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Abstract 
Context Ecosystem services provided by moun-
tain forests are critically linked to forest structure. 
Social-ecological disturbance regimes (i.e., the rate, 
frequency, and patch size distribution of disturbances 
driven by interacting natural and anthropogenic pro-
cesses) and land use affect forest structure, but their 
specific impacts are not fully understood.

Objectives We examine how differences in dis-
turbance regimes affect patterns of forest structure 
across three European mountain ranges with similar 
vegetation types but different land-use histories: the 
European Alps, the Carpathians, and the Caucasus.
Methods We related data on horizontal and verti-
cal forest structure, measured by spaceborne lidar 
(GEDI), with Landsat-derived information on forest 
disturbances (1986–2020) and topographic, climatic, 
and anthropogenic predictors.
Results We found similar social-ecological distur-
bance regimes in the Alps and Carpathians (aver-
age annual disturbance rates of 0.34% and 0.39%, 
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respectively, and median patch size < 0.5 ha), yet 
much lower disturbance rates and patch sizes in the 
Caucasus (0.08%  yr−1 and < 0.2 ha). Despite differ-
ent disturbance regimes, we found similar patterns of 
forest structure. Two alternative states emerged con-
sistently across all mountain ranges: a tall and closed-
canopy state in 74–80% of forests and a low and 
open-canopy state (< 50% canopy cover) in the rest. 
While forest structure responded consistently to abi-
otic drivers such as topography and climate, its asso-
ciation with anthropogenic pressures differed between 
mountain ranges. Stand-replacing disturbances played 
an important role in the Carpathians, while forest 
structure in the Caucasus was related to proximity to 
settlements, reflecting local forest use.
Conclusions Different social-ecological contexts in 
mountain regions can produce markedly different for-
est disturbance regimes. Despite these differences, sim-
ilar states of forest structures emerge, suggesting strong 
attractors of structure in temperate mountain forests.

Keywords Alternative structural states · 
Disturbance regimes · Forest management · GEDI · 
Land-use history · Landsat

Introduction

Forests are essential for sustaining life in mountain 
regions by providing people with protection from 
natural hazards, fuelwood, and construction materials 
(Grêt-Regamey and Weibel 2020); as well as provid-
ing habitat to many species (Rahbek et al. 2019). The 
capacity of forests to provide these services and to host 
high biodiversity strongly depends on their structure 
(e.g., canopy density, tree height, and biomass) (Stritih 
et  al. 2021a). Forest structure is partly determined by 
natural processes (e.g., tree growth and mortality), but 
it is also influenced in major ways by the humans who 
manage forests (Kulakowski et  al. 2011; Garbarino 
et al. 2013; Mitchell et al. 2023). Both sets of factors, 
natural and anthropogenic, are currently changing in 
mountain regions as climate change leads to changes in 

tree mortality and growth (McDowell et al. 2020), and 
as socio-economic change leads to rural out-migration, 
farmland abandonment and changes in forest manage-
ment (Rudel et al. 2005; Birdsey and Pan 2015). Under-
standing how these changes impact forest structure is 
important for sustaining the many ecosystem services 
provided by mountain forests in the future.

A key process influencing forest structure is dis-
turbance. Forest disturbances are pulses of tree 
mortality that abruptly change forest structure and 
resource availability across spatial scales, from indi-
vidual patches to landscapes (Turner 2010). They can 
be caused by natural agents (e.g., windthrows, bark 
beetle outbreaks, or forest fires, among others) or by 
humans (e.g., logging). Disturbances can change for-
est structure and composition (Seidl and Turner 2022) 
or even cause a transition from a closed-canopy for-
est to an alternative state, such as shrubland (Tepley 
et  al. 2017; Miller et  al. 2019). Anthropogenic dis-
turbances often have a particularly strong impact on 
forest structure (Roebroek et al. 2023). For example, 
clearcuts cause stand-replacing disturbances, and 
subsequent re-planting often leads to accelerated 
forest recovery, but it also homogenizes forest struc-
tures (Senf et  al. 2019), which in turn alters natural 
disturbance regimes (Schurman et  al. 2018). At the 
landscape level, disturbances create patchiness, fos-
tering heterogeneity (Turner 2010; Senf et  al. 2020) 
and biodiversity (Thom and Seidl 2016), but they can 
also have negative impacts on the provision of eco-
system services (Thom and Seidl 2016; Stritih et al. 
2021a). The impact of disturbances depends on their 
frequency, return interval, severity, and size, which 
together characterize the disturbance regime of a 
region (Turner 2010; Turner and Seidl 2023). In many 
parts of the world, disturbance regimes are driven by 
the interactions between human activity and natural 
processes, shaping a social-ecological forest distur-
bance regime (Gordijn and O’Connor 2023).

