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Abstract. The gamma frailty model is a natural extension of the Cox proportional hazards model in

survival analysis. Because the frailties are unobserved, an E-M approach is often used for estimation. Such

an approach is shown to lead to finite sample underestimation of the frailty variance, with the corre-

sponding regression parameters also being underestimated as a result. For the univariate case, we inves-

tigate the source of the bias with simulation studies and a complete enumeration. The rank-based E-M

approach, we note, only identifies frailty through the order in which failures occur; additional frailty which

is evident in the survival times is ignored, and as a result the frailty variance is underestimated. An

adaption of the standard E-M approach is suggested, whereby the non-parametric Breslow estimate is

replaced by a local likelihood formulation for the baseline hazard which allows the survival times

themselves to enter the model. Simulations demonstrate that this approach substantially reduces the bias,

even at small sample sizes. The method developed is applied to survival data from the North West

Regional Leukaemia Register.
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1. Introduction

Frailty models can be used in survival analysis to represent random effects or unex-
plained heterogeneity between individuals or groups. Suppose we have a sample of n
individuals ðti; di; xiÞ, where ti is the failure or censoring time, di is the censoring
indicator and xi is the vector of covariates corresponding to individual i. In this paper,
we consider univariate survival data where each individual i has an independent
frailty zi which acts multiplicatively on the hazard. This is of course equivalent to
assuming the data arise from the non-proportional hazard, marginal distribution.
Frailty is easily introduced to the Cox proportional hazards model. Given the

frailty zi and the covariates xi, the conditional hazard and survivor functions for
individual i are

aiðtjzi; xiÞ ¼ zia0ðtÞ expðb0xiÞ; ð1Þ
Siðtjzi; xiÞ ¼ expð�ziA0ðtÞ expðb0xiÞÞ; ð2Þ
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where b is the vector of regression parameters corresponding to covariates xi, a0ðtÞ is
the baseline hazard function, which can remain unspecified, and A0ðtÞ is the
cumulative baseline hazard function

R t
0 a0ðuÞdu. Hougaard (2000) outlines a number

of distributions suitable for the frailty. One of the most commonly used is gamma,
written here as Z � Cðk; kÞ, to imply mean k=k. The assumption that EðZÞ ¼ 1 is
usually adopted to avoid an unidentifiable scale factor in (1) and (2). We take
Z � Cðn�1; n�1Þ, so that E½Z� ¼ 1 and VarðZÞ ¼ n. Unlike the shared gamma frailty
model for multivariate survival data, where frailty and time dependence are identi-
fiable in the absence of covariates, the model for univariate survival data requires a
sufficiently variable covariate to guarantee identifiability. Both Elbers and Ridder
(1982) and Heckman and Singer (1984) prove the identifiability of the gamma frailty
model under moderate assumptions.
The shared gamma frailty model has been discussed by a number of authors.

Because the frailties are unobserved, the E-M algorithm is the approach most
commonly used. Proposed by Dempster et al. (1977), the E-M algorithm was applied
to lifetime data with frailty by Nielsen et al. (1992), with a similar approach derived
independently by Klein (1992). A penalized likelihood approach was also studied by
Therneau and Grambsch (2000), and is the method implemented in R, although this
has been shown to be equivalent to the E-M procedure for gamma frailty. These
methods all use modified revisions of the non-parametric Breslow estimate, denoted
~A0ðtÞ to estimate A0ðtÞ, where ~A0ðtÞ is a discrete estimate of A0ðtÞ with mass at the
distinct failure times.
Nielsen et al. conducted simulation studies to investigate the performance of the

E-M procedure applied to bivariate lifetime data. They found that the frailty vari-
ance n was underestimated in small or medium sized samples. Many authors,
including Henderson and Oman (1999), observe that underestimating the frailty
variance n results in the regression coefficients b also being underestimated. Because
these are used to explain treatment or covariate effects, the underestimation of n is a
serious problem.
Recently Rondeau et al. (2003) have used a penalized version of the marginal

likelihood to fit the shared gamma frailty model with a continuous non-parametric
baseline hazard. The method, illustrated on bivariate survival data, performs sig-
nificantly better than the E-M procedure of Nielsen et al. (1992), practically
removing the bias at all sample sizes considered. However, bias in the univariate case
is not considered and the authors provide no insight into the reasons for the
improvement in estimation.
In this paper, we investigate the source of the bias for univariate survival data. The

