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Abstract 
Context There is a growing appreciation that wild-
life behavioral responses to environmental condi-
tions are scale-dependent and that identifying the 
scale where the effect of an environmental variable 
on a behavior is the strongest (i.e., scale of effect) 
can reveal how animals perceive and respond to their 
environment. In South Texas, brush management 
often optimizes agricultural and wildlife management 
objectives through the precise interspersion of vegeta-
tion types creating novel environments which likely 
affect animal behavior at multiple scales. There is a 
lack of understanding of how and at what scales this 
management regime and associated landscape pat-
terns influence wildlife.
Objectives Our objective was to examine the scale 
at which landscape patterns had the strongest effect 
on wildlife behavior. Bobcats (Lynx rufus) our model 
species, are one of the largest obligated carnivores in 
the system, and have strong associations with vegeta-
tion structure and prey density, two aspects likely to 

influenced by landscape patterns. We conducted a 
multiscale resource selection analysis to identify the 
characteristic scale where landscape patterns had the 
strongest effect on resource selection.
Methods We examined resource selection within 
the home range for 9 bobcats monitored from 2021 
to 2022 by fitting resource selection functions which 
included variables representing landcover, water, 
energy infrastructure, and landscape metrics (edge 
density, patch density, and contagion). We fit mod-
els using landscape metrics calculated at 10 different 
scales and compared model performance to identify 
the scale of effect of landscape metrics on resource 
selection.
Results The scale of effect of landscape metrics 
occurred at finer scales. The characteristic scale for 
edge density and patch density was 30  m (the fin-
est scale examined), and the characteristic scale for 
contagion occurred at 100 m. Bobcats avoided loca-
tions with high woody patch density and selected for 
greater woody edge density and contagion. Bobcats 
selected areas closer to woody vegetation and water 
bodies while avoiding herbaceous cover and energy 
development infrastructure.
Conclusions A key step in understanding the effect 
of human development and associated landscape 
patterns on animal behavior is the identifying the 
scale of effect. We found support for our hypoth-
esis that resource selection would be most strongly 
affected by landscape configuration at finer scales. 
Our study demonstrates the importance of cross-scale 
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comparisons when examining the effects of landscape 
attributes on animal behavior.

Keywords Scale of effect · Bobcat · Cultural 
landscape · Landscape configuration · Brush

Introduction

Humans have altered terrestrial ecosystems globally 
and many of these impacts result in habitat fragmen-
tation and loss (Fahrig 2017; Cross et al. 2021). Land 
conversion for agricultural or energy production can 
be detrimental due to direct causes of habitat loss 
(Thomas et al. 2018; Johnson et al. 2020; Lark et al. 
2020) and the resulting landscape patterns likely have 
strong effects on wildlife communities. Cultural land-
scapes are a geographic area in which the relation-
ships between human activity and the environment 
have created ecological, socioeconomic, and cul-
tural patterns and feedback mechanisms that govern 
the presence, distribution, and abundance of species 
assemblages (Farina 2000; Jones 2003). While there 
is a robust literature on the effects of cultural land-
scapes on wildlife (Young 1997; Foster 2002; Fuller 
et al. 2017), the scale at which habitat alteration has 
on wildlife behavior remains an open and important 
question.

The issue of scale remains a primary question in 
ecology (Morris 1987; Levin 1992; Denny et al. 2004; 
Jackson and Fahrig 2015; Elderd et  al. 2022). Pat-
terns and processes occur at multiple spatio-temporal 
scales (Wiens et al. 1989; Liang et al. 2022) and the 
scale of effect is often defined as the scale, or range of 
scales, that explains the most variation in a given eco-
logical response (Moraga et al. 2019; Blackburn et al. 
2021; Arroyo-Rodriguez et al. 2023). Using multiple 
grains and extents to identify the scale of effect is a 
common methodology employed to understand how a 
given species perceives and responds to their environ-
ment (Jackson and Fahrig 2012; Moraga et al. 2019; 
Blackburn et al. 2021). The scale of effect of a given 
ecological response can be influenced by many fac-
tors ranging from a species’ biology (Miguet et  al. 
2016; Martin 2018), an individual’s physiology (Jack-
son and Fahrig 2015; Miguet et al. 2016), and exter-
nal pressures like anthropogenic disturbance (Hamer 
and Hill 2000; Mangiacotti et  al. 2013). There is a 
growing body of literature on how wildlife perceive 