In addition to disturbances, forest structure is also 
shaped by current forest management (Li et al. 2022; 
Roebroek et  al. 2023) and the legacies of past land 
use (Munteanu et  al. 2015; Bürgi et  al. 2017). For 
example, selective logging and thinning often aim to 
stimulate the growth of individual trees or promote 
specific tree species, but generally reduce forest bio-
mass (Zhou et  al. 2013; Cazzolla Gatti et  al. 2015), 
while livestock grazing inside forests can impede tree 
regeneration (Etchebarne and Brazeiro 2016). Current 
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forest structure, species composition, and disturbance 
dynamics are often strongly influenced by historical 
land use, including past forest management (Munte-
anu et  al. 2015; Conedera et  al. 2017; Knight et  al. 
2022; Morales-Molino et al. 2022; Kaim et al. 2023; 
Lestienne et al. 2023). For example, forests that have 
regrown or were afforested on previous agricultural 
land tend to be more structurally homogeneous (Fos-
ter et al. 2003; Kulakowski et al. 2011) and are thus 
more susceptible to natural disturbances (Mantero 
et  al. 2020; Stritih et  al. 2021b). Furthermore, his-
torical developments in land management can create 
lock-ins through institutions, social norms or eco-
nomic conditions that can constrain current forest 
management decisions (Wilson 2014; Tappeiner et al. 
2021). Understanding such legacies and path depend-
encies is essential for interpreting the current changes 
observed in forests (Tappeiner et al. 2021).

European mountain landscapes harbor many of 
Europe’s last primary forests (Sabatini et al. 2018) and 
are hotspots of biodiversity (Myers et al. 2000; Olson 
and Dinerstein 2002; Večeřa et  al. 2019). For exam-
ple, the Carpathian mountains sustain populations of 
large mammals, including brown bear, wolf, Euro-
pean bison, and lynx (UNEP 2007), and the Cauca-
sus is also home to the Caucasian leopard, Caucasian 
tur, and Bezoar goats (Zazanashvili et  al. 2020). At 
the same time, European mountain landscapes have a 
long history of land use and have recently experienced 
substantial social-ecological transformations (Schir-
pke et  al. 2021). For example, many forests of the 
Alps have been logged since the early industrial era 
(Johann 2007), and this region has experienced pro-
nounced human depopulation and an increase in for-
est area since the  19th century (Bebi et al. 2017). In the 
Carpathians, many forests were intensively managed 
for timber during the socialist era in the  20th century 
(Munteanu et al. 2016), while forests in the Caucasus 
were largely protected (UNECE/FAO 2019). After the 
collapse of socialism, changes in land use, forest own-
ership and management have led to concerns about for-
est loss and degradation in both regions (Griffiths et al. 
2012; Knorn et  al. 2012; Chen et  al. 2021; Cortner 
et  al. 2024). At the same time, the forests of Eastern 
Europe are frequently identified as an important space 
for European policies, from biodiversity conservation 
to a bioeconomy transition (European Commission 
2021). How these ongoing social-ecological changes 
affect forest disturbance regimes and forest structure is 

incompletely understood. Comparing mountain ranges 
with similar bioclimatic and biogeographic condi-
tions yet different land-use histories has the potential 
to insights into the relationship between disturbance, 
social-ecological context, and forest structure.

There has been substantial progress in observ-
ing changes in canopy cover over large spatial scales 
from optical satellite data (Hansen et  al. 2013; Zhu 
2017; Senf 2022). Using the Landsat archive, for-
est disturbances have been mapped for Europe going 
back to 1986 (Senf and Seidl 2021). Such observations 
allow for quantifying the characteristics of disturbance 
regimes. However, as optical satellite data does not 
penetrate deep into the forest canopy, it has limitations 
in quantifying the vertical structure of forests (Bolton 
et  al. 2017). To address this gap, the Global Ecosys-
tem Dynamics Investigation (GEDI) spaceborne lidar, 
launched in 2019 (Dubayah et  al. 2020), has gener-
ated the first consistent data about the vertical structure 
of vegetation across large spatial extents. In previous 
work, we used GEDI data to analyze forest structure 
across the European Alps, finding two alternative 
states of forest structure (Stritih et al. 2023). Such pat-
terns have important implications for forest functions, 
yet it remains unclear whether they can be generalized 
to other temperate mountain regions with different for-
est management and land-use histories.

Here, we characterize social-ecological disturbance 
regimes (i.e., the rate, frequency, and patch size distri-
bution of disturbances driven by interacting natural and 
anthropogenic processes) and forest structure across 
three European mountain ranges with different land-
use histories: the European Alps, the Carpathian moun-
tains, and the Caucasus mountains. At the same time, 
these three mountain ranges have similar forest types in 
terms of potential natural vegetation, providing a natural 
experiment to assess the importance of land-use histo-
ries. Specifically, we ask the following questions:

(1) Are there differences in social-ecological forest 
disturbance regimes across the three mountain 
ranges?

(2) Do differences in disturbance regimes result in 
different patterns of forest structure?

(3) How are patterns in forest structure related to 
different groups of drivers (disturbances, anthro-
pogenic pressures, topographic and climatic fac-
tors), and are these relationships consistent across 
mountain ranges?
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We hypothesize that differences in land-use his-
tory and current forest management result in dif-
ferent social-ecological disturbance regimes in the 
three mountain ranges. Since we expect disturbance 
dynamics to be a key driver of forest structure, we 
also hypothesize that different disturbance regimes 
will lead to distinct patterns of forest structure in the 
mountain forests of temperate Europe. In addition, we 
expect that forest structure relates similarly to climate 
and topography across the three mountain ranges, 
while the associations between anthropogenic pres-
sures and forest structures should reflect differences 
in land-use histories.

