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Abstract. In biomedical studies, interest often focuses on the relationship between patient’s characteristics

or some risk factors and both quality of life and survival time of subjects under study. In this paper, we

propose a simultaneous modelling of both quality of life and survival time using the observed covariates.

Moreover, random effects are introduced into the simultaneous models to account for dependence between

quality of life and survival time due to unobserved factors. EM algorithms are used to derive the point

estimates for the parameters in the proposed model and profile likelihood function is used to estimate their

variances. The asymptotic properties are established for our proposed estimators. Finally, simulation

studies are conducted to examine the finite-sample properties of the proposed estimators and a liver

transplantation data set is analyzed to illustrate our approaches.

Key words: cox proportional hazard model, EM algorithm, maximum likelihood estimator, mixed model,

profile likelihood

1. Introduction

In biomedical studies, researchers are often interested in determining the relationship
between patient’s characteristics or some risk factors and both quality of life and
survival time of subjects. One example, which motivated our research, stems out
from a liver transplantation study of the National Institute of Diabetes and Digestive
and Kidney Diseases (NIDDK). This study was a 7-year prospective study of 1563
candidates for liver transplantation at three major transplant centers. Among the
entire 1563 candidates, 582 received the transplantation for the first time and these
patients were evaluated at four months, one year, and annually afterwards till five
years after their liver transplantation. At each evaluation, they were given ques-
tionnaires asking about their life satisfaction. By the end of the study, 76 patients
deceased. One goal of this study is to investigate whether factors such as patients’
marriage status or disease history affected both quality of life and the risk of death.
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In working with studies involving information on both longitudinal measurements
and survival time, Robins, Rotnitzky and colleagues proposed to treat the longitu-
dinal measurements as repeated measures subject to informative drop-out due to
death and construct inverse probability weighted estimating equations to estimate
regression parameters (Robins et al., 1994; Rotnitzky and Robins, 1995; Rotnitzky
et al., 1998). In their approach, the drop-out due to death is assumed to be predictable
using the observed covariates. Another useful existing approach is based on the
quality-adjusted survival time (Zhao and Tsiatis, 1999). However, both approaches
do not directly answer our question of interest in the NIDDK liver transplantation
study. Moreover, both approaches cannot adjust for latent variables or latent pro-
cesses, which can be associated with both longitudinal measurements and survival
time simultaneously. For example, in the NIDDK liver transplantation study, the
quality of donor’s liver could potentially affect both the patients’ life satisfaction and
death. However, the liver’s quality is not directly available from the data and such
unmeasured factor induces unobserved heterogeneity among the patients. To adjust
for such unobserved heterogeneity, one good way is to simultaneously model quality
of life and survival time by introducing subject-specific effects in both models.
Joint analysis of repeated measurements and survival time has been intensively

studied in recent literature. The models used in such analysis can be categorized into a
selection model or a pattern mixture model. Let Y denote the longitudinal outcomes,
for example, quality of life, then Y are realizations of a latent process ~Y measured
with errors. Let T denote survival time. A selection model focuses on estimating the
distribution of T given ~Y. Such a selection model has been studied by many authors,
for example, Tsiatis et al. (1995), Wulfsohn and Tsiatis (1997), Hu et al. (1998),
Huang et al. (2001), and Xu and Zeger (2001a, b). Usually, ~Y is modelled as a
function of observed covariates and subject-specific random effects; then it is fed into
the model of T given ~Y as a linear predictor. In the pattern mixture model, a model is
assumed for longitudinal outcome Y conditional on survival time T (Wu and Carroll,
1988; Wu and Bailey, 1989; Hogan and Laird, 1997) and interest focuses on esti-
mating parameters in the model for longitudinal outcome. Although both selection
model and pattern-mixture model are useful in some other contexts, they cannot
directly answer our question of interest in the NIDDK liver transplant study. The
selection model would answer the question regarding how one’s quality of life affects
death and the pattern-mixture model would describe the pattern of quality of life
given one’s death time, while we are interested in finding which factor or treatment
can simultaneously improve the patient’s quality of life and reduce the risk of death.
Simultaneous modelling will serve the purpose. In this paper, we model both the

process for quality of life, Y, and survival time, T, given observed covariates X. These
two outcomes are modelled by observed covariates as well as by some unobserved
factors. Heterogeneity caused by unobserved factors is represented using individual
random effects in both models. It is noted that our approach is different from either
selection model or pattern-mixture model, although mathematically, all three models
can be regarded as different ways of writing the distribution of ðT;YÞ given covari-
ates. Xu and Zeger (2001b) proposed a similar model. However, in their model, a
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common latent process is shared by both Y and T, while our model allows individual
random effects to affect the quality of life and the survival time very differently.
Our estimation approach is likelihood-based. The EM-algorithm is employed for

parameter estimation and profile likelihood function is used for variance estimation.
Particularly, we suggest an efficient algorithm based on the EM-algorithm to
calculate the profile likelihood function. Furthermore, we provide the asymptotic
results for the maximum likelihood estimators of the parameters in the joint models.
The rest of the paper is organized as follows. A general framework and model

assumptions for modelling quality of life and survival time are proposed in Section 2.
Section 3 describes the EM-algorithms for the maximum likelihood estimation of the
parameters. We then propose an innovative simple method in computing the
asymptotic variances. Section 4 gives the asymptotic results. Small-sample properties
of the proposed estimators are examined via simulation studies in Section 5. In
Section 6, we apply our proposed method to the liver transplantation data. Further
discussion and generalization are given in Section 7. The outline of the proofs of the
asymptotic results are provided in Appendices A.2 and A.3.

2. General Model

We model quality of life and survival time through parametric and semiparametric
models, respectively. We assume a linear mixed effect model for the longitudinal
outcomes of quality of life and assume a multiplicative hazards model for survival
time. In both models, observed covariates, such as subjects’ baseline variables, dis-
ease status, environmental information over time, are included as predictors and
they are assumed to be either time-independent or external time-dependent variables.
Unobserved factors enter the models as subject-specific random effects so as to
account for unobserved heterogeneity.
Specifically, for subject i, given T > t and the observed history till time t, the

quality of life at time t, denoted by YiðtÞ; follows

YiðtÞ ¼ XiðtÞbþ ~XiðtÞai þ �iðtÞ; ð1Þ

where XiðtÞ and ~XiðtÞ are the row vectors of the observed covariates, �iðtÞ is a white
noise process with mean zero and variance r2

y, ai denotes a vector of subject-specific
random effect of dimension k0 following a multivariate normal distribution with
mean zero and covariance matrix Ra, and b is a column vector of coefficients for
XiðtÞ. The random effect ai reflects the unobserved heterogeneity and is allowed to
differ for different levels of covariates ~XiðtÞ. Additionally, in model (1), XiðtÞ and
~XiðtÞ can be completely different or share some components. For example, in a
clinical trial with two treatment arms, XiðtÞ can contain both column of 1’s and
treatment status for subject i; while ~XiðtÞ is a column of 1’s, which implies a random
intercept is used in the model; or, ~XiðtÞ is the same as XiðtÞ which allows the two
different treatment arms to have different random effects. For the survival time Ti,
the conditional hazard rate function given the observed covariates, the observed
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history before time t, and random effect ai, is assumed to follow a multiplicative
hazards model:

kðtÞe ~WiðtÞð/�aiÞþWiðtÞc; ð2Þ

where WiðtÞ and ~WiðtÞ are the row vectors of the observed covariates and may share
the same components, / is a vector of parameters, kðtÞ is the baseline hazard rate
function, and c is a column vector of coefficients for WiðtÞ. Here, for any vectors v1
and v2 of the same dimension, v1 � v2 denotes the component-wise product.
In models (1) and (2), one may use ai to denote the random effect in the model for the

quality of lifetime but use another different random effect, say bi, to denote the subject-
specific effect in the hazardmodel. Then under the assumptions that ai and bi are jointly
normal, we canwrite bi ¼ h0ai þ ci, where h is a constant vector and ci is independent of
ai. In fact, ci represents the subject-specific effect which affects the survival time but not
the quality of life. However, ci is usually set to be zero for the following two reasons:
first, ci is not identifiable from the observed data; second, in practice, any unobserved
factors affecting the risk of death are believed to affect the quality of life as well. When
ci ¼ 0, the hazards model for the survival time becomes model (2) after suitable rep-
arameterization. In otherwords, although sharing the same randomeffect inmodels (1)
and (2) appears to be restrictive, models (1) and (2) are in fact very general.
In models (1) and (2), the parameter / characterizes the dependence between the

quality of life and the survival time. In particular, when/ ¼ 0, the dependence between
the survival timeand thequalityof life canbe fully attributed to theobserved covariates;
when / 6¼ 0, it implies that such dependence may also be due to some latent variables.
We suppose that the survival time is possibly right censored and that right-censored

time is completely random.We letNi denote the number of the observed quality of life
measurements for subject i and assume thatNi is not informative about parameters of
interest. Furthermore, we write the observed data from n subjects as