and respond to landscape patterns and the scales at 
which this occurs (Delaney et  al. 2010; Mérő et  al. 
2015; Šálek et al. 2015). There are numerous exam-
ples of mammals responding to urbanization metrics 
at various scales (Lombardi et  al. 2017; Moll et  al. 
2020; Fidino et al. 2021; Robb et al. 2022). Species 
range from synanthropic to highly sensitive to human 
disturbance, and their success in human-modified 
landscapes depends upon their traits and tolerance of 
human disturbance (Ferreira et al. 2018).

The rangelands of South Texas are quintessential 
examples of cultural landscapes where the integra-
tion of multiple management objectives has resulted 
in novel landscape conditions. Despite relatively 
low human population densities, landscape patterns 
in these rangelands are heavily altered for agricul-
ture and extraction of natural resources (Dodd et  al. 
2013; Tunstall 2015). The Eagle Ford Shale oil and 
natural gas reserve of southwestern Texas, one of 
the largest reserves in the world, has experienced 
unprecedented energy development in recent decades 
(Gilmer et al. 2012; Tunstall 2015). Energy develop-
ment has resulted in increased fragmentation through 
the creation of roads and clearing of native land-
cover for energy infrastructure. The configuration of 
patches of brush and herbaceous vegetation is also a 
product of centuries of grazing and brush manage-
ment practices (Fulbright and Ortega-Santos 2013). 
In more recent decades, the optimization of livestock 
production and wildlife management has resulted in 
the creation of systemic brush mosaics. Systematic 
brush mosaics are areas where brush is cleared at 
precise spacing to create alternating strips of brush 
and herbaceous ground cover increasing the inter-
spersion of forage and thermal refuge resources for 
livestock and wildlife (Fulbright and Ortega-Santos 
2013; Fulbright et al. 2018). Systematic brush mosa-
ics are a representation of the integration of multiple 
objectives including livestock production and wildlife 
conservation and have proven effective management 
for target species such as white-tailed deer (Odocoi-
leus virginianus) and northern bobwhite (Colinus vir-
ginianus; Webb et  al. 2006; Hernández et  al. 2013; 
Fulbright et  al. 2018). However, the effects of these 
novel environments on carnivore species such as 
bobcats  (Lynx rufus) that have been demonstrated to 
be negatively affected by fragmentation (Riley et  al. 
2003) have not been examined (Bradley and Fagre 
1988). A key component to understanding the effects 
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that landscape patterns have on ecological responses 
of bobcats is identifying the scale at which the effects 
are strongest.

Carnivores are often used as means of monitoring 
ecosystems due to their trophic position (Marneweck 
et al. 2022). The bobcat  is an ambush predator that 
relies on concealment cover to hunt and therefore is 
likely to be impacted by brush management through 
the alteration of the distribution of concealment 
cover, increases in patch edge density, and intersper-
sion of cover types, which provide different prey 
communities in close proximity and concealment 
cover adjacent to herbaceous plant communities. 
Bobcats often respond negatively to fragmentation 
associated with habitat loss (Crooks 2002; Riley et al. 
2003; Lewis et al. 2015; Smith et al. 2020) and some 
evidence suggest areas with greater fragmentation are 
less productive for bobcats. The Habitat Productivity 
Hypothesis suggests there is an inverse relationship 
between space use requirements and habitat produc-
tivity. Animals on less productive sites require more 
space to meet their dietary and life history require-
ments (Harestad and Bunnell 1979). Numerous stud-
ies have used home range size as a measure of habitat 
productivity for wildlife species (Harestad and Bun-
nell 1979; Riley et  al. 2003; Seigle-Ferrand et  al. 
2021; Quinlan et al. 2022). For bobcats in agricultural 
areas, increased fragmentation has been associated 
with larger home range sizes indicating fragmentation 
reduces habitat productivity for bobcats in that system 
(Tucker et al. 2008). Bobcats also respond strongly to 
prey abundance and increases in prey can result in 
smaller home range sizes (Litvaitis et  al. 1986). As 
jaguars (Panthera onca), pumas (Puma concolor), 
and red wolves (Canis rufus) have been extirpated or 
reduced to low population densities in Texas (Dag-
gett and Henning 1974; Nowak 2002; Harveson et al. 
2012), bobcats, have become the largest remaining 
obligate carnivore and de facto apex predator in many 
ecosystems (Bradley and Fagre 1988; Lombardi et al. 
2020). Bobcats are currently classified as nongame 
in Texas and there are no harvest limits or season 
restrictions, however, they are believed to occur at 
high densities (Heilbrun et al. 2006; Symmank et al. 
2008).