Methods

Study areas

We used the spatial extents for the three mountain 
ranges, the European Alps, the Carpathian and the 
Caucasus mountains, as defined by the Global Moun-
tain Biodiversity Assessment (GMBA) mountain 
inventory v2 (Snethlage et  al. 2022). The mountain 
ranges span elevations from near sea level to > 2600 
m a.s.l. in the Carpathians, > 4800 m in the Alps 
and > 5600 m in the Caucasus (Table  1). The most 
widespread potential natural vegetation types across 
all three mountain ranges are mesophytic deciduous 
and coniferous forests (Fig.  1)., with dominant spe-
cies including European beech (Fagus sylvatica L.), 
Norway spruce (Picea abies (L.) Karst.), and silver 
fir (Abies alba Mill.) in the Alps and Carpathians, 
and Oriental beech (F. orientalis Lipsky), European 
hornbeam (Carpinus betulus L.), Oriental spruce (P. 

orientalis (L.) Link), and Caucasian fir (Abies nor-
dmanianna (Steven) Spach) in the Caucasus. In the 
Alps and Carpathians, subalpine forests are domi-
nated by conifers, such as European larch (Larix 
decidua L.), Swiss stone pine (Pinus cembra L.), and 
mountain pine (P. mugo Turra), while broadleaves 
(such as Oriental beech and birch (Betula litwinowii 
Doluch.) form the subalpine forests of the Cauca-
sus (Zazanashvili  et al. 2000). Submediterranean 
and subcontinental forests at warmer sites consist 
of thermophilous broadleaved species such as oaks 
(Quercus pubescens Willd., Q. petraea (Matt.) Liebl.) 
and Oriental hornbeam (Carpinus orientalis Mill.) 
(Bohn et al. 2007). The Caucasus, which includes the 
Greater and Lesser Caucasus ranges, has a particu-
larly pronounced climatic gradient and includes for-
est types that are not present in the other mountain 
ranges, such as Colchic temperate rainforests on the 
coast of the Black sea or semiarid forest steppes in 
the Eastern Caucasus (Bohn et  al. 2007), but these 
range-specific forests were not included in our com-
parative analysis.

All three mountain ranges share a long history 
of human land use, with their landscapes shaped by 
mountain agriculture for millennia (Feurdean et  al. 
2016; Conedera et  al. 2017). However, their forests 
have experienced different trajectories of human use 
in the recent past. In the Alps, forests have been inten-
sively logged since the beginning of the early indus-
trial period to produce energy and construction mate-
rials, with management favoring Norway spruce over 
other tree species and with restrictions on other forest 
uses such as livestock grazing (Johann 2007). Since 
the nineteenth century, regulations on forest use, out-
migration from rural areas, and structural changes in 

Table 1  Characteristics of the mountain ranges (defined 
according to the GMBA mountain inventory v2 (Snethlage 
et  al. 2022) and their social-ecological forest disturbance 

regimes (based on Landsat data, Senf and Seidl 2021). Distur-
bance patches are defined as connected pixels disturbed in the 
same years, with a minimum size of two pixels (0.18 ha)

Mountain range Alps Carpathians Caucasus

Elevation range [m a.s.l.] 0 – 4809 41 – 2655 0 – 5642
Approximate upper treeline elevation [m a.s.l.] 1800 – 2300 1400 – 1800 2200 – 2700
Area  [km2] 175′902 121′834 157′586
Forest cover [%] 57 75 47
Mean annual disturbance rate [%] 0.34 0.39 0.08
Annual disturbance frequency [no. patches per  km2] 0.50 0.29 0.11
Median  (5th-  95th percentile) patch size of disturbances [ha] 0.45 (0.18 – 2.16) 0.36 (0.18 – 2.79) 0.18 (0.18 – 0.99)
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agriculture have contributed to land abandonment and 
the expansion and densification of forests (Bebi et al. 
2017; Garbarino et al. 2020). Today, both private and 
publicly-owned forests in the Alps are primarily man-
aged for timber production and for sustaining their 
protective effect (Maroschek et  al. 2015; Temperli 

et  al. 2017). Especially in the northern Alps, man-
agement is supported by high road density and cable 
yarding technology that allows harvesting in difficult 
terrain (Enache et al. 2016).

In the Carpathians, a similar process of farmland 
abandonment and forest transition has been ongoing 

Fig. 1  Potential natural vegetation in the Alps, Carpathians 
and Caucasus (according to Bohn et al. 2004, 2007; mountain 
range definitions according to GMBA (Snethlage et al. 2022)). 
Histograms show the distribution of forested GEDI footprints 

across elevation in each mountain range. The four main vegeta-
tion types that occur across all three mountain ranges (shown 
here in colour) were included in the analysis
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since the beginning of the  20th century and acceler-
ated after the end of socialism in the 1990s (Munte-
anu et al. 2014). During the socialist era in the second 
half of the  20th century, forests were nationalized and 
intensively managed in many areas. This included 
heavy logging to fund reparation payments after 
World War II (Nita et al. 2018) and was characterized 
by clearcuts and plantations of fast-growing species 
(Munteanu et al. 2016). Today, most countries in the 
Carpathians are members of the European Union and 
are net exporters of timber (ForestEurope 2020).