format of the paper is as follows. In Section 2, we briefly outline the E-M procedure
of Nielsen et al. and demonstrate the bias problem for simulated univariate survival
data. The source of this bias is investigated with the aid of further simulation studies
and a complete enumeration. We discover the bias is greatly affected by the estimate
of the baseline hazard used in the E-M procedure. In Section 2, we consider the effect
that the ordering of the failures and the failure times themselves have on the
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estimation of the frailty variance n by considering a complete enumeration. In
Section 3, we outline how continuous non-parametric estimates of the baseline and
cumulative baseline hazards may be obtained using local likelihood techniques, and
we apply these in the E-M procedure of Nielsen et al. We demonstrate the superiority
of this method over the standard E-M approach of Nielsen et al. using simulated
data. In Section 4, we apply the new method to data from the North West regional
leukaemia register. We conclude the paper in Section 5 with a discussion of the
methods introduced and suggestions for further work.

2. The E-M Procedure of Nielsen et al.

If the frailties were observed, the complete data log-likelihood would be

lðbÞ ¼
Xn

i¼1
di logða0ðtiÞeb0xiÞ � zie

b0xiA0ðtiÞ þ di logðziÞ

� 1

n
logðnÞ þ 1

n
� 1

� �

logðziÞ �
zi
n
� log C

1

n

� �� �

: ð3Þ

Nielsen et al. propose maximizing the observed data likelihood using an E-M
algorithm on the above. They suggest first considering n to be fixed, in which case the
last five terms above, which do not involve the unknown parameters b and A0, can be
ignored in the first place.
Initial estimates of b are obtained from the standard Cox proportional hazards

model, and Breslow’s estimate, ~A0ðtÞ, of the cumulative baseline hazard is obtained,

~A0ðtÞ ¼
X

tj�t

djP
k2RðtjÞ expðb

0xkÞ
; ð4Þ

where dj is the number of failures at time tj, and RðtjÞ is the risk set of individuals
known to be at risk immediately before time tj.
The following steps are then iterated until convergence:

1. E step: For univariate gamma frailty, we have

E½zijti; di; xi� ¼
1þ ndi

1þ n ~A0
ðcÞðtiÞebðcÞ

0
xi
; ð5Þ

where ~A
ðcÞ
0 and bðcÞ are the current estimates of A0 and b, respectively.

2. M step: We maximize

lcðbÞ ¼
Xn

i¼1
di logða0ðtiÞeb0xiÞ � zie

b0xiA0ðtiÞ

using standard Breslow/partial likelihood methods with offset E½zijti; di;xi�.
At this stage, the final estimates b̂n, Â0n say, are substituted into the marginal log-
likelihood after frailties are integrated out
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lmðnjb̂n; Â0nÞ ¼
Xn

i¼1
di logðâ0nðtiÞeb̂0nxiÞ �

� 1
n
þ di

�
logð1þ neb̂0nxi Â0nðtiÞÞ; ð6Þ

where the increment of the Breslow estimate Â0n is used for â0n.
An outer loop then consists of a numerical search over n to maximize (6). A similar

procedure was suggested by Klein, although n is estimated at the M step alongside
A0 and b, using all the terms in (3) and hence also requiring E½log Zjt; d; x� as well as
E½Zjt; d; x�.

2.1. Simulation Study

Nielsen et al. performed a simulation study to demonstrate the E-M procedure for
bivariate survival data. They found that n̂ was negatively biased, and that this bias
decreasedwith increasing sample size n. Furthermore, they found that the bias of n̂was
worse for uncensored data than when individuals were right censored at time s ¼ 2.
We perform a similar study for univariate survival data. Data were simulated from

the gamma frailty model with an exponential baseline hazard, one standard normal
covariate, with regression effect b ¼ 1 and various amounts of frailty. We only
provide details of the no censoring case because this situation yielded the most biased
estimates of n̂ in our simulation study. The gamma frailty model was fitted to the
simulated data sets using the method described above. Following Nielsen et al. we
allow small negative values of n̂ so long as all expectations, E½Zjt; d; x� remain po-
sitive. The results of 500 such repetitions are summarised in Table 1.
We obtain similar results to those of Nielsen et al. for bivariate survival data; the

frailty variance is consistently underestimated, and as a result, the regression
parameter b is also underestimated. However, the bias in our simulation study for
univariate survival data appears worse than the results obtained by Nielsen et al. for
bivariate data. If we compare the results for sample size 500, for example, we find
that when the true value of n is 0.4, the mean estimate of n̂ is 0.3321 in the univariate
case, compared to 0.3811 in the Nielsen et al. paper. However, the sample size n in
the bivariate simulation study refers to the number of pairs in the data, not the
number of individuals. In the univariate case, for the same value of n, we find that at
sample size 1000, the mean n̂ was 0.3521, which is still noticeably less than the
Nielsen et al. estimate at n ¼ 500. The finite sample bias in n̂ is worse for univariate
than bivariate survival data.
Table 1 also demonstrates that the bias problem increases with frailty and decreasing

sample size. Right truncation of the survival times does reduce the bias a little, but
results (not shown) are still substantially biased, especially at small sample sizes.
Further simulation studies were performed to investigate the cause of the bias.