We assessed bobcat resource selection within the 
home range (i.e., Johnson’s 3rd order of selection, 
Johnson 1980) in a landscape where patch composi-
tion and configuration were driven by agricultural 

practices, wildlife management, and energy devel-
opment. We hypothesized bobcat resource selection 
would occur at multiple scales but that there would 
be a characteristic scale where the effects of land-
scape patterns on resource selection were strongest. 
We predicted the scale of effect of landscape patterns 
on resource selection would occur at finer scales since 
our ecological response variable is selection of a spe-
cific location within the home range. Processes within 
the home range such as foraging success often are 
influenced by landscape variables at finer scales than 
in processes such as dispersal (Miguet et  al. 2016). 
Bobcats often select specific vegetation attributes 
such as concealment cover across systems (Kolowski 
and Woolf 2002; McNitt et al. 2020b; Zamuda et al. 
2022). We predicted bobcats would select woody 
cover and woody vegetation patches that were more 
contiguous. We also predicted bobcats would avoid 
energy infrastructure due to human disturbance at 
these sites.

Methods

Study area

We conducted the study in a 5,665-ha ranch in the 
South Texas Plains ecoregion in La Salle County, 
Texas, during 2021–2022. The 40-year average 
(1981–2021) annual rainfall for the area was 57.20 cm 
(National Ocean and Atmospheric Administration 
2021). The 2021 average summer (June–August) 
and winter (December–February) daily temperatures 
were approximately 29 °C and 13.4  °C, respectively 
(National Oceanic and Atmospheric Administration 
2021).

The ranch included areas that have experienced 
brush management and contain systemic brush mosa-
ics characterized by large tracts of brush strips alter-
nating with herbaceous vegetation (Fig. 1). The ranch 
was managed for cattle (Bos tauros) production and 
wildlife with a focus on white-tailed deer (Odocoi-
leus virginianus), northern bobwhite (Colinus vir-
ginianus), and chestnut-bellied scaled quail (Callipe-
pla squamata). The site included substantial energy 
development with a coverage of 0.35 energy pads/km2 
and was associated with regular maintenance result-
ing in frequent human disturbance. From 2009 to 
2019, the southern portion of the ranch was the focus 
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of an effort to restore 300 ha of native grasslands pri-
marily for quail conservation. Restoration efforts tar-
geted the removal of two dominant invasive grasses, 
including old world bluestem (Bothriochloa spp.) and 
buffelgrass (Dicanthium spp.) using prescribed fire, 
herbicide, and native plant seeding (Olsen et al. 2018; 
Fulbright et al. 2018).

Woody plants included honey mesquite (Neltuma 
glandulosa), Texas live oak (Quercus virginiana), 
blackbrush acacia (Acacia rigidula), cenizo (Leuco-
phyllum frutescens), huisache (Acacia farnesiana), 

whitebrush (Aloysia gratissima), spiny hackberry 
(Celtis ehrenbergiana), and guayacan (Guaiacum 
angustifolium). Common cacti observed included 
Texas prickly pear (Opuntia engelmanii var. lind-
heimerii) and tasajillo (Cylindropuntia leptocau-
lis). Herbaceous species found in the area include 
creeping bundleflower (Desmanthus virgatus), 
bristlegrasses (Setaria spp.), wild petunia (Ruellia 
spp.), gramas (Bouteloua spp.), and purple three-
awn (Aristida purpurea) (Olsen et al. 2018, Palmer 
et al. 2021).