In contrast to the Alps and the Carpathians, moun-
tain forests in the Caucasus were strictly protected 
during most of  20th century due to the recognition of 
their importance for protection against soil erosion 
and natural hazards, and due to the timber imports 
to the Caucasus region from other parts of the Soviet 
Union (UNECE/FAO 2019). Forest management was 
thus mostly limited to small-scale use (Metreveli 
2002). Agricultural abandonment and forest expan-
sion have also been less pronounced in the Caucasus 
than in the other two mountain ranges (Buchner et al. 
2020), and many forests are still used for forest graz-
ing (UNECE/FAO 2019). Forests remain state-owned 
(ForestEurope 2020) and lack a history of industri-
alized timber harvesting, with most of the harvested 
wood used locally as fuelwood (Garforth et al. 2016; 
UNECE/FAO 2019), especially during the economic 
crises that followed the collapse of the Soviet Union 
(Torchinava 2016). Rural poverty remains high in 
the Caucasus region in comparison to the other two 
mountain ranges (World Bank 2023).

Further details about anthropogenic and natural 
disturbances in the three mountain regions are pro-
vided in the Supplementary material (Table S2).

Social-ecological forest disturbance data

To characterize forest disturbance regimes, we used a 
satellite-based pan-European disturbance map (Senf 
and Seidl 2021), which was extended to include the 
Caucasus region for this study. The disturbance map 
is based on Landsat data and includes stand-replacing 
disturbances of both human and natural causes that 
occurred in the years between 1986 and 2020, with 
30  m spatial resolution and annual temporal resolu-
tion. We defined disturbance patches as connected 
pixels (using an eight-neighbor rule) that were dis-
turbed in the same year, with a minimum mapping 

unit of two pixels (0.18 ha). We used the disturbance 
map to quantify disturbance rates (% forest area dis-
turbed annually), frequencies (number of forest dis-
turbance patches per year), and patch size distribu-
tions in each mountain range, as well as to identify 
trends in disturbed forest area over time.

GEDI data on forest structure

We used GEDI data to assess forest structure across 
the three mountain ranges. GEDI is a spaceborne 
LiDAR (Light Detection And Ranging) system 
installed on the International Space Station and pro-
viding data since 2019. GEDI emits laser pulses and 
measures their reflected returns for sample footprints 
25 m in diameter (Dubayah et al. 2020). Based on the 
returned waveforms, vegetation structural metrics can 
be derived (see e.g. Mandl et  al. (2023); Tang et al. 
(2012) for details). We used GEDI level 2A and 2B 
products, which include profiles of canopy height 
and derived structural metrics (including canopy 
cover, plant area index, and foliage height diversity), 
and processed them using the rGEDI package (Silva 
et  al. 2020). We included data from 2019 to 2021, 
using footprints acquired between June and August to 
include only leaf-on data (Potapov et  al. 2021). We 
filtered GEDI data to include only high-quality foot-
prints fully located within forests as defined by a sat-
ellite-based forest-cover map (Senf and Seidl (2021) 
for the Alps and Carpathians and by Hansen et  al. 
(2013) for the Caucasus), with a buffer of 9 m around 
the footprint locations to account for possible geolo-
cation errors (Dubayah et al. 2020). We also excluded 
footprints on slopes steeper than 40°, as GEDI accu-
racy can be impaired by steep terrain (Mandl et  al. 
2023). This resulted in 3,053,500 GEDI footprints 
available for analysis in the Alps, 3,074,088 in the 
Carpathians, and 1,751,049 in the Caucasus.

We focused on two metrics of forest structure, the 
fraction of canopy cover and the  75th percentile of rela-
tive heights (RH75). Based on these metrics, we fitted 
a Gaussian mixture model (Scrucca et  al. 2016) for 
each mountain range to describe forest structure fol-
lowing the approach described in Stritih et al. (2023). 
Gaussian mixture models are well-suited to identifying 
clusters in multi-modal distributions because they use 
a combination of Gaussian distributions to represent 
clusters in the data. We used this feature of Gaussian 
mixture models to identify clusters in the 2D-space 
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defined by tree height and cover. These clusters poten-
tially represented different states of forest structure 
(e.g., open and short vs. closed and tall).

Potential drivers of forest structure

We investigated the relationship between states of for-
est structure and their potential drivers by fitting a ran-
dom forest model (Breiman 2001) for each mountain 
range to predict the occurrence of each state based on 
predictors describing topography, climate, social-eco-
logical forest disturbance history, and other anthropo-
genic pressures. Topographic predictors included ele-
vation, slope, and terrain roughness, derived from the 
shuttle radar topography mission terrain model (NASA 
SRTM 2013). We obtained climate predictors from the 
CHELSA V2.1 dataset (Karger et al. 2017), including 
mean annual temperature, total annual precipitation, 
and mean annual temperature seasonality. Based on the 
disturbance map described in Section “Social-ecologi-
cal forest disturbance data”, we derived the time since 
the last stand-replacing disturbance, the proportion of 
the GEDI footprint disturbed and the size of the distur-
bance patch in which the GEDI footprint was located. 
Predictors describing anthropogenic pressure included 
the distance to settlements, population density within 
a 10-km radius (both derived from the GHS popula-
tion grid (Schiavina et al. 2022)), and distance to roads 
(derived from a combination of the GRIP dataset (Mei-
jer et al. 2018) and OpenStreetMap (OSM 2022)).