When n was fixed at its true value, the E-M procedure produced unbiased estimates
for b. We therefore consider the effect that fixing b or a0ðtÞ at their true values has on
the estimation of the frailty variance n. Figure 1 shows the mean estimate of n based
on 500 repetitions at sample size 200 when: (a) all parameters in the model are
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estimated; (b) b is fixed at its true value of 1; (c) a0ðtÞ and A0ðtÞ are fixed at their true
value; (d) b, a0ðtÞ and A0ðtÞ are all fixed at their true values.
We see that knowing the true values of any of the parameter values improves the

estimation of n, but when the true baseline and cumulative baseline hazards are
known, the estimates of n are almost unbiased. If these functions were estimated
more accurately, we should expect improved estimation of n.
If the true parametric form of a0ðtÞ is known, we may estimate the model directly

from the marginal likelihood, and a simulation study, not shown, demonstrates that
apparently unbiased estimates of n and b may be obtained even at small sample sizes.
Henceforth, we restrict n to be positive in order to keep the frailty interpretation, and
as a result, we do not include simulations for n ¼ 0 in the remainder of the paper.

2.2. A Complete Enumeration

In the simulation studies above, we have seen the importance that the estimation of
A0ðtÞ has on the effective estimation of the frailty variance n. When fixed at its true
values in the E-M procedure, estimates of n, and therefore b are virtually unbiased.
In this section we consider a complete enumeration of three individuals to illustrate

how frailty is identified from the data. Suppose our data consist of three individuals
with covariate values �1, 0 and 1, respectively. In the following, we refer to these
individuals by their covariate value as well as their order of failure. If we assume that
all individuals fail in continuous time, so there are no ties in the survival times, there
are six possible orderings of the failures: (�1 0 1), (�1 1 0), (0 �1 1), (0 1 �1), (1
�1 0) and (1 0 �1).

Table 1. Overall simulation results based on 500 repetitions at various sample sizes.

n True n Mean(n̂) sd(n̂) mse(n̂) Mean(b̂) sd(b̂)

1000 0.0 )0.0239 0.0626 0.0045 0.9866 0.0584

1000 0.2 0.1715 0.0733 0.0062 0.9841 0.0639

1000 0.4 0.3521 0.0988 0.0121 0.9764 0.0702

1000 0.6 0.5414 0.1232 0.0186 0.9698 0.0763

1000 0.8 0.7208 0.1584 0.0314 0.9649 0.0843

1000 1.0 0.8999 0.1710 0.0393 0.9671 0.0831

500 0.0 )0.0418 0.0893 0.0097 0.9723 0.0884

500 0.2 0.1418 0.1167 0.0170 0.9659 0.1028

500 0.4 0.3321 0.1304 0.0216 0.9694 0.0957

500 0.6 0.4975 0.1663 0.0382 0.9509 0.1106

500 0.8 0.6732 0.2107 0.0605 0.9508 0.1191

500 1.0 0.7981 0.2255 0.0917 0.9292 0.1218

200 0.0 )0.0846 0.1170 0.0209 0.9600 0.1224

200 0.2 0.0572 0.1695 0.0492 0.9182 0.1442

200 0.4 0.2443 0.2153 0.0706 0.9236 0.1564

200 0.6 0.3971 0.2559 0.1067 0.9029 0.1702

200 0.8 0.5275 0.2709 0.1478 0.8874 0.1773

200 1.0 0.6103 0.3023 0.2435 0.8538 0.1830
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We begin by assuming a piecewise constant form for the cumulative baseline
hazard with one parameter for each distinct failure time. Denote c to be the vector
ðc1; c2; c3Þ. The cumulative baseline hazard is

A0ðtÞ ¼
X

ti�t
ci:

We refer to this as the non-parametric estimate of A0ðtÞ. If at each failure time, ci
coincides with the corresponding increment of the Breslow estimate, Equation (4),
then the two estimates are equivalent.
We assume b, the regression effect, is fixed at b ¼ 3. We may estimate c directly

from the marginal likelihood. Like the E-M approach outlined in Section 2, this
formulation of A0ðtÞ leads to a rank-based model; the orders of the failures affect the

Figure 1. Plots of the mean n̂’s for sample size 200 and no censoring, when the following parameters are

fixed at their true values in the E-M procedure: (a) all parameters in the model are estimated; (b) b is fixed

at its true value of 1; (c) a0ðtÞ and A0ðtÞ are fixed at their true value; (d) b, a0ðtÞ and A0ðtÞ are all fixed at

their true values.
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likelihood, but the failure times themselves do not. We plot the profile likelihood
over n in Figure 2 for the six orderings.
We are able to identify frailty in the top three plots, where individual �1 fails

before individual 1, but we are unable to identify frailty in any of the other plots. In a
similar plot for b ¼ 5 (not shown), we are able to identify frailty for all orderings
with the exception of (1, 0, -1). This is consistent with Elbers and Ridder (1982) who
proved identifiability for the gamma frailty model. They suggest that in practice, it is
important to have large variation in expðb0xÞ to ensure that the model is identified.
When the order of failure is (1, 0, -1), the failure order matches the covariate order
from high to low risk, and we will never be able to identify frailty using this for-
mulation for A0ðtÞ.
As we have emphasised, the formulation above leads to rank-based estimation; the

survival times will not affect the profile likelihoods in Figure 2. Neither will the true
value of n, although this will determine the probabilities of each of the six orderings
occurring.
If the above estimate of A0ðtÞ is replaced with the correct continuous parametric

form, the model is no longer rank-based and the failure times do contribute to the
likelihood. For the scenario above, we simulated one million sets of failure times
using an exponential baseline hazard with rate k ¼ 1 at various amounts of frailty.
Because the failure times themselves affect the shape of the likelihood, we can no
longer represent the profile likelihood over n by six distinct curves. Instead, for each
of the orderings, we may plot a mean profile likelihood over n. We do this in

Figure 2. Profile likelihood over n for the 6 orderings using a rank-based estimate of A0ðtÞ.
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Figure 3 for survival times simulated with n ¼ 0 and n ¼ 2:5. The percentage of
times each ordering occurs in the simulations is given above each plot. Figure 3.1,
the mean profile likelihood curves when the survival times were simulated with no
frailty, looks very similar to Figure 2. We identify frailty in the top three plots, which
account for just 0:2% of the simulated data sets, but we are unable to identify frailty
in any of the other plots. However, if we simulate with n ¼ 2:5, Figure 3.2 shows that
we identify frailty in all of the orderings, even (1, 0, -1). By specifying an appropriate
form for the baseline hazard, we are able to identify frailty from the failure times
themselves as well as the order in which the failures occur.
To illustrate how the non-parametric and parametric profile likelihood curves

compare, we produce an overall mean profile likelihood for the two approaches in
Figure 4 for survival times simulated with n ¼ 2:5. The non-parametric approach
fails to identify frailty even though the true value of n was 2.5. If we use the para-
metric form for the baseline hazard, we are able to identify the presence of frailty,
even when there are only three individuals in the data.

3. The Local Likelihood E-M Procedure

In the previous section, we demonstrated how frailty is identified by both the
ordering of the failures and the survival times themselves. As the frailty variance
increases, selection is increasingly influenced by the frailty terms z rather than the
covariate values alone. We are more likely to see individuals failing in orders which
do not correspond to the ordering of their relative risks. Similarly with increasing
frailty, we expect a wider range of survival times. Individuals with a combination of
high risk covariates and large frailties tend to fail extremely early, whereas those with
low risk covariates and small frailties survive much longer.
The E-M procedure of Nielsen et al. (1992), described in Section 2, identifies frailty

from the ordering, but not from the survival times themselves. We suggest that n is
underestimated because the additional frailty that could have been identified from the
actual failure times is ignored. If an appropriate parametric form can be found for
A0ðtÞ, we obtain unbiased estimates for n but the model is no longer semi-parametric.
There are several methods for obtaining continuous non-parametric estimates of

the baseline hazard which allow information on the failure times themselves to enter
the model. One possible approach, outlined in Klein and Moeschberger (1997), is to
kernel smooth the Breslow increments. The baseline hazard at time t is a weighted
sum of the Breslow increments at times close to t; the failure times enter the model
through the kernel function which determines the weighting. In simulation studies we
found kernel smoothing methods to be inferior to a local likelihood procedure which
will be outlined below.
Local likelihood is an extension of local regression and scatter-plot smoothing

techniques, such as the loess procedure of Cleveland (1979). Such methods apply
global regression techniques locally in a smoothing window around a point t defined
by a bandwidth b. Local regression techniques were extended to likelihood based
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models by Tibshirani and Hastie (1987), and local likelihood estimation in a pro-
portional hazards model with right censored data is reviewed in Betensky et al.
(2002). Frailty is easily introduced into this approach.

