based on (11)).
It is seen that both the true parametric model and the S-PLUS implementation of

the Buckley–James estimator work very well while the approach using the synthetic

Table 3. Average of estimated effects for simulations from the log-logistic distribution with 25%

censoring. The three panels correspond to scale parameters q ¼ 2, 1, 0.5, respectively. The last column is

the bias when estimating the mean, l using (12).

Parameter

Combination

Correct

Parametric

(Log-logistic)

Incorrect

Parametric

(Weibull)

BJ-Method Synthetic

Data

Pseudo-

Observations.

Bias bl

bb ¼ 0 0.00 0.00 0.00 0.00 0.00 )0.01
bG ¼ 0 0.00 0.00 0.00 0.00 0.00

bb ¼ 0 0.00 0.00 0.00 0.00 0.00 )0.02
bG ¼ 1 1.00 0.97 1.00 0.80 0.97

bb ¼ 1 1.00 0.97 1.00 0.83 0.99 )0.01
bG ¼ 0 0.00 0.00 0.00 0.00 0.00

bb ¼ 1 1.00 0.97 1.00 0.79 0.98 )0.03
bG ¼ 1 1.00 0.97 1.00 0.76 0.96

bb ¼ 0 0.00 0.00 0.00 0.00 0.00 )0.05
bG ¼ 0 0.00 0.00 0.01 0.00 0.00

bb ¼ 0 )0.01 )0.02 0.00 0.00 )0.02 )0.07
bG ¼ 1 1.01 0.93 1.01 0.80 0.95

bb ¼ 1 1.00 0.92 1.00 0.82 0.96 )0.06
bG ¼ 0 0.01 0.01 0.01 0.00 0.01

bb ¼ 1 1.00 0.93 1.00 0.79 0.95 )0.09
bG ¼ 1 1.00 0.94 1.00 0.78 0.93

bb ¼ 0 )0.01 0.00 0.00 0.00 )0.01 )0.22
bG ¼ 0 0.01 0.00 0.01 0.01 0.01

bb ¼ 0 )0.01 0.00 0.00 0.00 )0.01 )0.23
bG ¼ 1 1.00 0.88 1.01 0.80 0.90

bb ¼ 1 1.00 0.88 1.00 0.80 0.90 )0.24
bG ¼ 0 0.00 )0.01 0.01 0.01 0.00

bb ¼ 1 1.01 0.89 1.00 0.79 0.90 )0.27
bG ¼ 1 1.01 0.91 1.01 0.79 0.91
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observations (6) only works when the true b is 0. In general, the pseudo-observations
work when (12) provides a good estimate of the true EðlogXÞ. This is for q 6¼ 0:5 for
the log-logistic distribution and for d 6¼ 0:5 for the Weibull, i.e., for the less heavy-
tailed distributions. It is seen that pseudo-observations often work slightly better
than fitting the incorrect parametric model. For 50% censoring the results (not
shown) were similar though (12) more frequently provided inadequate estimates of l.

3.2. Restricted Mean Survival Time

To study the performance of regression analysis of the restricted mean based on
pseudo-observations a small simulation study was set up, as follows: n ¼ 250
Weibull distributed life times were generated with scale parameter ki ¼ expðbbZiÞ
and shape parameter d ¼ 0.5, 1 or 2. Here, Zi is binary with prðZi ¼ 1Þ ¼ 0:5 and
bb ¼ 0 or 1. Exponential censoring (� 25% or 50%) was superimposed and the

Table 4. Average of estimated effects for simulations from the Weibull distribution with 25% censoring.

The three panels correspond to shape parameters d ¼ 2, 1, 0.5, respectively.The last column is the bias

when estimating the mean, l using(12).

Parameter

Combination

Correct

Parametric

(Weibull)

Incorrect

Parametric

(Log-logistic)

BJ-Method Synthetic

Data

Pseudo-

Observations.