We used a random forest model to relate forest 
structural characteristics identified from GEDI to the 
potential predictor variables because this model can 
capture potentially nonlinear relations and interac-
tions between predictors (Breiman 2001). For each of 
the 300 trees in the random forest, we selected a ran-
dom sample of 10,000 GEDI footprints from each of 
the alternative states to ensure a balanced sample. We 
calculated the permutation-based importance of each 
predictor variable (Breiman 2001; Genuer et al. 2015) 
and performed a ten-fold cross-validation, where 90% 
of the footprints were used for training and 10% for 
validation. We included only forests within the poten-
tial natural vegetation types that occur across all three 
mountain ranges (subalpine, mesophytic coniferous 
and deciduous, and submediterranean/-continental) 
according to Bohn et  al. (2007, 2004), which corre-
spond to 89% of all forested GEDI footprints in the 
Alps and Caucasus, and 99% in the Carpathians.

Results

Social-ecological forest disturbance regimes

We found similar disturbance rates in the Alps and 
the Carpathians, with 0.34% of forests disturbed 
annually in the Alps, and 0.39% in the Carpathians, 
corresponding to average return intervals (i.e., mean 
time between two disturbance events) of 294 and 256 
years, respectively. In both these mountain ranges, 
the disturbed area increased between 1986 and 2020 
(Fig. 2), with a Sen’s slope of 692 ha/year (95% confi-
dence interval 330—991 ha/year) in the Alps and 691 
ha/year (confidence interval 267 – 1,138 ha/year) in 
the Carpathians. The area disturbed during the 2010s 
was approximately 70% larger than during the 1990s. 
We observed particularly high disturbance rates in 
years following severe windthrow events, such as 
storm Uschi in 2002 and storm Vaia in 2018 in the 
Alps, and storm Elisabeth in 2004 in the Carpathians. 
In contrast, the rate of disturbance was considerably 
lower in the Caucasus, with a mean annual distur-
bance rate of 0.08%, corresponding to a disturbance 
return interval of 1250 years. The disturbed area was 
larger in the 1990s and had a weakly decreasing trend 
over the 35-year observation period (Sen’s slope -78 
ha/year, with a confidence interval between -158 and 
-22 ha/year).

In all three mountain ranges, the majority of dis-
turbed patches were smaller than 0.5 ha (60% in the 
Alps, 59% in the Carpathians, and 85% in the Cau-
casus), with median patch sizes of 0.45, 0.36 ha, and 
0.18 ha, respectively (Fig.  2, Table  1). Only 5% of 
disturbed patches were larger than 1 ha in the Cauca-
sus, compared to 16% in the Alps and 19% in the Car-
pathians. The largest observed disturbance patches 
were 190 ha in the Caucasus, 2,080 ha in the Alps 
and 5,700 ha in the Carpathians.

Forest structure

Across all three mountain ranges and forest types, 
we found consistent bimodal distributions of canopy 
cover and height based on GEDI data (Fig.  3; see 
also Supplementary material, Figure  9). We identi-
fied two distinct clusters of forest structure using 
Gaussian mixture models: tall, closed-canopy forests 
and short, open-canopy forests (henceforth referred 
to as closed-canopy and open-canopy forests, 
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respectively). The two clusters occurred over over-
lapping ranges of climatic and topographic condi-
tions, even in the absence of disturbance (see Supple-
mentary material, Figure  9). Most forests belonged 
to the closed-canopy cluster, which represented 80% 
of the GEDI footprints in the Carpathians, 76% in the 
Alps, and 74% in the Caucasus Mountains (Fig. 3). 
These clusters had largely similar characteristics in 
all three mountain ranges, with some small yet nota-
ble differences. For example, submediterranean for-
ests in the Alps had a more open structure than those 
in other mountain ranges, while forests in the meso-
phytic coniferous zone in the Caucasus Mountains 
reached greater heights than similar forests in the 
other mountain ranges.

Based on variables for topography, climate, distur-
bances, and other anthropogenic pressures, our ran-
dom forest models were able to predict the occurrence 
of open- vs. closed-canopy forests moderately well, 
with area under the receiver-operator curve (AUC) 
values of 0.79 in the Caucasus Mountains, 0.74 in 
the Alps and 0.73 in the Carpathians. Topographic 
predictors had a similar effect on the occurrence of 
open-canopy forests across all three mountain ranges. 
Among them, elevation was most important, with 
open-canopy forests generally occurring at higher ele-
vations. In the Caucasus Mountains, precipitation was 
the most important climatic factor (Fig. 4), as open-
canopy forests occurred more often at drier sites, par-
ticularly in the eastern Caucasus. Temperature had a 

Fig. 2  Disturbed area per year as percentage of the current 
forest area in the Alps, Carpathians, and Caucasus (a) and 
patch size distribution of disturbances (b). The Alps and Car-
pathians experienced an increase in disturbance rates since 
the mid-1980s, with peaks in the Alps in 2003 and 2019 (after 
storms Uschi in 2002 and Vaia in 2018). The Caucasus Moun-
tains experienced more forest disturbances in the late 1980s 
and 1990s, with a decrease after 2000. The dotted lines show 

linear trends – increasing in the Alps and Carpathians, and 
slightly decreasing in the Caucasus Mountains. The patch size 
distributions include all annual patches of at least two Land-
sat pixels (0.18 ha). We note that patch size distributions are 
shown on a log scale with a cut-off at 100 ha for better vis-
ibility. Maximum disturbance patch sizes reached 190 ha in the 
Caucasus Mountains, 2080 ha in the Alps, and 5700 ha in the 
Carpathians
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similar effect in the Alps and Caucasus, with open-
canopy forests occurring more at both very cold and 
very warm sites. This effect was less pronounced in 
the Carpathians, where the temperature gradient is 
smaller (Fig. 5).