ðNi;Y
j
i;X

j
i;

~Xj
iÞ; j ¼ 1; . . . ;Ni; i ¼ 1; . . . ; n

and

ðZi;Di; fðWiðtÞ; ~WiðtÞÞ : t � ZigÞ; i ¼ 1; . . . ; n;

where for subject i, ðYj
i;X

j
i;

~Xj
iÞ is the j-th observation of ðYiðtÞ;XiðtÞ; ~XiðtÞÞ, Ci is the

right-censoring time, Zi ¼ minðTi;CiÞ, and Di ¼ IðTi � CiÞ. We are interested in
estimating and making inference on the parameters h ¼ ðry;Ra; b;/; cÞ and the
baseline cumulative hazard function KðtÞ ¼

R t
0 kðsÞds.

3. Maximum Likelihood Estimation

We integrate over the random effects in the joint models (1) and (2) and note that by
the Gaussian property of YiðtÞ, the observed quality of life, Yi, follows a multivariate
normal distribution given random effects. The observed likelihood function for the
parameters ðh;KÞ can be expressed as
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Yn

i¼1

Z

a

h
ð2pr2

yÞ
�Ni=2 expf�ðYi � Xib� ~XiaÞ0ðYi � Xib� ~XiaÞ=2r2

yg

kðZiÞDi expfDið ~WiðZiÞð/ � aÞ þWiðZiÞcÞ

�
Z Zi

0

e
~WiðsÞð/�aÞþWiðsÞcdKðsÞgð2pÞ�k0=2jRaj�1=2 expf�a0R�1a a=2g

i
da;

where Yi denotes the vector of ðY1
i ; . . . ;YNi

i Þ
0, Xi denotes the matrix of

ððX1
i Þ
0; . . . ; ðXNi

i Þ
0Þ0, ~Xi denotes ðð~X

1

i Þ
0; . . . ; ð~XNi

i Þ
0Þ0, and k0 is the dimension of a.

Our estimation method is to calculate the maximum likelihood estimates for ðh;KÞ
over a set in which h is in a bounded set and K belongs to a space consisting of all the
increasing functions with Kð0Þ ¼ 0. It is clear that the maximum likelihood estimate
for K can be chosen as a step function with jumps only at the observed failure times.
Specifically, the EM algorithm can be used to calculate the maximum likelihood
estimates. In the EM algorithm, ai is considered as the missing statistics for
i ¼ 1; . . . ; n. Therefore, the M-step solves the conditional score equation from the
complete data given the observations, where the conditional expectation can be
evaluated in the E-step. We iterate between E-step and M-step until the estimates
converge. The details of the EM algorithms can be found in the Appendix A.1. We
denote the final maximum likelihood estimate for ðh;KÞ by ðĥ; K̂Þ.
The profile likelihood function is used to obtain the variance estimate for ĥ.Wedefine

the logarithm of the profile likelihood function of h as plnðhÞ ¼ maxK n�1
Pn

i¼1 qiðh;KÞ
where qiðh;KÞ; i ¼ 1; . . . ; n; is the logarithm of the observed likelihood function for the
i-th subject. Then the second-order numerical difference of plnðhÞ at h ¼ ĥ can be used
to approximate the asymptotic variance of ĥ. In particular,

� plnðĥþ hneÞ � 2plnðĥÞ þ plnðĥ� hneÞ
h2n

approximates e0Ihe for any norm-1 vector e and any constant hn ¼ Oð1=
ffiffiffi
n
p
Þ. Ih is the

efficient information matrix for h, which is also equal to the inverse of the asymptotic
variance of

ffiffiffi
n
p

ĥ. We denote the estimated standard error for ĥ based on this second-
order numerical difference by se(II). An alternative estimate of the variance is based
on the equality Ih ¼ E½l�hl�h0�, where l�h denotes the efficient score function for h. Then
we can estimate e0Ihe using the expression:

1

nh2n

Xn

i¼1
½qiðĥþ hne; K̂ĥþhneÞ � qiðĥ; K̂Þ�2;

where K̂h indicates the cumulative hazard function which maximizes the observed
log-likelihood function for a given h. The estimated standard error based on this
first-order numerical difference is denoted by se(I). We use both se(I) and se(II) to
estimate the variance of ĥ in the subsequent analysis.
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In the above variance estimation, we need to compute K̂h for a fixed h in the
neighborhood of ĥ. Due to the complicated expression of the likelihood function in
the presence of the missing data, calculating K̂h via direct maximization is not effi-
cient. Interestingly, however, such calculation can be done via the EM algorithm as
well. The only change from the previous EM algorithm is that we always hold h fixed
in both E-step and M-step so the only updated parameters in each iteration is K.
When the iteration converges, the final K approximates K̂h so the profile likelihood
can be calculated by evaluating the observed likelihood function at ðh; K̂hÞ. We
abbreviate such an EM-based algorithm as the PEME algorithm (partial expecta-
tion, maximization and evaluation). A general procedure and properties of PEME
will be given in Appendix A.4. Our simulation studies indicate that the PEME
algorithm is much faster than the direct optimization.

4. Asymptotic Properties

The asymptotic properties of ðĥ; K̂Þ are given in this section. We need the following
assumptions:

(A1) The true parameter h0 ¼ ðr0y;R0a; b0;/0; c0Þ belongs to a known compact set,
which lies in the interior of the domain for h.

(A2) The true baseline hazard rate function k0ðtÞ is positive and bounded in ½0; s�.
(A3) PðC � sÞ ¼ PðC ¼ sÞ > 0, i.e., by the end of the study, some proportion of the

subjects will still be alive and censored at s.
(A4) PðN > k0Þ > 0. In other words, some proportion of the subjects have at least

k0 longitudinal observations (k0 is the number of random effects in the mixed
model). Moreover, PðN � n0Þ ¼ 1 for some integer n0.

(A5) ~W is time-independent.
(A6) With positive probability, X0X, ~X0 ~X, ~W0 ~W are full rank. Moreover, if for any t,

WðtÞc ¼ c0ðtÞ for a deterministic function c0ðtÞ, then c ¼ 0 and c0ðtÞ ¼ 0.

Under the assumptions (A1)–(A6), the maximum likelihood estimator ðĥ; K̂Þ is
consistent under the product norm of the Euclidean distance and the supreme norm
on ½0; s�. That is,

jĥ� h0j þ sup
t2½0;s�

jK̂ðtÞ � K0ðtÞj ! 0; a:s:

The outline of the proof for the consistency is given in the Appendix A.2.
Additionally, in the Appendix A.3., we show that

ffiffiffi
n
p
ðĥ� h0; K̂� K0Þ weakly

converges to a Gaussian random element in Rk � l1½0; s�, where k is the dimension
of h and l1½0; s� is the normed space containing all the bounded functions in ½0; s�.
Especially,

ffiffiffi
n
p
ðĥ� h0Þ weakly converges to a multivariate normal distribution with

mean zero; and f
ffiffiffi
n
p
ðK̂ðtÞ � K0ðtÞÞ : t 2 ½0; s�g weakly converges to a Gaussian

process indexed by t.
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When both the consistency and the asymptotic normality are obtained, we can
verify all the conditions for the profile likelihood theory given in Murphy and van
der Vaart (2000). Specifically, the logarithm of the profile likelihood function, plnðhÞ,
has an approximate parabolic shape around the maximum likelihood estimate ĥ and
its curvature approximates the negative information matrix for h0. Conclusively,
�h�2n plnðĥþ hneÞ � 2plnðĥÞ þ plnðĥ� hneÞ

n o
converges to eTIðh0Þe for any norm-1

vector e and constant hn ¼ Oðn�1=2Þ.