Fig. 1  The study extent of the Hixon Ranch located in La 
Salle County, Texas, USA with its two partitions of Hixon 
North and South. The area included systematic brush mosa-
ics where brush was removed at precise spacings intervals to 

establish alternating strips of brush and herbaceous vegetation 
to promote interspersion of forage and thermal cover resources 
for livestock and wildlife panel A The ranch also maintains 
several larger continuous patches of woody vegetation panel B 
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GPS collaring

We captured and collared adult bobcats with a single-
door 108 × 55 × 40  cm wire box traps (Tomahawk 
Trap Co., Tomahawk, WI) baited with live pigeons 
(Columba livia) that were maintained safely in a 
separate enclosure. We immobilized bobcats with 
a mixture of medetomidine (0.6–0.8  mg per kg of 
bodyweight) and ketamine (2.5–4 mg per kg of body 
weight; Rockhill et  al. 2011; Tellaeche et  al. 2020). 
We fit bobcats with Lotek Litetrack Iridium 150 g and 
250 g GPS-satellite collars (Lotek New Market, ON, 

Canada), and recorded locations every 2 h. We pro-
grammed GPS collars to drop-off 52-weeks following 
deployment. We monitored nine bobcats (five females 
and four males) for 12  months which resulted in a 
dataset with 17,881 GPS locations (Fig. 2).

Our capturing and handling of bobcats followed 
recommendations by Sikes and Animal Care and 
Use Committee of the American Society of Mam-
malogists (2016) and protocols were approved by 
Texas A&M University- Kingsville Institutional Care 
and Use Committee Guidelines (Protocols: IACUC 
2012–12-20B-A2, 2019–2-28A-2-28B), and Texas 

Fig. 2  GPS location of 9 adult bobcats (4 males and 5 females) located on the Hixon Ranch, La Salle, TX. Bobcats were monitored 
from May 2021 to May 2022 and collected 17,881 locations
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Parks and Wildlife Department Scientific Research 
permit (no. SP0190-600).

Land cover classification

We quantified landscape configuration of vegetation 
cover in our study area using supervised classifica-
tion with random forest models (Hayes et  al. 2014). 
We performed supervised classification in ArcPro 2.8 
(ESRI, Redlands, CA) using 2020 National Agricul-
ture Imagery Program (NAIP; U.S. Department of 
Agriculture 2020) 0.6 × 0.6  m imagery and catego-
rized our study area into woody and herbaceous veg-
etation. After this initial classification, we digitized 
the highway, paved roads, energy infrastructure, and 
water bodies (i.e., Nueces River, ponds, cattle tanks). 
Water bodies were digitized based on National Wet-
lands Inventory Dataset (U.S. Fish and Wildlife Ser-
vice 2021). We then performed an accuracy assess-
ment using 300 random points in a confusion matrix 
with 2021 Google Earth imagery to assess our classi-
fication accuracy and attained a rate of 92% accuracy 
(Jensen 2016; Rwanga and Ndambuki 2017).

Landscape and environmental covariates

We calculated GPS collar location error using 90 
test locations with collars placed in dense brush and 
determined an average of 5 m ± 1.5 standard deviation 
(SD). Therefore, we resampled the imagery to 10 m 
to approximately match the resolution of the collar 
error (Agouridis et  al. 2004; Ganskopp et  al. 2007; 
Smith et  al 2021). To quantify landscape configura-
tion, we calculated values for three landscape met-
rics: woody vegetation edge density (m/ha), woody 
vegetation patch density (number of patches/100 ha), 
and contagion across cover classes (0–100%) in Frag-
stats 4.2 (McGarigal 1995). The contagion metric is 
a landscape-level metric across all class-types (i.e., 
woody vegetation, herbaceous vegetation highway, 
paved roads, energy infrastructure, and water bod-
ies) and values increase as the landscape is more 
aggregated (Riitters et  al. 1996). We only included 
metrics in our analyses if they were not correlated 
(|r|< 0.7; Dormann et al. 2012) and the metrics gave 
us insights into potential landscape fragmentation. 
To identify the scale of effect for resource selection, 
we performed moving window analyses with a win-
dow size set to 10 unique values representing scales 

of interest. Our scale range was selected based on the 
home ranges of regional bobcat prey ranging from 
Permoyscus genera (Morris 1992) to a white-tailed 
deer (Williams et al. 2012). We selected 30 m, 60 m, 
100 m, 200 m, 300 m, 400 m, 500 m, 600 m, 700 m, 
and 800 m as our representative scales for the moving 
window analysis.