Variables related to disturbances were particu-
larly important predictors of forest structure in the 
Carpathians (Fig.  4), and their effect was more pro-
nounced than in the other two mountain ranges. This 

was related to a higher disturbance severity: 65% of 
GEDI footprints in the Carpathians were in an open-
canopy state in the first five years after a disturbance, 
compared to 51% in the Caucasus and 47% in the 
Alps. The effect of disturbances decreased with time 
since disturbance; 35 years after a disturbance, most 
forests had returned to a closed-canopy state (69% in 
the Alps, 77% in the Carpathians and 83% in the Cau-
casus). Disturbance patch size did not have a strong 

Fig. 3  Based on the observed bimodal distributions of canopy 
cover and height from GEDI, two distinct clusters of forest 
structure were identified: tall, closed-canopy forests and short, 
open-canopy forests. The contours show the area that contains 

90% of all GEDI footprints in each cluster (a), with bar plots 
showing the proportion of forests in each cluster per mountain 
range and vegetation type (b)

Fig. 4  Importance of fac-
tors related to topography, 
climate, social-ecological 
forest disturbance and other 
anthropogenic pressure for 
predicting the occurrence 
of open-canopy forests in 
the three mountain ranges 
by means of random forest 
models
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effect on forest structure in any of three mountain 
ranges. We found other anthropogenic pressures to 
be more important in the Caucasus than in the Alps 
and Carpathians. Forests within 2.5 km of settlements 
were more likely to have an open-canopy structure, as 
were forests close to roads and in areas with higher 
population densities.

Discussion

Forest disturbances shape forest structure and via 
structure influence forest biodiversity and the provi-
sioning of ecosystem services. This makes it impor-
tant to understand how different disturbance regimes 
impact structure. Here, we make use of the natu-
ral experiment provided by the European mountain 
ranges with similar climate and biogeography yet 
highly different social-ecological conditions. We find 
distinctly different disturbance regimes between these 
mountain ranges, with the Caucasus differing strongly 
from the Alps and the Carpathians. We suggest that 
these differences reflect the combined impact of dif-
ferences in current management intensities as well as 
different land-use legacies, which result in different 
social-ecological disturbance regimes. Remarkably, 
despite these differences, we found highly consistent 
patterns of forest structure across all three mountain 
ranges, with the emergence of two alternative states 
of forest cover and height, suggesting strong attrac-
tors of mountain forest structure despite differences in 
social-ecological drivers.

Differences in social-ecological forest disturbance 
regimes

We found contrasting disturbance regimes between 
the mountain forests of the Alps and Carpathians on 
the one hand, and the Caucasus on the other, with 
much lower disturbance rates and smaller distur-
bance sizes in the Caucasus. These differences are 

likely related to both anthropogenic and natural dis-
turbances, which are often closely interrelated. For 
example, windthrows and bark beetle outbreaks are 
often followed by salvage logging (Falt’an et al. 2021; 
Hlásny et al. 2021), while management interventions 
such as thinning can result in a short-term increase 
insusceptibility to windthrow (Stritih et  al. 2021b). 
The lower disturbance rates in the Caucasus are thus 
likely related to both fewer natural disturbances and 
to differences in forest management practices.

The majority of observed disturbances are likely 
driven by human activities in all three mountain 
ranges (Potapov et  al. 2015). In both the Carpathi-
ans and the Caucasus, the socioeconomic transition 
that these areas have experienced since the 1990s 
has raised concerns about forest loss and degrada-
tion (Chen et al. 2021; Albulescu et al. 2022; Vasile 
2022; Vasile and Iordăchescu 2022; Cortner et  al. 
2024). However, there are key differences between 
these mountain ranges. Forests in the Caucasus have 
remained state-owned and are largely protected. In 
Georgia, for example, the main management objective 
for nearly 80% of forests is to maintain their protec-
tive effect against erosion and natural hazards, while 
only 20% of forests are designated for timber produc-
tion (UNECE/FAO 2019). This is reflected in the low 
rate of stand-replacing disturbances (Fig. 2). In con-
trast, Carpathian forests were in many cases restituted 
to private owners after the end of socialism in eastern 
Europe. Private ownership and access to European 
timber markets have contributed to high logging rates 
(Griffiths et al. 2012; Potapov et al. 2015; Alix-Garcia 
et al. 2016). Interestingly, our results indicate that the 
social-ecological disturbance regime in the Carpathi-
ans was very similar to that of the Alps, where forest 
management is thought to have changed less and to 
have been more sustainable.