5. Simulation Study

Two sets of simulations are performed in this section. In the first set of simulations, we
consider a binary time-independent covariate for both the model of quality of life and
the survival model and a random intercept is used in bothmodels. Specifically, we have
Yj

i ¼ b0 þ b1Xi þ ai þ �ij for j ¼ 1; . . . ;Ni and hðtjXi; aiÞ ¼ k0ðtÞ expf/ai þ cXig,
where ai � Nð0; r2

aÞ, �ij � Nð0; r2
yÞ, and Xi is simulated from a Bernoulli distribution

with success probability being 0.5. Censoring time is generated from an exponential
distribution with a constant hazard rate C0. The data for quality of life are generated
for every 0.2 unit of time. The parameters in the two models are chosen as
b0 ¼ �1; b1 ¼ 1;ry ¼ 0:4; ra ¼ 1,/ ¼ �0:2; c ¼ 0:4; k0ðtÞ ¼ 1: We consider different
sample sizes (n ¼ 50; 100; 200) and censoring proportions (0%, 30%, 50%). The latter
two censoring rates correspond to C0 ¼ 1 and C0 ¼ 4, respectively. For most of the
subjects, the number of longitudinal observations (Ni) is around 2–4. Each simulation
is repeated 500 times. The results of the maximum likelihood estimates for h and their
respective standard error estimates using se(I) and se(II) are reported in Table 1.
In our second set of simulations, the covariates include a time-dependent covariate,

which is indeed a time-independent covariate modelled to have a time-varying effect.
Specifically, we generate the data from the models Yj

i ¼ b0Xi þ b1Xitij þ ai þ �ij and
hðtjai;XiÞ ¼ k0ðtÞ expf/ai þ cXitg, where ai � Nð0; r2

aÞ, �ij � Nð0; r2
yÞ, Xi is simulated

from a Bernoulli distribution with success probability being 0.5, and tij ¼ 0:2ðj� 1Þ
is the time for observing Yj

i. Censoring time is generated from an exponential dis-
tribution with constant hazard rate C0. The choice of the parameters is
b0 ¼ �1; b1 ¼ 1;ry ¼ 0:4; ra ¼ 1; / ¼ �0:5; c ¼ 0:2; k0ðtÞ ¼ 1:We consider different
sample sizes (n ¼ 50; 100; 200) and censoring proportions (0%, 30%, 50%). The
latter two censoring rates correspond to C0 ¼ 1 and C0 ¼ 3:5, respectively. For most
of the subjects, the number of longitudinal observations (Ni) is around 2–4. We
present the simulation results in Table 2, where each simulation is repeated 500
times. Both simulations were coded and conducted using Splus 2000.
In both Tables 1 and 2, ‘‘h0’’ column gives the true values of each parameter; the

averages of the maximum likelihood estimates from the EM algorithm are in
‘‘MLE’’ column and the sample standard deviations from 500 simulations are re-
ported in the column ‘‘emp.se’’; ‘‘se(I)’’ is the average of the 500 standard error
estimates based on the first-order numerical difference of the profile likelihood
function and ‘‘se(II)’’ is the average of the standard error estimates based on the
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Table 1. Results from simulation study with time-independent covariate.

n cen% h h0 MLE emp.se. se(I) se(II) CP(I) CP(II)

n ¼ 50 0% b0 )1.00 )0.989 0.193 0.218 0.201 0.960 0.946

b1 1.00 0.987 0.278 0.310 0.286 0.970 0.952

r2
y 0.16 0.159 0.017 0.019 0.016 0.966 0.946

r2
a 1.00 0.965 0.208 0.241 0.206 0.926 0.898

/ )0.20 )0.205 0.177 0.198 0.162 0.974 0.936

c 0.40 0.408 0.309 0.341 0.309 0.970 0.944

30% b0 )1.00 )0.987 0.209 0.217 0.202 0.956 0.948

b1 1.00 0.990 0.294 0.311 0.287 0.966 0.946

r2
y 0.16 0.160 0.021 0.024 0.020 0.958 0.948

r2
a 1.00 0.967 0.219 0.244 0.208 0.932 0.904

/ )0.20 )0.223 0.202 0.222 0.192 0.974 0.948

c 0.40 0.411 0.366 0.390 0.360 0.966 0.952

50% b0 )1.00 )0.987 0.195 0.221 0.204 0.966 0.956

b1 1.00 0.983 0.294 0.312 0.289 0.952 0.930

r2
y 0.16 0.159 0.025 0.030 0.025 0.954 0.938

r2
a 1.00 0.971 0.210 0.249 0.211 0.944 0.920

/ )0.20 )0.213 0.253 0.264 0.229 0.964 0.926

c 0.40 0.404 0.479 0.463 0.432 0.950 0.934

n=100 0% b0 )1.00 )1.004 0.143 0.149 0.143 0.958 0.950

b1 1.00 1.001 0.205 0.212 0.203 0.950 0.942

r2
y 0.16 0.160 0.012 0.013 0.012 0.960 0.946

r2
a 1.00 0.973 0.146 0.161 0.147 0.940 0.926

/ )0.20 )0.208 0.119 0.123 0.110 0.956 0.940

c 0.40 0.394 0.227 0.226 0.213 0.958 0.942

30% b0 )1.00 )0.995 0.141 0.150 0.144 0.964 0.950

b1 1.00 1.003 0.199 0.213 0.205 0.966 0.960

r2
y 0.16 0.161 0.014 0.015 0.014 0.962 0.956

r2
a 1.00 0.980 0.153 0.163 0.149 0.948 0.922

/ )0.20 )0.213 0.133 0.141 0.130 0.970 0.952

c 0.40 0.434 0.239 0.260 0.250 0.964 0.950

50% b0 )1.00 )0.999 0.144 0.152 0.146 0.958 0.954

b1 1.00 1.014 0.201 0.215 0.207 0.958 0.954

r2
y 0.16 0.159 0.018 0.020 0.018 0.948 0.934

r2
a 1.00 0.984 0.159 0.167 0.153 0.938 0.916

/ )0.20 )0.213 0.164 0.167 0.156 0.960 0.960

c 0.40 0.374 0.284 0.307 0.296 0.974 0.966

n ¼ 200 0% b0 )1.00 )0.993 0.092 0.104 0.102 0.970 0.968

b1 1.00 0.994 0.143 0.148 0.145 0.956 0.950

r2
y 0.16 0.160 0.008 0.008 0.008 0.950 0.946

r2
a 1.00 0.984 0.103 0.109 0.105 0.952 0.938

/ )0.20 )0.198 0.076 0.081 0.076 0.970 0.952

c 0.40 0.404 0.147 0.154 0.149 0.954 0.950

30% b0 )1.00 )1.002 0.108 0.105 0.103 0.940 0.938

b1 1.00 0.999 0.149 0.149 0.146 0.942 0.942

r2
y 0.16 0.160 0.010 0.010 0.010 0.956 0.952

r2
a 1.00 0.993 0.105 0.111 0.107 0.944 0.942

/ )0.20 )0.204 0.087 0.094 0.090 0.978 0.970

c 0.40 0.407 0.180 0.177 0.174 0.954 0.940
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second-order numerical difference of the profile likelihood function. In both stan-
dard error estimation, the profile likelihood functions are calculated using the PEME
algorithms; ‘‘CPðIÞ’’ and ‘‘CPðIIÞ’’ are the coverage proportions of the 95% nominal
confidence intervals by using the corresponding se(I) and se(II).
From Tables 1 and 2, we can see that even for a small sample size (n ¼ 50), the bias