Figure 3. Profile likelihood over n for the 6 orderings with an exponential baseline hazard (the percentage

of times each combination occurred in the simulation study is given above each plot).
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We begin by considering the conditional log-likelihood of a proportional hazards
frailty model, assuming frailties zi are observed

lf ¼
Xn

i¼1
di log

�
a0ðtiÞ

�
þ dib

0xi þ di logðziÞ �
Z ti

0

zie
b0xia0ðuÞdu

� �

: ð7Þ

The local likelihood approach consists of approximating the log of the baseline
hazard as a local polynomial in the smoothing window defined by a parameter b. For
a particular failure time t, the polynomial approximation of degree p is given by

logða0ðtÞÞ � k0t þ k1tðs� tÞ þ � � � þ kptðs� tÞp for js� tj � b; ð8Þ

where s denotes a failure time within the bandwidth of t. For convenience, we denote
the vector ðk0t; k1t; . . . ; kptÞ0 as kt.
We can use the polynomial approximation to form a local log-likelihood compo-

nent at t

lt ¼
Xn

i¼1

(

dib
0xi þ di logðziÞ þ diK

� ti � t

b

�
fk0t þ � � � þ kptðti � tÞpg

�
Z ti

0

zie
b0xiek0tþ���þkptðu�tÞpK

� u� t

b

�
du

)

; ð9Þ

where Kð:Þ is a kernel function defined on jt� tij � b. The kernel Kð:Þ gives pro-
gressively greater weight to points closer to t within the smoothing window, and
gives no weight to points outside this window. The local likelihood component at
time t is therefore just a weighted form of the complete data log-likelihood; failures
occurring close to t contribute more to the local likelihood component than those
further away.

Figure 4. Overall mean profile likelihood over n for data simulated with n ¼ 2:5 using the non-parametric

and parametric baseline hazards.
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The local likelihood component, lt, may be treated in the same way as the complete
data log-likelihood; the maximum local likelihood estimate k̂t is the vector which
maximises (9), or alternatively k̂t is the solution to the pþ 1 score equations

Xn

i¼1

n
diK
� ti � t

b

�
ðti � tÞj �

Z ti

0

zie
b0xiðu� tÞjek0tþ���þk0pðu�tÞpK

� u� t

b

�
du
o
¼ 0

for j ¼ 1; . . . ; p. The estimate of the baseline hazard at time t is obtained as
â0ðtÞ ¼ expðk̂0tÞ. In order to fit the gamma frailty model, we require estimates of
a0ðtÞ for every observation, so therefore a local likelihood component is maximized
at each failure or censoring time in the data set.
Betensky et al. (2002) point out that the estimation of the baseline hazard may also

be based upon approximating a0ðtÞ as a local polynomial, rather than logða0ðtÞÞ; the
second approach is sensible, they argue, because it guarantees that â0ðtÞ remains
positive, which is essential in a survival setting.
We return to the local likelihood component (9) and consider the individual

contributions to the local likelihood component at time t. If we disregard the dib
0xi

and di logðziÞ terms, which do not involve kt, we see that the local log-likelihood
component comprises of two parts, the second involving an integral between 0 and ti.
We recall that the kernel Kð:Þ is defined on jt� tij � b, and is zero elsewhere;

therefore, only individuals who fail within the bandwidth of t contribute to the first
part of the local log-likelihood component for kt. The individual contributions to the
second part of lt are determined by the value of the integrated kernel function. Only
individuals who fail or are censored within the smoothing window, or beyond it
contribute to the second component. This result should be unsurprising; because
a0ðtÞ measures the baseline instantaneous failure rate at t, we should expect indi-
viduals known to be alive at t to contribute to this. If we consider the Breslow
estimate of the cumulative hazard, we note that individuals who have not yet failed
or been censored are members of the risk set Rt and contribute to the denominator of
the Breslow increment at time t as well.