Distance-based approaches are a useful method for 
assessing the effect land cover on resource selection 
(Conner et  al. 2003). To assess the effects of cover 
type on resource selection, we created distance ras-
ter layers where each pixel was characterized by the 
distance to the nearest patch of a specific cover type. 
We created distance raster layers for woody vegeta-
tion and herbaceous vegetation the two primary cover 
types in our system. We also created a distance raster 
layer for water as the distribution of water in semi-
arid systems can be an important determinate of 
wildlife space use (Ochoa et al 2021). To assess the 
effects of human disturbance associated with energy 
extraction, we created a distance raster for energy 
infrastructure.

Resource selection functions

We developed resource selection function (RSF) 
models using Design 3 described by Manly et  al. 
(2007) at the 3rd order (i.e., selection within home 
range; Johnson 1980). To quantify availability, we 
generated 100% minimum convex polygons (MCPs) 
for each bobcat and generated 10 random locations 
per observed animal location (Dunagan et  al. 2019; 
Mayer et  al. 2021). We selected MCPs as our home 
range estimator to characterize availability to be as 
inclusive as possible in defining what was available to 
each bobcat (Bosco et al. 2021; Hughey et al. 2021). 
We then extracted all landscape and distance class 
metrics to each used and random location. We used 
the package: lme4 (R Core Team 2022) to fit RSFs 
using general linear mixed effect models with animal 
ID treated as a random intercept.

We employed a two-stage modeling approach: first 
we generated 10 univariate models for each landscape 
metric where each model represented one of the 10 
scales. We then used Akaike Information Criterion 
adjusted for small sample size  (AICc) to identify the 
scale of our landscape metrics that was best sup-
ported (ΔAICc < 2) within our analytical framework, 
which we also compared with the null model. After 
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identifying the characteristic scale for each landscape 
metric, we generated a global model that included 
each landscape metric and distance metrics (woody 
vegetation, herbaceous vegetation, water, and gas 
infrastructure). We then projected our final model 
output with the raster package (R Core team 2022) 
by reclassifying the map into 10% equal area bins to 
balance the skewed distributions on our predictions 
(Boyce et al. 2002).

Results

Female home range size was 4.16  km2 ± 2.1 (aver-
age ± SD) and for male home range size was 19.4 
 km2 ± 5.4. In our assessment of the scale of effect, 
our univariate models revealed the scale of effect for 
both patch density and edge density of woody vegeta-
tion for bobcat resource selection was 30 m, the finest 
scale examined (Tables 1, 2). For contagion, the scale 

that explained the most amount of variation for bob-
cat resource selection was 100 m (Table 3). The null 
model was not competitive with the top models.

Bobcat probability of use decreased by 9% for 
every 50 m increase in distance from woody vegeta-
tion (β = -1.21 ± 0.02 p < 0.01; Fig. 3) and decreased 
by 2% for every 500  m increase in distance from 
water bodies (β = -0.25 ± 0.01 p < 0.01; Fig. 3). Con-
versely, we determined probability of use increased 
by 30% for every 50  m increase in distance from 
herbaceous vegetation (β = 0.28 ± 0.01 p < 0.01; 
Fig. 3) and increased 0.5% for every 500 m increase 
in distance from gas infrastructure (β = 0.01 ± 0.01 
p < 0.01: Fig. 3).