of the estimates from EM algorithm is negligible. Both se(I) and se(II) calculated
from the PEME algorithms are close to the sample standard deviations from the 500
estimates and the 95% confidence interval coverage rates are close to 0.95. In
addition, the simulations show that as the sample size (n) increases, the variances of
the estimators decrease. As the right-censoring becomes heavier, the estimated
variances for the parameters in the survival models increase while the estimators of
the variances for the coefficients in the longitudinal model are fairly robust to this
change. This might be due to that conditional on random effects, the variance
estimate for the coefficients in the longitudinal model depends on the number of the
observations obtained by the ending time and it is not relevant to whether the ending
time is a survival time or a censoring time.
To study the sensitivity of the parameter estimates to the mis-specification in the

random component structure, we conduct an additional simulation study, where the
quality of life data are generated from the mixed model in our second simulation and
the survival time is generated from the following proportional hazards model

hðtjai; bi;XiÞ ¼ k0ðtÞ expf/ai þ bi þ cXitg;

where bi is another random effect independent of ai and bi follows a normal distri-
bution with mean zero and variance r2

b. Thus, the only difference from our second
simulation is that there is an extra random effect bi affecting the survival time but not
the quality of life. We calculate the maximum likelihood estimates by ignoring bi; in
other words, we mis-specify the model for the survival time. We wish to study how
the parameter estimates vary with the values of r2

b. We use the same parameter
setting as our second simulation and we generate right-censoring time from an
exponential distribution with constant hazard rate 1. Moreover, the values of r2

b vary
from 0 to 2. The results from 500 repetitions with sample size 100 are given in Table 3.
From Table 3, we find that the regression coefficients in the model for the quality of
life are very robust to this extra random effect; the regression coefficient for the

Table 1. (Continued).

n cen% h h0 MLE emp.se. se(I) se(II) CP(I) CP(II)

50% b0 )1.00 )1.004 0.101 0.105 0.103 0.964 0.962

b1 1.00 1.005 0.142 0.149 0.147 0.950 0.948

r2
y 0.16 0.160 0.013 0.013 0.013 0.948 0.938

r2
a 1.00 0.991 0.110 0.113 0.108 0.946 0.942

/ )0.20 )0.204 0.109 0.112 0.107 0.950 0.940

c 0.40 0.422 0.193 0.211 0.207 0.964 0.962
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Table 2. Results from simulation study with time-dependent covariate.

n cen% h h0 MLE emp.se se(I) se(II) CP(I) CP(II)

n ¼ 50 0% b0 )1.00 )0.999 0.081 0.101 0.092 0.970 0.954

b1 1.00 0.999 0.032 0.045 0.033 0.980 0.940

r2
y 0.16 0.158 0.016 0.019 0.016 0.974 0.940

r2
a 1.00 0.996 0.217 0.249 0.213 0.956 0.926

/ )0.50 )0.529 0.180 0.216 0.178 0.980 0.946

c 0.20 0.230 0.389 0.416 0.320 0.972 0.928

30% b0 )1.00 )0.997 0.077 0.100 0.092 0.982 0.978

b1 1.00 1.001 0.063 0.078 0.061 0.980 0.940

r2
y 0.16 0.159 0.019 0.023 0.020 0.960 0.942

r2
a 1.00 0.971 0.213 0.246 0.209 0.940 0.918

/ )0.50 )0.537 0.226 0.249 0.211 0.976 0.938

c 0.20 0.225 0.649 0.751 0.626 0.976 0.956

50% b0 )1.00 )0.994 0.091 0.102 0.093 0.954 0.940

b1 1.00 0.994 0.104 0.125 0.101 0.966 0.950

r2
y 0.16 0.159 0.025 0.028 0.024 0.946 0.924

r2
a 1.00 0.979 0.208 0.249 0.213 0.954 0.932

/ )0.50 )0.539 0.252 0.286 0.248 0.976 0.954

c 0.20 0.220 1.213 1.364 1.160 0.978 0.964

n ¼ 100 0% b0 )1.00 )1.001 0.055 0.068 0.065 0.978 0.968

b1 1.00 1.000 0.022 0.027 0.022 0.968 0.952

r2
y 0.16 0.160 0.011 0.013 0.011 0.954 0.946

r2
a 1.00 0.992 0.153 0.163 0.150 0.942 0.924

/ )0.50 )0.516 0.122 0.138 0.121 0.966 0.948

c 0.20 0.220 0.243 0.238 0.205 0.956 0.936

30% b0 )1.00 )0.999 0.057 0.068 0.065 0.980 0.960

b1 1.00 1.000 0.043 0.048 0.042 0.970 0.950

r2
y 0.16 0.160 0.015 0.015 0.014 0.950 0.934

r2
a 1.00 0.979 0.148 0.160 0.149 0.936 0.926

/ )0.50 )0.515 0.154 0.156 0.143 0.952 0.944

c 0.20 0.211 0.447 0.460 0.412 0.956 0.938

50% b0 )1.00 )0.999 0.061 0.070 0.067 0.962 0.960

b1 1.00 0.998 0.063 0.077 0.070 0.972 0.968

r2
y 0.16 0.159 0.017 0.019 0.017 0.960 0.950

r2
a 1.00 0.997 0.163 0.165 0.153 0.934 0.912

/ )0.50 )0.508 0.178 0.179 0.166 0.956 0.956

c 0.20 0.241 0.762 0.824 0.749 0.976 0.958

n ¼ 200 0% b0 )1.00 )1.003 0.036 0.047 0.046 0.982 0.984

b1 1.00 0.999 0.016 0.017 0.016 0.954 0.940

r2
y 0.16 0.160 0.008 0.008 0.008 0.936 0.928

r2
a 1.00 0.991 0.107 0.110 0.106 0.944 0.930

/ )0.50 )0.506 0.088 0.090 0.084 0.946 0.944

c 0.20 0.220 0.145 0.152 0.137 0.956 0.942

30% b0 )1.00 )1.001 0.037 0.048 0.047 0.982 0.982

b1 1.00 1.003 0.031 0.031 0.029 0.938 0.940

r2
y 0.16 0.160 0.010 0.010 0.010 0.944 0.942

r2
a 1.00 0.993 0.107 0.110 0.107 0.938 0.940

/ )0.50 )0.508 0.099 0.103 0.098 0.962 0.954

c 0.20 0.218 0.273 0.291 0.273 0.970 0.950
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survival time are robust when r2
b is small; however, when r2

b is large, its bias becomes
significant, although the inference is correct. Furthermore, the parameter estimate
for / is sensitive to the change of r2

b and the bias is large when r2
b ¼ 2. This

sensitivity analysis indicates that even when some extra latent effect may affect the
survival time, the inference for the covariate coefficients in the model for quality of
life can be good; however, the inference for the parameters in the model for the
survival time may be incorrect.

6. Application

We apply our proposed method to the data from the NIDDK liver transplantation
study. We select one measurement of the patients’ quality of life as the longitudinal
outcome. This measurement is based on the question ‘‘Overall, how satisfied are you
with health at the present time?’’. The response score ranges from 1 (‘‘completely
satisfied’’) to 7 (‘‘completely dissatisfied’’). We treat this score as continuous in our
analysis. There are 582 patients with 1382 complete post-transplantation quality of
life scores and the range of the number of observations for each patient is 1–5. The
censoring rate is 87%. The solid lines in Figures 1 and 2 are the average dissatis-
faction scores and the Kaplan–Meier curves for the Caucasian patients with different
marriage status and the ascites history. The plot shows that the life dissatisfaction
scores did not change over time for all the groups and the patients who were married
and had ascites appeared to be slightly more satisfied with their life; some difference
is observed in the survival curves between the single patients and the marriage ones.
We are interested in studying which variables, including age, race, gender, marriage

status and disease history of ascites, bone disease, cholangitis and edema, predict the
life satisfaction score or the risk of death or both. Let HðtÞ denote the failure,
censoring, and covariates information up to time t. The joint models for the life
satisfaction score and the survival time are:

YðtÞ ¼b0 þ b1IðCenter ¼ 2Þ þ b2IðCenter ¼ 3Þ þ b3ageþ b4sex

þ b5raceþ b6marriageþ b7ASCþ b8BDþ b9CHOLþ b10EDE

þ b11BMIþ b12tþ a0 þ a1tþ �ðtÞ;