3.1. Issues Relating to Bandwidth Choice

A key issue surrounding any smoothing technique is how to choose the bandwidth.
A variable bandwidth which is wider in areas where the data are sparse is preferable
to a fixed bandwidth. Unlike a kernel smoothing approach where the estimate of
a0ðtÞ is essentially just a weighted sum of the Breslow increments, the local likelihood
estimate is obtained by maximising the local likelihood components at the failure
times. There must therefore be a sufficient amount of data contributing to the local
likelihood components to enable us to obtain maximum likelihood estimates.
Because of the discussion above, for small t there will be more data contributing to
the likelihood component than for larger t (because both ti within the bandwidth and
ti greater than tþ b contribute to the likelihood). We need a variable bandwidth
which is wide enough to provide enough data for us to maximize the likelihood
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components even for large failure times. As a result, we use a bandwidth propor-
tional to the distance to the kth nearest neighbour, k being chosen to cover a pro-
portion of the data. Betensky et al. (2002) use a nearest neighbour bandwidth which
encompasses 40% of the data in the smoothing window. Throughout this paper, we
use the distance to the n=4th nearest neighbour as the bandwidth and a local linear
approximation for logða0ðtÞÞ within the smoothing window. Simulation results,
discussed below, suggest this is a suitable choice.
It may be possible to derive a method based upon cross validation to determine the

value of k best suited to the data. However, such an approach would be extremely
computer intensive and would therefore be of limited use in practice. We suggest
some form of sensitivity analysis be done to ensure that the estimates of b and n are
not overly influenced by the value of k used to fit the model.

3.2. Implementation and Computational Issues

We may simply replace the Breslow estimate ~A0ðtÞ and its increment D ~A0ðtÞ in the E-
M procedure of Nielsen et al. (1992) with local likelihood estimates. We obtain the
estimates of A0ðtÞ from the local likelihood estimates of the baseline hazard using the
trapezium rule to approximate the integrals.
An important consideration, when using the local likelihood method of estimating

a0ðtÞ, is the degree of local polynomial to use. Betensky et al. (1999) state that degree
0, 1 or 2 polynomials are usually used, although evidence suggests that the use of
degree 1 or 2 polynomials are preferable to degree 0 ones as they have less boundary
bias. We have chosen to use a local linear approximation in the local E-M imple-
mentation; when an Epanechnikov kernel along with a local linear approximation is
used in the local likelihood component, (9), we may evaluate the integral explicitly
which greatly speeds the computation.
We use a Newton Raphson procedure to estimate the k̂t terms. The choice of

suitable starting values is essential if the procedure is to converge. We would expect
the estimates k̂ti to be similar to k̂ti�1 , so it is sensible to use the value of the previous
k̂t as starting values for the current one. To estimate k̂t0 , we suggest using the
estimate from the previous iteration in the E-M algorithm as starting values. Con-
vergence is easier for small t, as more data contribute to the local likelihood com-
ponents. For kt1 , sensible starting values must be chosen, although the choice is not
as important as that for larger t for the reasons discussed above.

3.3. Simulation Study

We compare the standard E-M procedure with the local E-M procedure outlined
above. Data were simulated as before, although we encountered problems with
convergence in the local E-M procedure when simulated survival times became
excessively large and sparse in the right tail of the distribution; to resolve these
problems, we have chosen to right censor the final 5% of failure times in this sim-
ulation study. The results of this simulation study for 500 convergent repetitions at
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sample sizes 200, 500 and 1000 are given in Table 2. Convergence problems occurred
mainly when n was large, with at worst about 4% of simulations not converging to a
global maximum likelihood when n ¼ 1 and n ¼ 1000.
In all cases, the mean local likelihood estimate of n is less biased than the standard

E-M, although, for larger amounts of frailty and small sample sizes, the mean
squared errors can be slightly larger for the local likelihood method due to increased
variability in n̂. The mean, mean squared error and standard deviation are not ideal
summary statistics for skewed data. We therefore provide box plots of the estimates
of n̂ for the standard E-M and local E-M methods in Figure 5. The medians of the
local likelihood estimates of n̂ are much closer to the true values than the standard
E-M medians. We also note that although the interquartile ranges do appear slightly
wider for the local likelihood estimates, there does not appear to be too much
difference. Using a local likelihood formulation for the baseline hazard does appear
to have solved the bias in estimating n and the regression parameters b.
We may also consider transforming n̂ to account for the skew in our estimates. If

we consider
ffiffiffi
n̂

q
, which has a distribution which is considerably less skewed than n̂,

and calculate mean squared errors, we find that for all combinations of frailty and
sample size, the local likelihood estimates have smaller mean squared errors than the
standard E-M.
In the simulation study above, we used a local linear polynomial to approximate

the true log baseline hazard from an exponential distribution. It is important to note
that an exponential baseline hazard is log-linear. To emphasise the flexibility of the
local E-M procedure, we repeat the simulation study with the baseline hazard sim-
ulated from the following Weibull mixture of survival functions:

SðtÞ ¼ 0:5 expð�2t0:9Þ þ 0:5 expð�5t4Þ:

We present box-plots of the estimates of n for various sample sizes and values of the
frailty variance in Figure 6. The top left plot shows the mixed Weibull baseline
hazard used to simulate the data. The results in Figure 6 look very similar to the
ones we saw for the exponential baseline hazard. Whereas the median estimates for
the standard E-M procedure fall below the true values, those from the local likeli-
hood procedure coincide with the true values far more. Again there is some increased
variability in the local likelihood estimates, but the interquartile ranges do not differ
greatly in width. The mean b̂ is within 0.03 of the true value even for sample size 200.
In summary, the problem of consistently underestimating n and as a result, the

regression parameters b in the standard E-M procedure can be resolved by replacing
the discrete Breslow estimate of the cumulative hazard, and its increments, with
smooth estimates obtained using local likelihood techniques.

4. Application to Acute Myeloid and Acute Lymphoblastic Leukaemia Survival

In this section, we apply the local likelihood E-M procedure to data collected from
the UK North West Regional Leukaemia Register, supplied by Dr. David Gorst of
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Lancaster Royal Infirmary. The data consist of 1043 patients diagnosed with acute
myeloid leukaemia (AML) and 206 patients diagnosed with acute lymphoblastic
leukaemia (ALL). We have the following patient information

� survival time in days: there is approximately 16% and 27% censoring for AML
and ALL patients respectively;

� age: the median age was 65 (range 14–92) for the AML data and 38 (range 14–94)
for the ALL data;

Figure 5. Box plots of n̂ for the standard and local E-M procedures (abbreviated as EM and loc,

respectively) based on 500 repetitions at sample sizes 200, 500 and 1000.
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� sex: 47.6% and 44.2% of patients are male in the AML and ALL data, respec-
tively;

� white blood cell count (WBC): ranging from 0 to a truncated value of 500 with a
median of 7.9 and 8.7 in the AML and ALL groups, respectively;

� Townsend deprivation score (deprivation): this is a measure of deprivation in the
area in which an individual lives, a higher score corresponding to a more deprived
area.

Figure 6. Box plots of n̂ for the standard and local E-M procedures (abbreviated as EM and loc,

respectively) fitted to simulated gamma frailty data with a mixed Weibull baseline hazard. Top-left plot

shows true baseline hazard.
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We fit the gamma frailty model to the AML and ALL data sets using both the
Nielsen et al. E-M procedure and the local E-M procedure described in Section 3.
For both data sets, likelihood ratio tests revealed that the sex effect was not sig-
nificant when either the standard or local E-M methods were used. As a result, this
covariate has been removed from the analysis. The effect of deprivation was statis-
tically significant in the AML data, but not in the ALL data, however, we have
chosen to retain this covariate in both analyses.
Results obtained are given in Table 3. For the local E-M approach, bootstrap

standard error estimates for the parameters are given, based on 100 re-samples. For
the standard E-M approach, estimates of the standard errors were obtained from the
variance matrix, as outlined in Andersen et al. (1997).
We cannot compare the maximized log-likelihoods of the standard E-M and local

E-M gamma frailty models directly because the two approaches assume different
forms for the baseline hazard. Therefore, in Table 3, we provide the likelihood ratio
test statistics obtained when either method is compared to the standard Cox pro-
portional hazards regression model. The full likelihood of the Cox model, containing
either the Breslow or local likelihood estimate of a0ðtÞ and A0ðtÞ, is used to obtain
these test statistics, rather than the more familiar partial log-likelihood. Although
the AML and ALL standard E-M gamma frailty models produce highly significant
likelihood ratio test statistics, the corresponding test statistics for the local E-M
approach are even more statistically significant.
We plot the estimates of A0ðtÞ for the standard and local E-M gamma frailty

models in Figure 7. The Breslow and local likelihood estimates from the Cox pro-
portional hazards model have been added for reference. For both data sets, the local
estimate of A0ðtÞ for the Cox model is extremely close to the corresponding Breslow

Table 3. Parameter estimates for the gamma frailty model applied to the AML and ALL data using the

standard and local E-M approaches.