Bobcat probability of use decreased by 2.5% for 
every increase of 500 patches per 100 ha in patch den-
sity of woody vegetation (β = -0.30 ± 0.01 p < 0.01; 
Fig. 5) and increased 2% for every 500 m/ha increase 
in values of edge density (β = 0.05 ± 0.01 p < 0.01; 
Fig.  5). However, as contagion increased by 25%, 

Table 1  Akaike Information Criterion  (AICc)table for 
resource selection models identifying the scale of effect of 
brush management for the landscape metric woody vegeta-
tion edge density across 10 different scales for bobcats (Lynx 
rufus). Data collected from 10 May 2021 to 23 May 2022 on 
the Hixon Ranch in La Salle County, Texas, USA

Model AICc Delta_AICc Log likeli-
hood

R2

Edge den-
sity_30

112,568.9 0.0 − 56,277.5 0.26

Edge den-
sity_60

114,394.8 1825.9 − 57,190.4 0.26

Edge den-
sity_800

114,951.9 2383.0 − 57,468.9 0.25

Edge den-
sity_100

115,195.1 2626.2 − 57,590.5 0.25

Edge den-
sity_700

115,245.5 2676.6 − 57,615.7 0.25

Edge den-
sity_600

115,431.9 2862.9 − 57,708.9 0.25

Edge den-
sity_500

115,498.8 2929.8 − 57,742.4 0.25

Edge den-
sity_200

115,505.4 2936.5 − 57,745.7 0.26

Edge den-
sity_300

115,509.8 2940.9 − 57,747.9 0.26

Edge den-
sity_400

115,519.4 2950.5 − 57,752.7 0.26

Null 230,707.7 115,628 − 115,351.9 0

Table 2  Akaike Information Criterion  (AICc) table for 
resource selection models identifying the scale of effect of 
brush management for the landscape metric woody vegeta-
tion patch density across 10 different scales for bobcats (Lynx 
rufus). Data collected from 10 May 2021 to 23 May 2022 on 
the Hixon Ranch in La Salle County, Texas, USA

Model AICc Delta_AICc Log Likeli-
hood

R2

Patch den-
sity_30

111,387.5 0.0 − 55,686.7 0.26

Patch den-
sity_60

111,568.4 181.0 − 55,777.2 0.27

Patch den-
sity_100

111,889.4 501.9 − 55,937.7 0.27

Patch den-
sity_200

112,405.2 1017.8 − 56,195.6 0.27

Patch den-
sity_300

112,545.1 1157.6 − 56,265.5 0.27

Patch den-
sity_400

112,774.1 1386.7 − 56,380.1 0.26

Patch den-
sity_500

113,222.9 1835.44 − 56,605.4 0.26

Patch den-
sity_600

113,543.9 2156.5 − 56,764.9 0.26

Patch den-
sity_700

113,859.6 2472.12 − 56,922.8 0.26

Patch den-
sity_800

113,859.6 2472.12 − 56,922.8 0.26

Null 230,707.7 115,628 − 115,351.9 0
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probability of use increased by 2.5% (β = 0.06 ± 0.01 
p < 0.01; Fig. 4). We then evaluated models that used 
multiple landscape metrics and identified that the 
global model performed the best (Table 4). We pro-
jected the global model across the landscape to visu-
alize areas of high and low probability of use (Fig. 5, 
Table 5). This heat map allowed us to visualize pat-
terns of bobcat resource selection with various con-
figuration of brush alteration on the landscape.

Discussion

Resource selection occurs at a variety of spatial and 
temporal scales (McGarigal et al. 2016). In our inves-
tigation of the scale of effect for bobcat resource 
selection, we identified characteristic scales for each 
of our landscape configuration metrics. Our obser-
vations surrounding the scale of effect aligned with 
the predictions proposed by Miguet et al. (2016) and 
Martin (2018) regarding to finer scales in context to 
breeding and foraging success within the home range. 

We observed bobcats responded to metrics of woody 
vegetation configuration at finer scales within their 
home range, which may be associated with the poten-
tial perception of hunting efficiency and prey avail-
ability within woody patches (Dunagan et  al. 2019; 
McNitt et  al. 2020a). Bobcats avoided herbaceous 
cover and selected larger patches of woody vegeta-
tion, and generally avoided interspersed areas.

Creation of systematic brush mosaics and other 
land management practices created a landscape 
configuration that influenced resource selection of 
bobcats. Even though bobcats selected for higher 
amounts of woody vegetation edges, woody patch 
density had a negative effect on the probability of 
use by bobcats. Bobcats are known ambush hunters 
that often hunt along edges but increased patchiness 
of vegetation may not be advantageous (Fuller et al. 
1985; Marrotte et  al. 2020a; McNitt et  al. 2020a). 
Fragmentation of woody patches can have mixed 
effects on carnivores as it can create structural hetero-
geneity which can increase prey abundance, but also 
creates a mosaic of smaller patches which are gener-
ally avoided by ambush predators.