Table 2. (Continued).

n cen% h h0 MLE emp.se se(I) se(II) CP(I) CP(II)

50% b0 )1.00 )0.998 0.039 0.048 0.047 0.982 0.972

b1 1.00 1.002 0.052 0.053 0.030 0.932 0.916

r2
y 0.16 0.159 0.013 0.013 0.012 0.952 0.928

r2
a 1.00 0.998 0.105 0.112 0.108 0.956 0.964

/ )0.50 )0.511 0.118 0.120 0.114 0.954 0.948

c 0.20 0.212 0.500 0.533 0.506 0.974 0.950
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hðtjHðtÞÞ ¼kðtÞ expf/a0 þ c1IðCenter ¼ 2Þ þ c2IðCenter ¼ 3Þ þ c3age

þ c4sexþ c5raceþ c6marriageþ c7ASCþ c8BD

þ c9CHOLþ c10EDEþ c11BMIg;

where �ðtÞ is normally distributed with mean zero and variance r2
y, ða0; a1Þ follows a

bivariate normal distribution with mean zero. YðtÞ is the dissatisfaction score at time
t, ‘‘IðCenter ¼ 2Þ’’ and ‘‘IðCenter ¼ 3Þ’’ are indicators for the center identity with
center 1 being the reference group, ‘‘age’’ is the age of the patient at liver trans-
plantation, BMI is the body mass index, and the other covariates are all binary:
‘‘sex’’ (0: male, 1: female), ‘‘race’’ (0: Caucasian, 1: non-Caucasian), ‘‘marriage’’ (0:
single, 1: married), ‘‘ASC’’ (0: never had ascites, 1: ever had ascites), ‘‘BD’’ (0: never
had bone disease, 1: ever had bone disease), ‘‘CHOL’’ (0: never had cholangitis, 1:
ever had cholangitis), ‘‘EDE’’ (0: never had edema, 1: ever had edema). The shared
random element in both models is the random intercept a0, which accounts for the
unobserved heterogeneity in explaining the dependence between the longitudinal
quality of life outcome and the hazard of death.

Table 3. Results from sensitivity analysis in simultaneous modelling with n ¼ 100.

r2
b h h0 MLE emp.se se(I) se(II) CP(I) CP(II)

0 b0 )1.00 )0.999 0.057 0.068 0.065 0.980 0.960

b1 1.00 1.000 0.043 0.048 0.042 0.970 0.950

r2
y 0.16 0.160 0.015 0.015 0.014 0.950 0.934

r2
a 1.00 0.979 0.148 0.160 0.149 0.936 0.926

/ )0.50 )0.515 0.154 0.156 0.143 0.952 0.944

c 0.20 0.211 0.447 0.460 0.412 0.956 0.938

0.25 b0 )1.00 )1.000 0.056 0.069 0.066 0.978 0.974

b1 1.00 0.999 0.041 0.046 0.040 0.966 0.960

r2
y 0.16 0.159 0.014 0.015 0.014 0.946 0.930

r2
a 1.00 0.994 0.155 0.162 0.151 0.954 0.948

/ )0.50 )0.468 0.142 0.153 0.140 0.950 0.942

c 0.20 0.160 0.451 0.462 0.418 0.948 0.938

1 b0 )1.00 )0.997 0.055 0.069 0.066 0.970 0.968

b1 1.00 1.001 0.038 0.044 0.038 0.966 0.942

r2
y 0.16 0.159 0.014 0.015 0.014 0.944 0.936

r2
a 1.00 1.000 0.157 0.165 0.152 0.940 0.926

/ )0.50 )0.360 0.137 0.147 0.138 0.834 0.804

c 0.20 0.178 0.481 0.494 0.448 0.964 0.944

2 b0 )1.00 )1.003 0.057 0.069 0.066 0.962 0.956

b1 1.00 1.002 0.034 0.042 0.036 0.972 0.954

r2
y 0.16 0.160 0.014 0.015 0.014 0.936 0.930

r2
a 1.00 1.005 0.158 0.166 0.153 0.956 0.954

/ )0.50 )0.301 0.138 0.146 0.137 0.704 0.670

c 0.20 0.097 0.485 0.526 0.478 0.976 0.956

(r2
b is the variance of the extra random effect in the proportional hazards model).
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After fitting the joint model, we find that the variables of gender, BD, CHOL and
EDE are not statistically significant in either the model for the quality of life or the
model for the survival time. We remove these variables and refit the joint model. The
likelihood ratio test indicates that after removing these four variables, the log-like-
lihood function decreases from �2270:8 to �2274:5, which is not statistically
significant when compared with 95-percentile of the v2�distribution with 4 degrees
of freedom. Table 4 gives the result from our simultaneous modelling. From the
table, the patients’ dissatisfaction with the current health status significantly varied
among three centers. An overall likelihood ratio test for the significance of the
centers gives the test statistics value 13 (p-value less than 0.001). The hazard of death
in these centers were similar; the patients who were currently married or who ever
had ascites before the liver transplantation were more satisfied with their health after
transplantation than those who were not; but these factors were not statistically
significant in predicting death; the elder and Caucasian patients tended to have a
higher risk of death but their quality of life was not significantly different from other
groups. We further find that the patients with lower BMI tended to be more satisfied
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Figure 1. Solid lines are the fitted curves using smoothing splines and the dotted lines are the fitted curves

from the simultaneous modelling. (a) is the plot for the Caucasian patients who were single and never had

ascites; (b) is the plot for the Caucasian patients who were married and never had ascites; (c) is the plot for

the Caucasian patients who were single and ever had ascites; (d) is the plot for the Caucasian patients who

were married and ever had ascites.
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with health but their risk of death was not affected by it. We also note that the
patients’ dissatisfaction did not change significantly within five years post trans-
plantation. Finally, the parameter / is significantly positive, which implies that some
latent factor causing life dissatisfaction also increases the risk of death.
For comparison, we also analyze the data using separate models for fitting the

life dis-satisfaction score and the survival time. The results from this separate
analysis, which are not reported here, indicate that only marriage status and EDE
were marginally significant in the model for the quality of life and the life dis-
satisfaction score decreased significantly over years; while only age and race
significantly affected the survival. Both models did not find that the BMI index
was significant.
We also use the results from the simultaneous modelling to predict the mean

quality of life scores and the survival function for a given group. The predicted
survival function can be obtained using the expression

Z

a

exp �
Z t

0

e
eWðsÞð/�aÞþWðsÞcdKðsÞ

� �

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2pjRaj

p
Þ�k0 exp � a0R�1a a

2

� �

da;

Survival curve

time in years

0                2                4                6

0                2                4                6 0                2                4                6

0                2                4                6

Survival curve

time in years

su
rv

iv
al

 p
ro

ba
bi

lit
ie

s

0.
75

0.
85

0.
95

su
rv

iv
al

 p
ro

ba
bi

lit
ie

s

0.
75

0.
85

0.
95

su
rv

iv
al

 p
ro

ba
bi

lit
ie

s

0.
75

0.
85

0.
95

su
rv

iv
al

 p
ro

ba
bi

lit
ie

s

0.
75

0.
85

0.
95

Survival curve

time in years

Survival curve

time in years

(a) (b)

(c) (d)

Figure 2. Solid lines are the Kaplan–Meier curves and the dotted lines are the fitted curves from the

simultaneous modelling. (a) is the plot for the Caucasian patients who were single and never had ascites;

(b) is the plot for the Caucasian patients who were married and never had ascites; (c) is the plot for the

Caucasian patients who were single and ever had ascites; (d) is the plot for the Caucasian patients who

were married and ever had ascites.
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where the parameters ð/; c;RaÞ and Kð	Þ are substituted with the estimates from the
simultaneous modelling. As one example, in Figures 1 and 2, we plot the predicted
quality of life and the survival function for the groups with different marriage status
and ascites history, respectively, where both predicted curves are obtained as the
average over all other covariates. For comparison, we also plot the fitted quality of
life scores using smoothing spline and the Kaplan–Meier curves for both figures.
Both figures indicate that the model prediction fits the data pretty well. Small dif-
ference among the predictive curves of the quality of life is due to the small effect of
the marriage status and the ascites history.
Finally, we study the sensitivity of the estimates to the structure of the random

components. We use either random effect a1 or the summation of a0 and a1 in the
multiplicative hazards model for the survival time. The former gives the log-likeli-
hood value �2276:7 and the latter gives �2274:6. The parameter estimates from
these two different models are very similar to the ones given in Table 4. It indicates
that our previous model for fitting the transplantation data is not very sensitive to
different formulation of random components.