Natural disturbances also play an important role in 
the disturbance regimes of temperate mountain for-
ests in Europe (Kulakowski et al. 2017). This is par-
ticularly visible in the case of large windthrow events, 
such as storm Vaia in the Alps in 2018 or storm Elisa-
beth in the Slovak Tatra in the Carpathians in 2004 
(see Fig. 2). Most cyclone-induced windstorms reach 
Europe from the west and are therefore less impact-
ful in Eastern Europe, although they can still affect 
forests in the Carpathians (Pettit et  al. 2021). Large 
windthrows are commonly followed by bark beetle 
outbreaks (Stadelmann et  al. 2014), and such pulses 

Fig. 5  Partial dependence plots showing the probability of 
open-canopy forests in relation to individual drivers in the 
random forest models. Marginal plots at the top of the figures 
show the distributions of the drivers in each mountain range. 
Partial dependences were calculated for the interval between 
the  1st and  99th percentile of each variable. For disturbance 
size, distance to settlements, population, and distance to road, 
the figures are cut off at the  95th percentile for better visibility

◂
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of natural disturbance cascades are a key part of the 
natural dynamics of conifer-dominated mountain for-
ests (Janda et al. 2017; Kameniar et al. 2023). Natu-
ral disturbances are likely exacerbated by climate 
change (Seidl et al. 2014), with extreme wind events 
becoming more common in Europe (Schemm et  al. 
2017; Pettit et al. 2021), and spruce becoming more 
susceptible to bark beetle attacks under warmer and 
drier conditions (Temperli et al. 2013; Netherer et al. 
2015). Climate change may thus partly explain the 
increasing disturbance rates in the Alps and Carpathi-
ans since the 1980s (Fig. 2).

The fact that disturbance rates are increasing in the 
Alps and Carpathians, but not the Caucasus, can be 
in part explained by differences in land-use legacies. 
Dense spruce monocultures, which were planted after 
clear-cuts or established on abandoned farmland, 
are particularly susceptible to natural disturbances 
(Munteanu et  al. 2016; Stritih et  al. 2021b; Scher-
rer et  al. 2023). In the Alps and Carpathians, many 
such forests were established during the  20th century, 
and large parts of these forests are now in a develop-
ment stage where trees are increasingly susceptible 
to disturbance agents such as wind or bark beetles 
(Stritih et al. 2021b) and are reaching harvestable age 
(Munteanu et al. 2015). In contrast, due to the lower 
intensity of forest management in the past, forests in 
the Caucasus have retained predominantly natural 
tree species composition and structure, with a higher 
dominance of broadleaved trees and higher struc-
tural diversity (Martin-Benito et al. 2020; Ministry of 
Environmental Protection and Agriculture of Georgia 
2022), and they are therefore less susceptible to large-
scale natural disturbances. The disturbance regime 
of these forests is dominated by small-scale events 
(Fig. 2b), similar to those of primary beech forests of 
the Carpathians (Hobi et  al. 2015). In summary, we 
found considerable support for our hypothesis that 
differences in current management and land-use his-
tory result in distinct disturbance regimes of the three 
mountain ranges.

Convergent states of forest structure among mountain 
ranges

Despite the differences in social-ecological distur-
bance regimes, our results point to surprisingly simi-
lar patterns of forest structure across the three moun-
tain ranges. Specifically, we found that the bimodal 

distributions of forest canopy height and cover 
reported previously for the Alps (Stritih et  al. 2023) 
are also present in the Carpathians and Caucasus. 
The two distinct clusters we found (i.e., short, open-
canopy forests and tall, closed-canopy forests) co-
occur in similar topographic and climatic conditions 
suggesting a prevalence of two alternative states of 
forest structure across mountain forests in temperate 
Europe. Consequently, we did not find support for our 
hypothesis that different disturbance regimes lead to 
different forest structural states across the Alps, Car-
pathians, and Caucasus.

Multi-modal distributions of tree cover have pre-
viously been used to characterize alternative states 
of vegetation characterized in forest-shrubland and 
forest-savanna-grassland systems (Hirota et al. 2011), 
where the states are stabilized by positive feedbacks 
(Miller et  al. 2019; Pausas and Bond 2020). For 
example, frequent fires or grazing maintain open-
canopy vegetation in regions otherwise suitable for 
the development of closed forests (Pausas and Bond 
2020). The convergence towards two consistent, alter-
native states of forest structure across the different 
mountain ranges in our study might be evidence for 
similar common stabilizing mechanisms in these tem-
perate forests. Open-canopy forests are more likely to 
occur at the edges of suitable conditions for forests, 
such as at the upper tree line in all three mountain 
ranges, or at the transition to steppe vegetation in the 
drier Eastern Caucasus. At these edges, seedlings 
established in the open are more likely to be damaged 
by harsh conditions, such as wind and frost at the 
upper tree line (Presas et al. 2009) or drought at the 
lower tree line (Gómez-Aparicio et  al. 2005). Once 
the canopy is sufficiently dense, however, it buffers 
extreme temperatures and wind and increases humid-
ity (De Frenne et al. 2021), creating a more suitable 
microclimate for seedling survival (D’Odorico et  al. 
2013) resulting in a positive feedback loop that helps 
maintain closed forest canopies.