AML Standard E-M AML Local E-M

Effect Coeff Exp(Coeff) SE Coeff Exp(Coeff) SE

Age 0.0466 1.0478 0.0042 0.0520 1.0534 0.0041

WBC 0.0053 1.0053 0.0008 0.0063 1.0063 0.0010

Deprivation 0.0549 1.0564 0.0145 0.0604 1.0623 0.0145

n 0.7876 0.1799 1.1030 0.2073

L.R. teststatistic 34.8926 49.1416

Age 0.0597 1.0615 0.0122 0.0647 1.0665 0.0111

WBC 0.0049 1.0049 0.0024 0.0055 1.0054 0.0034

Deprivation 0.0319 1.0324 0.0378 0.0385 1.0389 0.0407

n 1.4550 0.6052 1.8416 0.5790

L.R. teststatistic 10.9042 14.5500

The L.R. test statistic compares the fitted model with standard proportional hazards.
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estimate. For gamma frailty, the local likelihood estimate of A0ðtÞ is also reasonably
close to the Breslow estimate in both data sets, although after 4 years of follow up in
the AML data, the local estimate is clearly bigger.
We briefly discuss how estimates of n and b differ between approaches. For both

the AML and ALL data, the estimate of n is very different for the two methods, with
the local E-M procedure producing a substantially larger parameter estimate; in the
AML data, the local E-M n̂ is 40% larger than the standard E-M estimate, whereas
in the ALL data, the local n̂ is 26.5% larger. As a result of the larger n̂, we find that
the covariate effect estimates are noticeably larger in the local E-M approach for
both data sets.

5. Discussion

In this paper, we have investigated the bias of the Nielsen et al. (1992) E-M pro-
cedure for fitting the semi-parametric gamma frailty model. Such an approach is
rank-based, and we suggest that although frailty is partly identified through the
order in which failures occur, we ignore additional frailty that could have been
identified from the survival times themselves, if the Nielsen et al. procedure is used.
When the baseline hazard was estimated using local likelihood, the failure times
enter the model and the bias problem is removed. It remains for a formal proof to be
found to establish the cause of the bias. However, since such proofs usually rely on
asymptotic theory, it may be difficult to identify the source of the bias analytically,
because the standard E-M procedure has been shown to produce consistent estimates
for n and b (Parner, 1998).

Figure 7. The AML and ALL cumulative baseline hazard estimates from (A) The Cox model with Breslow

A0ðtÞ, (B) The standard E-M gamma frailty model, (C) The Cox model with local A0ðtÞ and (D) The local

E-M gamma frailty model.
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In Section 3, we used a nearest neighbour bandwidth. The use of a variable
bandwidth is essential with frailty data because data get more sparse with time. This
may not be an optimal choice for the bandwidth. Cross validation techniques are
often used for bandwidth selection, but in the local E-M procedure, we estimate the
baseline hazard within the E-M algorithm, and such an approach will be very time
consuming. This could be done near the end of the estimation once we are close to
the maximum likelihood estimate n̂.
In Section 4, we applied both the standard and local E-M procedures to the

leukaemia data sets. Standard errors of the parameters were estimated using the
bootstrap. We have not discussed inference in the local likelihood E-M approach,
and this remains as further work. Andersen et al. (1997) have discussed inference for
the standard E-M procedure. The cumulative baseline hazard is modelled para-
metrically with a parameter corresponding to each failure time (this is the same
formulation for A0ðtÞ that we used in Section 2.2); standard errors are obtained from
the observed Fisher information matrix in the usual way. This approach gives the
same parameter estimates as the Nielsen et al. E-M procedure. Such an approach is
not feasible for the local likelihood method, so we recommend estimating the
standard errors using the bootstrap, although this is very computer intensive.
An alternative method of fitting the gamma frailty model via a penalized version of

themarginal likelihood was suggested recently byRondeau et al. (2003). This method,
which was demonstrated on simulated bivariate gamma frailty data, performs signif-
icantly better than the E-M procedure of Nielsen et al. (1992). Like the local E-M
procedure outlined in this article, the approach ofRondeau et al. (2003) introduces the
survival times themselves into themodel. As a result, additional frailtywhich is ignored
by the rank-based E-M approach, is identified by the penalised method. It would be
interesting to compare the performance of the local E-M and penalised marginal
likelihood approaches on univariate survival data, where the finite sample bias of the
standard E-Mprocedure is more extreme than in the bivariate case, but as yet, publicly
available software for the penalized likelihood method is not available.
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