Table 4. Results from analyzing liver transplantation study.

Covariate b̂ ŝe1 b̂=ŝe1 ŝe2 b̂=ŝe2

Quality of life satisfaction score

Intercept 2.3745 0.2826 8.40 0.2662 8.92

I(Center=2) 0.3435 0.1223 2.81 0.1146 3.00

I(Center=3) 0.3873 0.1186 3.26 0.1065 3.63

Age 0.0032 0.0048 0.65 0.0022 1.42

race 0.1119 0.1282 0.87 0.1226 0.91

marriage )0.2695 0.1115 )2.42 0.1189 )2.27
ASC )0.1924 0.0993 )1.94 0.1067 )1.80
BMI 0.0247 0.0091 2.72 0.0038 6.41

Time )0.0338 0.0255 )1.33 0.0256 )1.32

Survival endpoint

/ 0.5774 0.1371 4.21 0.1419 4.07

I(Center=2) 0.6042 0.3377 1.79 0.3289 1.84

I(Center=3) 0.5074 0.3262 1.55 0.3249 1.56

Age 0.0253 0.0123 2.05 0.0115 2.20

race )0.5582 0.3052 )1.83 0.2929 )1.91
marriage 0.0725 0.3037 0.24 0.2994 0.24

ASC )0.1463 0.2889 )0.51 0.2813 )0.52
BMI 0.0202 0.0202 1.00 0.0220 0.92

ŝe1 and ŝe2 are the estimated standard errors based on the methods of se(I) and se(II), respectively. / is the

coefficient of the random effect in the multiplicative hazard model. The estimate for r2
y is 0.6387 with

ŝe1ðr̂2
yÞ ¼ 0:0262 and ŝe2ðr̂2

yÞ ¼ 0:0377 and the estimate for the covariance of ða0; a1Þ is equal to

1:1265 �0:1276
�0:1276 0:0508

� �

with ŝe1ðR̂aÞ ¼
0:1358 0:0417
0:0417 0:0163

� �

and ŝe2ðR̂aÞ ¼
0:1487 0:0501
0:0501 0:0200

� �

.
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7. Remarks

We have proposed a simultaneous model for modelling both quality of life and
survival time. We have also presented the asymptotic properties of the maximum
likelihood estimators when both models only share the random effects of time-
independent covariates. Moreover, we have proposed an efficient algorithm to eval-
uate the profile likelihood function in a neighborhood of the maximum likelihood
estimates. We conclude that, compared with separate analyses of survival and quality
of life, joint modelling can utilize data information to a maximal extent to give more
efficient and less biased estimation. Our real data example indicates that joint mod-
elling identifies some risk factors which are not picked up using separate analyses.
Two formulae of estimating the asymptotic variance of the maximum likelihood

estimator are given and denoted by seðIÞ and seðIIÞ. The simulation studies show
that the algorithm provides a reasonable estimate of the variance and the conver-
gence is rapid. Moreover, we observe from the simulation studies that the formula of
seðIÞ often gives larger values than the ones given by seðIIÞ. This might be due to the
fact that we need to compute the first-order numerical difference n times (n is the
sample size) for the approximations in seðIÞ so it would accumulate more numerical
errors; comparatively, we only need to calculate the second-order numerical differ-
ence once for the approximation in seðIIÞ. However, the computing time for seðIÞ is
substantially shorter when there are many elements in h. This is because in obtaining
the information matrix using our algorithms, seðIIÞ requires calculating the profile
likelihood function kðkþ 1Þ=2 times, while seðIÞ only needs such calculations 2k
times, where k is the dimension of h.
The quantity / in the hazards model can be used to represent the dependence

between quality of life and survival time due to the unobserved factors. Base on /,
we can define the correlation between the random term in model (1) and the random
term in model (2), which is equal to

rðtÞ ¼
~XðtÞRað/ � ~WðtÞ0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~XðtÞRa

~XðtÞ0Þðð/ � ~WðtÞ0Þ0Rað/ � ~WðtÞ0ÞÞ
q

as a quantity characterizing the dependence between these two outcomes due to
latent variables at time t. If larger value of YðtÞ implies lower quality of life, then
positive rðtÞ implies that high quality of life is associated with decreased risk of death
at time t.

In the model for quality of time, we assumed that the measurement error is a
white noise process. In fact, one can assume �ðtÞ to be a gaussian process with
serial correlation, for example, an autoregressive process. Such generalization will
result in more complicated computation in the E-step. However, our approach and
results can be generalized to include this situation. One alternative to our maxi-
mum likelihood estimation is Bayesian approach, which was implemented in Xu
and Zeger (2001b) for their joint models with common random effect. Comparison
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of the two approaches could be of interest. Finally, simultaneous modelling can be
further generalized to consider longitudinal models which can incorporate cate-
gorical or ordinal data and can be used to model multiple processes or multiple
survival events.
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Appendix A

A.1. EM Algorithms

We provide the details of the EM-algorithms in the following: at the kth iteration,
E-step: we calculate the conditional expectation of gðaiÞ given the observations and
the current parameters ðhðkÞ;KðkÞÞ for some known function gð	Þ. We denote the
result by E½gðaiÞjhðkÞ;KðkÞ�. Particularly, given the current parameter ðhðkÞ;KðkÞÞ,

E gðaiÞjhðkÞ;KðkÞ
h i

¼

R
z
g

ffiffiffi
2
p

~RðkÞi

� �1=2
zþ~lðkÞi

� �

exp �
RZi

0 e
~WiðsÞ /ðkÞ�

ffiffi
2
p

~RðkÞ
ið Þ

1=2
zþ~lðkÞ

i

� 	� 	
þWiðsÞcðkÞdKðkÞðsÞ

� �

expf�z0zgdz

R
z
exp �

RZi

0 e
~WiðsÞ /ðkÞ�

ffiffi
2
p

~RðkÞ
ið Þ

1=2
zþ~lðkÞ

i

� 	� 	
þWiðsÞcðkÞdKðkÞðsÞ

� �

expf�z0zgdz

where ~RðkÞi ¼ ð~Xi
0 ~Xi=ðrðkÞy Þ2 þ ðRðkÞa Þ

�1Þ�1 and ~lðkÞi ¼ ~RðkÞi ½ðYi � Xib
ðkÞÞ0 ~Xi=ðrðkÞy Þ2þ

Di/
ðkÞ � ~WiðZiÞ

0�: Both the numerator and the denominator can be calculated using

the Gauss–Hermite Quadrature numerical approximation. The latter approximates

an integration
R
z
expf�z0zgfðzÞdz using a summation like

Pm
s¼1 xsfðxsÞ where xs is

the weight used in the approximation and xs is the interpolated points.

M-step: after differentiating the full likelihood function, the updated estimators
ðhðkþ1Þ;Kðkþ1ÞÞ can be obtained as follows.


 bðkþ1Þ is the linear regression coefficients of regressing fYi � E½~XiaijhðkÞ;KðkÞ�;
i ¼ 1; . . . ; ng on fXi; i ¼ 1; . . . ; ng.


 ðr2
yÞ
ðkþ1Þ is equal to f

Pn
i¼1 Nig�1

Pn
i¼1½R0iRi þ E½ð~XiaiÞ2jhðkÞ;KðkÞ�

�ðE½~XiaijhðkÞ;KðkÞ�Þ2�, where Ri ¼ Yi � Xib
ðkþ1Þ � E½~XiaijhðkÞ;KðkÞ�:


 Rðkþ1Þa is equal to
Pn

i¼1 E½aia0ijhðkÞ;K
ðkÞ�=n.