Biasbl

bb ¼ 0 0.00 0.00 0.00 0.00 0.00 0.00

bG ¼ 0 0.00 0.00 0.00 )0.01 0.00

bb ¼ 0 0.00 0.00 0.00 0.00 )0.01 0.00

bG ¼ 1 1.00 1.00 1.00 0.84 1.00

bb ¼ 1 1.01 1.00 1.00 0.85 1.00 0.00

bG ¼ 0 0.00 )0.01 0.00 )0.01 )0.01
bb ¼ 1 1.00 1.01 1.00 0.84 1.01 0.00

bG ¼ 1 1.00 1.00 1.00 0.82 1.00

bb ¼ 0 0.00 0.00 0.00 0.00 0.00 0.00

bG ¼ 0 0.00 0.00 0.00 0.00 0.00

bb ¼ 0 0.00 0.00 0.00 0.00 0.00 )0.01
bG ¼ 1 1.00 1.01 1.00 0.80 0.99

bb ¼ 1 1.00 1.01 1.00 0.83 1.00 0.00

bG ¼ 0 0.00 0.00 0.00 0.00 0.00

bb ¼ 1 1.00 1.01 1.00 0.79 0.98 )0.04
bG ¼ 1 0.99 0.99 1.00 0.77 0.95

bb ¼ 0 0.00 0.00 0.00 0.00 0.00 )0.02
bG ¼ 0 0.00 0.00 0.00 0.00 0.00

bb ¼ 0 0.00 )0.01 0.00 0.00 )0.01 )0.15
bG ¼ 1 1.00 1.02 0.99 0.74 0.89

bb ¼ 1 1.00 1.03 1.00 0.77 0.95 )0.15
bG ¼ 0 0.00 0.00 0.00 0.00 0.00

bb ¼ 1 1.00 1.00 1.00 0.73 0.88 )0.29
bG ¼ 1 1.00 1.00 0.99 0.70 0.84
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restricted mean life time at s was estimated for values of s at the pth percentile when
bb ¼ 0, i.e., s ¼ ð� logð1� pÞÞ1=d for p ¼ 0.75 and 0.95. The true value of the re-
stricted mean is thenZ s

0

expð�ktdÞdt ¼ 1

d
k�1=dC

�
1

d
; ksd

�
;

where Cða; xÞ is the incomplete gamma function. That is, we have a linear model with
intercept b0 ¼ 1=dCð1=d; sdÞ and ‘‘slope’’ (effect of Z) b ¼ 1=de�bb=dCð1d ; ebbsdÞ � b0.
Each combination was replicated 500 times; results are shown in Table 5. The biases
are everywhere quite small (except for one combination). The empirical standard
deviations of the estimates were in close agreement with the standard errors based on
(11) (not shown).

4. Discussion

Hazard based models have become the primary method of choice for regression
analysis of survival data, mainly due to the ease with which right-censoring may be
accounted for. However, the simple interpretation of results from classical linear
regression models makes analysis of mean survival time appealing but censoring
complicates such an analysis. Several methods are available for analysing mean
survival and in this paper we have presented an alternative to these techniques based
on pseudo-observations. An advantage of our method is that standard programs can
be used for the analysis once the pseudo-values are obtained. The method is based on
the simple non-parametric estimator for the mean obtained as the integrated
Kaplan–Meier estimator and in cases where this estimator is adequate, regression
analysis based on pseudo-observations turned out to work well. However, in a

Table 5. Bias when estimating b, the effect of Z (lower panel) on the restricted mean and when estimating

the intercept, b0, (upper panel) at s ¼ P th percentile in the Weibull distribution with shape parameter d.

25% Censoring 50% Censoring

d bb P = 0.75 P = 0.95 P = 0.75 P = 0.95

0.5 0 )0.003 )0.005 )0.003 )0.005
0.5 1 )0.002 )0.004 )0.003 )0.005
1 0 )0.004 )0.008 )0.005 )0.006
1 1 )0.004 )0.007 )0.004 )0.007
2 0 )0.005 )0.006 )0.006 )0.427
2 1 )0.005 )0.017 )0.006 )0.007

0.5 0 0.004 0.005 0.004 0.053

0.5 1 0.003 0.005 0.004 0.005

1 0 0.006 0.010 0.007 0.012

1 1 0.005 0.010 0.006 0.014

2 0 0.008 0.013 0.009 0.013

2 1 0.007 0.032 0.008 0.117
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number of situations, the Buckley–James method provided more stable results than
those based on pseudo-observations. An alternative would be to base estimates of
the mean on a modified Kaplan–Meier estimator with a parametric tail, e.g.,
Moeschberger and Klein (1985).
The main advantage of our approach is that it is also directly applicable for

performing regression analysis of the restricted mean survival time where few other
techniques are available. We studied the use of pseudo-observations in studies of
restricted mean survival both in real examples and on simulated data with promising
results. One advantage of our approach is that graphical displays may easily be
constructed when assessing goodness of fit of the proposed models. Such simple
displays have otherwise been lacking in survival analysis. Recent interest in health
economics may enhance the applicability of the proposed methods which are also
well suited in studies of time to engraftment in bone marrow transplantation.
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