Bobcats selected for aggregation of patches across 
our study area. Areas with greater aggregation of 
patches are less fragmented and are more homog-
enous. Contagion has been shown to have varying 
effects on carnivores, with some species benefiting 
from fragmented areas and others selecting more 
aggregated patches (Dijak and Thompson 2000; 
Kramer-Schadt et  al. 2011). Aggregation of patches 
of similar vegetation structure can improve habitat 
connectivity for a variety of species, and bobcats are 
known to select aggregated patches of cover (Tucker 
et  al. 2008; Ruell et  al. 2012; Poessel et  al. 2014; 
Janecka et al. 2016).

At broader scales bobcats may select for more 
aggregation of patches, but as we observed bobcat 
resource selection within the home range was influ-
enced by woody vegetation. Bobcats selected loca-
tions closer to woody vegetation and attributes asso-
ciated with the configuration of woody cover. We 
observed patterns of bobcats avoiding high patch den-
sities of woody cover; however, they did select woody 
vegetation patches with higher edge density. This 
suggests a pattern of selecting for the edges of sin-
gle large patches of woody vegetation. These results 
support the findings of previous studies with bob-
cats in fragmented landscapes ranging from Mexico, 

Table 3  Akaike Information Criterion  (AICc) table for 
resource selection models identifying the scale of effect of 
brush management for the landscape metric contagion index 
across 10 different scales for bobcats (Lynx rufus). Data col-
lected from 10 May 2021 to 23 May 2022 on the Hixon Ranch 
in La Salle County, Texas, USA

Models AICc Delta_AICc Log Likeli-
hood

R2

Conta-
gion_100

115,079.0 0.0 − 57,532.5 0.27

Conta-
gion_200

115,084.3 5.3 − 57,535.1 0.26

Contagion_60 115,134.3 55.4 − 57,560.2 0.26
Conta-

gion_800
115,221.9 142.9 − 57,603.9 0.27

Conta-
gion_300

115,364.9 285.9 − 57,675.5 0.26

Conta-
gion_700

115,392.6 313.6 − 57,689.3 0.26

Contagion_30 115,432.6 353.6 − 57,709.3 0.26
Conta-

gion_400
115,464.1 385.1 − 57,725.0 0.26

Conta-
gion_600

115,548.1 469.2 − 57,767.1 0.26

Conta-
gion_500

115,607.1 528.1 − 57,796.5 0.26

Null 230,707.7 115,628 − 115,351.9 0
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Canada, and both coasts of the United States (Poes-
sel et al. 2014; Espinosa-Flores and López-González 
2017; Farrell et al. 2018; Jones et al. 2020; Marrotte 
et al. 2020b).

We observed selection of open water bodies by 
bobcats. Water availability drives carnivore distri-
butions in many other systems (Steiner et  al. 2018; 
Rabaiotti and Woodroffe 2019; Perera-Romero et  al. 
2021), especially in arid and semi-arid landscapes. It 
is likely bobcats select areas near water, not only to 
meet their own water requirements, but also as water 
likely congregates prey species (Webb et  al. 2006; 
Ochoa et al. 2021). In many semi-arid environments, 

open water is often ephemeral and so anthropogeni-
cally sourced water is an attribute of a cultural land-
scape that can strongly influence the spatial patterns 
of many wildlife species (Smit et  al. 2007; Atwood 
et  al. 2011; Rich et  al. 2019). With more unpredict-
able climate regimes projected for the future of these 
environments, it is likely these anthropogenic sources 
of water will be crucial resources on for many wild-
life species in these systems (Ogutu et  al. 2012; 
Ochoa et al. 2021).