 /ðkþ1Þ

cðkþ1Þ

� �

solves the partial likelihood score equation using one-step Newton–

Raphson iteration
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0¼
Xn

i¼1
Di

(
E½ð ~WiðZiÞ0 � aiÞjhðkÞ;KðkÞ�

Wi

 !

�

P

Zj�Zi

E½ð ~WjðZiÞ0 � ajÞexpf ~WjðZiÞð/ � ajÞþWjðZiÞcgjhðkÞ;KðkÞ�
E½WjðZiÞexpf ~WjðZiÞð/ � ajÞþWjðZiÞcgjhðkÞ;KðkÞ�

 !

P

Zj�Zi

E½expf ~WjðZiÞð/ � ajÞþWjðZiÞcgjhðkÞ;KðkÞ�

9
>>>>=

>>>>;

:


 Kðkþ1Þ is obtained as an empirical function which has jumps only at the observed
failure time:

Kðkþ1ÞðzÞ ¼
X

Zi�z

Di
P

Zj�Zi

E½expf ~WjðZiÞð/ðkþ1Þ � ajÞ þWjðZiÞcðkþ1ÞgjhðkÞ;KðkÞ�
:

A.2. Sketched Proof of Consistency

In this section and the following Section A.3, we give the outline of the proofs for
both consistency and asymptotic normality. The technical proof is available from
the authors. For simplicity, we assume that a as well as both ~WiðtÞ and ~XiðtÞ are
one-dimensional. The consistency can be completed from the following three steps.

(i) The estimator of ðĥ; K̂Þ exists.
(ii) We will show for almost everywhere of X (the probability space), K̂ðsÞ is

bounded for any n. Therefore, for any subsequence, there exists a sub-subse-
quence such that ðĥ; K̂Þ converges almost surely to some random variable
ðh�;K�Þ.

(iii) Finally, we will show the limit ðh�;K�Þ is the same as the true parameter ðh0;K0Þ.
Since K0 is continuous, such convergence for K̂ can be strengthened to uniform
convergence.

Notations. We define the following notations for i ¼ 1; . . . ; n. The true values for
both K and h are respectively, K0 and h0 ¼ ðr0y; r0a; b0;/0; c0Þ: Define
Si ¼

PNi

j¼1
~Xj
ið~X

j
iÞ
0=Ni; RSSi ¼

PNi

j¼1ðY
j
i � X

j
ib̂Þð~X

j
iÞ
0 and let

pi ¼ exp
ð/̂ ~W0iÞ

2

Si=r̂2
yþ1=r̂2

a

n o
; ai ¼ Si=r̂2

y þ 1=r̂2
a

n o�1
/̂ ~W0iDi þRSSi=r̂2

y

n o
;

ni ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Si=r̂2

y þ 1=r̂2
a

qn o�1=2
; wi ¼ expfWiðZiÞĉþ ~Wið/̂aiÞ þ ð ~Wi/Þ2n2i =2g:

Corresponding to the true values of the parameters in the above notations, we also
define p0i ; a

0
i ; n

0
i ; and w0

i where the parameters in the right-hand side of the above
notations are the true parameters. Additionally, we denote Giða; h;KÞ as
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exp

�

�
Z Zi

0

exp

�
/ ~Wiaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Si=r2
y þ 1=r2

a

q þ / ~Wi

/ ~WiDi þ
PNi

j¼1ðY
j
i � X

j
ibÞð~X

j
iÞ
0=r2

y

Si=r2
y þ 1=r2

a

þWiðtÞcgdKðtÞ
�

:

The proof of (i) can be done by directly checking that if the jump size of K̂ goes to
infinity, then lnðĥ; K̂Þ ! �1.

Proof of Step (ii). For any event of X, we assume ĥ! h� ¼ ðr�y; r�a; b�;/�; c�Þ for
some random variable h�. We will prove (ii) by arguments of contradiction. Suppose
K̂ðsÞ ! 1. The proof can be divided into the following two cases.
(Case 1). /� ¼ 0. After differentiating lnðh;KÞ with respect to KðZiÞ � KðZi�Þ and by
simplification, we obtain

K̂ðZkÞ � K̂ðZk�Þ ¼ Dk�
X

Zi�Zk

"

expfWiðZiÞĉþ /̂ ~Wiaiþ ð/̂ ~WiniÞ2=2g
(

�
R
a expf� a2

2 � pi
RZi

0 eni/̂ ~Wiaþ/̂ ~WiaiþWiðtÞĉdK̂ðtÞgda
R
a expf� a2

2 �
RZi

0 eni/̂ ~Wiaþð/̂ ~WiÞaiþWiðtÞĉdK̂ðtÞgda

#)

:

We also construct another empirical function �K such that the jump size of �K at any
Zk is the same as the previous expression except that ĥ and K̂ are replaced by h0 and
K0. It is direct to check that �K converges to K0 uniformly. After substituting the
expressions for the jump sizes of K̂ and �K in lnðĥ;KÞ, which denotes n�1 times the
observed log-likelihood function, we obtain that

0� lnðĥ; K̂Þ� lnðh0; �KÞ �Opð1Þþ
1

n

Xn

i¼1
log

1
ffiffiffiffiffiffi
2p
p

Z

a

e�a
2=2Giða; ĥ; K̂Þda

� 1

n

Xn

i¼1
Di log

X

Zk�Zi

wkP
Zk�Zi

wk

R
a e
�a2=2Gkða; ĥ; K̂Þpkda

R
a e
�a2=2Gkða; ĥ; K̂Þda

" #

:

By the convexity of � log x, we have

0�Opð1Þþ
1

n

Xn

i¼1
1�ðpi�1Þwi

X

Zk�Zi

DkP
Zl�Zk

wl

 !

log
1
ffiffiffiffiffiffi
2p
p

Z

a

e�a
2=2Giða; ĥ;K̂Þda


 �

:

Since sup1�i�nðpi � 1Þ goes to zero as /̂ goes to zero and
R
a e
�a2=2Giða; ĥ; K̂Þda goes to

zero when K̂ðsÞ diverges, the right-hand side becomes negative eventually. We thus
obtain the contradiction.
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(Case 2). /� 6¼ 0. Define n̂ ¼ log K̂ðsÞ and re-scale K̂ by the factor en̂. We still denote
the re-scaled function as K̂ thus K̂ðsÞ ¼ 1. By choosing a subsequence (still use
subscript n), we suppose K̂ weakly converges to K�. Clearly, n̂ maximizes the log-
likelihood function lnðĥ; K̂enÞ: Hence, n̂ satisfies the equation

1

n

Xn

i¼1
Di ¼

1

n

Xn

i¼1
en̂WðZiÞ

R
a expf� a2

2 � en̂þHðZiÞþl̂2

el̂agda
R
a expf� a2

2 � en̂þHðZiÞel̂agda
:

Here, WðZiÞ, HðZiÞ are bounded functions independent of n̂ and

l̂i ¼ /̂ ~Wi=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNi

j¼1ð~X
j
iÞ
0 ~Xj

i=Nir̂2 þ 1=r̂2
a

q
. As a result,

1

n

Xn

i¼1
Di �

1

n

Xn

i¼1
IZi¼se

n̂WðsÞ
R
a expf� a2

2 � en̂þHðsÞþl̂2
i el̂iagda

R
a expf� a2

2 � en̂þHðsÞel̂iagda
: ðA:1Þ

Base on the Laplace approximation (Evans and Swartz, 2000), for large x, we can
approximate

R
a expf� a2

2 � xel̂agda by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p

logx
ð1þoð1ÞÞ

s

� exp � logx 1� loglogx� log l̂2

logx
þo

1

logx

� �� �
 �2
=ð2l̂2Þ

(

�logx 1� log logx� log l̂2

logx
þo

1

log x

� �� �

=l̂2

�

:

Then (A.1) becomes

1

n

Xn

i¼1
Di �Oð1Þe½logðn̂þHðsÞþl̂2Þþlogðn̂þHðsÞÞ�=2 1

n

Xn

i¼1
IZi¼s !1

as n̂ tends to infinity. We thus obtain the contradiction.

Proof of Step (iii). From Step (ii), by choosing a subsequence, we can assume ĥ! h�

and K̂ converges to K� pointwise. In this step, we will show that h� ¼ h0 and
K� ¼ K0. Denote O as the observed statistics ðY;X;W; ~X; ~W;N;ZÞ and denote
~Gða;O; h;KÞ as

1
ffiffiffiffiffiffiffiffiffiffi
2pr2

y

q

0

B
@

1

C
A

N

1
ffiffiffiffiffiffiffiffiffiffi
2pr2

a

p exp �ðY�Xb�aÞ0ðY�Xb�aÞ
2r2

y

� a2

2r2
a

þDð/ ~WaþWðZÞcÞ
(

�
Z Z

0

e/ ~WaþWðtÞcdKðtÞ
�

:

Then lnðĥ; K̂Þ � lnðh0; �KÞ � 0 deduces that
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Pn D log
dK̂ðZÞ
d�KðZÞ

" #

þ Pn log

R
a

~Gða;O; ĥ; K̂Þda
R
a

~Gða;O; h0; �KÞda

" #

� 0; ðA:2Þ

where Pn is the empirical measure and P is the expectation. On the other hand, from
the construction of �K, K̂ is absolutely continuous with respect to �K; moreover,
dK̂=d�K uniformly converges to dK�=dK0. After taking limits in (A.2), we obtain

P log
ðdK�ðZÞÞD

R
a

~Gða;O; h�;K�Þda
ðdK0ðZÞÞD

R
a

~Gða;O; h0;K0Þda

( )" #

� 0;

where dK�ðzÞ=dz ¼ k�ðzÞ, dK0ðzÞ=dz ¼ k0ðzÞ are the derivatives with respect to z of
K�ðzÞ and K0ðzÞ, respectively. By the positiveness of the Kullback–Leibler infor-
mation, with probability 1, it holds that

dK�ðtÞ
dt

� �DZ

a

~Gða;O; h�;K�Þda ¼ dK0ðtÞ
dt

� �DZ

a

~Gða;O; h0;K0Þda: ðA:3Þ

Let D ¼ 0 and Z ¼ 0. After integrating over a and comparing the coefficients of YY0,
YX0 and XX0 in the exponential parts (noting that PðN > k0Þ > 0), we can obtain
b� ¼ b0; r

�
y ¼ r0y; r�a ¼ r0a: Next, we let D ¼ 0 and notice that (A.3) becomes

E exp �
Z Z

0

e/� ~WaþWðtÞc�dK�ðtÞ
� �
 �

¼ E exp �
Z Z

0

e/0
~WaþWðtÞc0dK0ðtÞ

� �
 �

;

where a has a normal distribution in a normal family where a is a complete statistics.
Thus, for any a,

exp �
Z Z

0

e/� ~WaþWðtÞc�dK�ðtÞ
� �

¼ exp �
Z Z

0

e/0
~WaþWðtÞc0dK0ðtÞ

� �

:

We obtain that /� ¼ /0; c
� ¼ c0 and K� ¼ K0.

The proof for the consistency of ðĥ; K̂Þ is completed from the steps (i) to (iii).

A.3. Sketched Proof of Asymptotic Normality

The asymptotic properties for the estimators ðĥ; K̂Þ follow if we can verify the
conditions in van der Vaart and Wellner (1996), Theorem 3.3.1., which is re-stated in
Parner (1998), Appendix A. In terms of notations in Parner (1998) Appendix A, we
let w ¼ ðh;KÞ 2 w ¼ fðh;KÞ : kh� h0k þ kK� K0kL1 � dg for a fixed constant d.
Define a set H ¼ fðh1; h2ðtÞÞ : kh1k � 1; kh2kV � 1g; where k:kV means the total
variation on ½0; s�. We let

SnðwÞðh1; h2Þ ¼ Pn½lhh1 þ lK½h2��; SðwÞðh1; h2Þ ¼ P½lhh1 þ lK½h2��;
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where lh and lK are the derivative operators of the log-likelihood function
lðO; h;KÞ along the curve h� ¼ h0 þ �h1;K�ðtÞ ¼

R t
0ð1þ �h2ðtÞÞdK0ðtÞ: Thus, Sn;S

are both maps from w � l1ðHÞ to l1ðHÞ. By the Donsker property of the class of
function

flhh1 þ lK½h2� : kh� h0k þ kK� K0kV < d; ðh1; h2Þ 2 Hg

as well as the smoothness of lðO; h;KÞ in ðh;wÞ, the conditions (a), (b), (d), and the
first half of (c) in Parner (1998) Appendix A, hold. It remains to prove that rSw0

is
continuously invertible on its range. Using similar arguments to Parner (1998), the
invertibility of rSw0

is equivalent to show that if there exists some h1 and h2 such
that lhh1 þ lK½h2� ¼ 0 at ðh0;K0Þ, then h1 ¼ 0 and h2 ¼ 0. However, the latter can
verified using the same identifiability arguments in the proof of Step (iii).
Finally, from Parner (1998) Appendix A,

ffiffiffi
n
p
ðĥ� h0; K̂� K0Þ converges to a

Gaussian element as a random element of l1ðHÞ. Certainly,
ffiffiffi
n
p
ðĥ� h0Þ has an

asymptotic multivariate normal distribution with mean zero.

A.4. Profile Likelihood Based on EM Algorithms

In a general setting, we suppose Ym to be missing part and Yo to be observable part
of complete data Yc ¼ ðYm;YoÞ. Yc has a distribution depending on the parameters
of interest, h, and the nuisance parameter, g. The profile likelihood for any h in a
neighborhood of ĥ is defined as

plnðhÞ ¼ argmaxg2Sn

1

n

Xn

i¼1
log

Z

Ym
i

fYcðYm
i ;Y

o
i ; h; gÞdYm

i :

The PEME algorithms are used to approximate the profile likelihood function and
they include three steps.
(E-step). Calculate the conditional expectation of

Pn
i¼1 lðYm

i ;Y
o
i ; h; gÞ given

fYo
i ; i ¼ 1; . . . ; ng for the fixed h as well as the current value of g ¼ gðkÞ, where

lðYm
i ;Y

o
i ; h; gÞ is the log-likelihood function of ðYm

i ;Y
o
i Þ, i.e., log fYcðYm

i ;Y
o
i ; h; gÞ.

(M-step). The updated value of g ¼ gðkþ1Þ maximizes the above conditional expec-
tation for the fixed h.
(Evaluation). Repeat the above E-step and M-step till gðkÞ converges then plnðhÞ can
be obtained by computing

plnðhÞ ¼
1

n

Xn

i¼1
log

Z

Ym
i

fYcðYm
i ;Y

o
i ; h; g

ðkÞÞdYm
i

either numerically or through the Monte–Carlo approach.
In the following, we verify that each iteration of the PEME algorithms increases

the log-likelihood function
Pn

i¼1 log fYoðYo
i ; h; gÞ: At kth iteration, by the algorithm,

we have
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Xn

i¼1
E½log fYcðYm

i ;Y
o
i ; h; g

ðkÞÞjYo
i ; h; g

ðkÞ� <
Xn

i¼1
E½log fYcðYm

i ;Y
o
i ; h; g

ðkþ1ÞÞjYo
i ; h; g

ðkÞ�:

Then

Xn

i¼1
E½log fYmjYoðYm

i jYo
i ; h; g

ðkÞÞjYo
i ; h; g

ðkÞ� þ
Xn

i¼1
log fYoðYo

i ; h; g
ðkÞÞ

�
Xn

i¼1
E½log fYmjYoðYm

i jYo
i ; h; g

ðkþ1ÞÞjYo
i ; h; g

ðkÞ� þ
Xn

i¼1
log fYoðYo

i ; h; g
ðkþ1ÞÞ

<
Xn

i¼1
E½log fYmjYoðYm

i jYo
i ; h; g

ðkÞÞjYo
i ; h; g

ðkÞ� þ
Xn

i¼1
log fYoðYo

i ; h; g
ðkþ1ÞÞ:

Hence,
Pn

i¼1 log fYoðYo
i ; h; g

ðkÞÞ <
Pn

i¼1 log fYoðYo
i ; h; g

ðkþ1ÞÞ:
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