Although a relatively small effect, bobcats avoided 
energy infrastructure. Gas and oil extraction opera-
tions are important forms of disturbance for many 

Fig. 3  Predicted responses to distance to woody vegetation A 
distance to herbaceous vegetation B distance to water body C, 
and distance to gas infrastructure D by bobcats (Lynx rufus) 

from resource selection functions fitted with data collected 
from 10 May 2021 to 23 May 2022 on the Hixon Ranch in La 
Salle County, Texas, USA
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species from toxicological exposure to alteration in 
space use (Bowen et  al. 2014; Laberee et  al. 2014; 
Garman 2018; Walker 2022). Our study area con-
tained a pad density of 0.35 pads/km2 which was 
relatively lower in other studies (Kalyn Bogard and 
Davis 2014; Johnson et al. 2015; Hethcoat and Chal-
foun 2015). Energy development contributes to the 

fragmentation of woody and herbaceous vegetation 
in this system, but the high amounts of human traf-
fic associated servicing these sites likely serve as an 
important mechanism of anthropogenic disturbance 
as well (Bowen et  al. 2014; Allred et  al. 2015; Pat-
tison et  al. 2016). Future investigations into the role 
of energy infrastructure on wildlife should evaluate 
the relative importance of habitat fragmentation and 
the direct human disturbance associated with energy 
development.

Bobcats, similar to other generalist carnivores, 
have adapted to cultural landscapes across their dis-
tribution, despite the myriad of threats to survival 
that human-dominated areas can pose (Roberts and 
Crimmins 2010; Young et al. 2019). However, despite 
such success, there are likely responses that occur 
at different spatial and temporal grains and extent 
that influence survival (Miguet et  al. 2016; Mar-
tin 2018). Multi-scale analyses of habitat selection 
should remain an integral component of how scien-
tists understand the complex patterns of selection. 
From our analysis, we demonstrated the effects of a 
cultural landscape on the behavior of a generalist car-
nivore. While we did not conduct a multi-order anal-
ysis (Johnson 1980), we did assess multiple scales 
within a single order. The scale of effect may likely 
vary at different orders of selection (Martin 2018), 
which is fertile grounds for future research. The scale 
of effect remains an important aspect to study when 
trying to elucidate the effects of landscape structure 
on wildlife.

Conclusion

We found bobcat resource selection of landscape 
patterns was more strongly influenced by patterns at 
finer scales. In our system, systematic brush mosa-
ics increases interspersion of patch types and are 
designed to cultivate high densities of prey which 
would theoretically benefit carnivores. However, bob-
cats avoided locations that were more interspersed 
which suggests bobcats may forgo prey rich patches 
if the patch configuration is not conducive to their 
hunting mode. As rural landscapes continue to be 
altered by agriculture and energy production, there is 
a growing need to understand the effects of this devel-
opment on wildlife. Understanding the scale at which 
the resulting landscape patterns influence wildlife 

Fig. 4  Predicted responses to the landscape metrics: contagion 
100 m %; A edge density 30 m (meters [m] per ha; B and patch 
density 30  m (number of patches [#] per 100  ha; C by bob-
cats (Lynx rufus) from resource selection functions fitted with 
data collected from 10 May 2021 to 23 May 2022 on the Hixon 
Ranch in La Salle County, Texas, USA
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Table 4  Akaike Information Criterion  (AICc) for resource 
selection function models for identifying the best multiple 
landscape metric model for bobcats (Lynx rufus). Data col-

lected from 10 May 2021 to 23 May 2022 on the Hixon Ranch 
in La Salle County, Texas, USA

Models AICc Delta_AICc Log likelihood R2

Global model 214,987.0 0.0 − 107,484.6 0.26
Edge density_30 + patch density_30 215,031.3 44.3 − 107,507.7 0.26
Contagion_100 + patch density_30 215,094.5 107.5 − 107,539.0 0.26
Edge Denisty_30 + contagion_100 216,640.4 1,653.4 − 108,312.2 0.26

Fig. 5  Spatially explicit visualization of bobcat (Lynx rufus) 
resource selection as a function of our global model across the 
Hixon Ranch in La Salle County, Texas, USA. Data were col-
lected from 10 May 2021 to 23 May 2022. Higher probability 

of use values (darker blue) represent areas bobcats were more 
likely to use on the landscape. Probability of use ranged from 
0 to 100%
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behavior should be a key component to future stud-
ies of investigating the effects of global change on 
wildlife.
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