In all three mountain ranges, disturbances can trig-
ger transitions from closed-canopy to open-canopy 
forests, although we also observed the open-canopy 
state in undisturbed forests. Disturbances were an 
important predictor of forest structure in the Carpathi-
ans, where the climatic gradient is narrower than in 
the Alps and Caucasus and where disturbance sever-
ity was higher. However, if disturbances were the 
only driver of open-canopy forests, we would expect 
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only 6% of forests to be in this state in the Carpathi-
ans, 5% in the Alps, and less than 1% in the Caucasus 
given the observed rates of disturbance and recovery. 
Disturbance-driven transitions to open-canopy for-
ests are mostly temporary, as most disturbed forests 
recover to a closed-canopy state within 35 years after 
disturbance in all three mountain ranges. Recovery 
is facilitated by the intermediate severity and small 
patch sizes of disturbances that prevail throughout the 
mountain forests of temperate Europe. These factors 
result in sufficient seed supplies and favorable micro-
climatic conditions for tree establishment (Jonášová 
et al. 2010; Winter et al. 2015). Furthermore, the dis-
turbance return interval we found is much longer than 
the recovery time, suggesting that permanent shifts 
to open-canopy states due to disturbance are unlikely 
(Janda et al. 2017; Senf and Seidl 2022). However, in 
some cases, recovery may be hampered by dry con-
ditions (e.g., in submediterranean forests in the Alps; 
Stritih et  al. 2023) or by a high density of grazing 
ungulates (Hlásny et  al. 2021). Furthermore, while 
structural features such as canopy cover recover rela-
tively quickly, other features, especially those typical 
for old-growth forests, such as structural diversity 
and the presence of very large trees (Burrascano et al. 
2013), only recover over much longer time periods 
(Albrich et al. 2021).

While the influence of stand-replacing distur-
bances was less important in the Caucasus, forest 
structure was more closely linked to other anthro-
pogenic pressures, with forests in areas with higher 
human population densities and closer to roads more 
likely to have an open-canopy structure. This pat-
tern reflects both the reliance of local communities 
on forests for the provisioning of ecosystem services, 
including (often illegal or unrecorded) logging for 
fuelwood and livestock grazing (Torchinava 2016; 
UNECE/FAO 2019), and the limited technological 
and institutional capacity for forest management in 
more remote areas farther from roads and settlements 
(Garforth et  al. 2016; UNECE/FAO 2019). Live-
stock grazing near settlements can impede the natural 
regeneration of trees (Shakeri et al. 2012; Etchebarne 
and Brazeiro 2016). Such open-canopy forests are 
therefore often referred to as “degraded” from the 
perspective of carbon storage or timber production 
(Ministry of Environmental Protection and Agricul-
ture of Georgia 2022). At the same time, open-can-
opy forests, such as wood pastures, are increasingly 

recognized for their high biodiversity and cultural 
values (Plieninger et  al. 2015; Öllerer et  al. 2019). 
Wood pastures also used to be common in the Alps 
(Garbarino et al. 2011) but have declined due to graz-
ing restrictions in forests (Johann 2007; Bebi et  al. 
2017) and to the intensification of agriculture and 
resulting abandonment of mountain pastures (Garba-
rino et al. 2011; Plieninger et al. 2015).

In summary, our third hypothesis was largely sup-
ported by our data. The mountain forest ecosystems 
of temperate Europe responded fairly consistently to 
abiotic drivers such as topography and climate, with 
open-canopy forests more likely to occur at cold and 
dry sites. In contrast, the importance and effects of 
anthropogenic pressures differed between mountain 
ranges. Despite these differences, the emerging struc-
tural patterns are similar across the Alps, Carpathi-
ans, and Caucasus, underlining that different suites of 
drivers can lead to similar ecosystem patterns.

Methodological considerations

This study demonstrates how combining remote sens-
ing tools can yield insights into forest disturbances 
and structure across large spatial extents. GEDI ena-
bled the characterization of vertical forest structure 
across three mountain ranges for one point in time, 
while the Landsat-based disturbance map provided a 
dynamic perspective on changes in canopy cover and 
disturbances over three decades. However, the inher-
ent limitations of the approaches combined here need 
to be considered. The accuracy of GEDI is limited 
in complex, mountainous terrain (Fayad et  al. 2021; 
Mandl et al. 2023), and the high correlations between 
different structural variables (see Supplementary 
material, Figure 12) may mask more nuanced differ-
ences in forest structure (Stritih et al. 2023), such as 
those found in structurally complex old-growth for-
ests. In addition, the Landsat-based disturbance map 
used here primarily provided information on stand-
replacing disturbances and disregarded low-severity 
disturbances or disturbances affecting trees only in 
the subcanopy and understory (Senf and Seidl 2021), 
such as those caused by selective logging or thinning 
as well as uses such as firewood collecting and for-
est grazing. Such disturbances are more evident in the 
patterns of forest structure derived from spaceborne 
lidar, highlighting the complementarity of the two 
different remote sensing products combined here.
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Broad-scale analyses like ours enable the detec-
tion of general patterns across administrative bounda-
ries and facilitate analyses of non-linear and inter-
acting relationships between ecological and social 
drivers. However, we note that an understanding of 
the regional context is essential for interpreting the 
observed patterns (Wyborn and Evans 2021; Tul-
bure et al. 2022). Necessarily, an analysis at the scale 
of entire mountain ranges masks local variability in 
forest ecosystems and their human uses (Bebi et  al. 
2017), including cross-border differences in current 
and historical institutions related to forest manage-
ment (Munteanu et  al. 2014). Our analysis included 
a range of environmental and anthropogenic vari-
ables, and their potential effects on forest structure 
are largely consistent with current understanding of 
social-ecological processes; yet these relationships 
are correlative in nature and do not necessarily rep-
resent causality. The effects of specific drivers need 
to be addressed in more detail to increase process 
understanding. For example, matching methods could 
be used to assess the effects of specific drivers across 
otherwise comparable landscapes (Baumann et  al. 
2015; Butsic et  al. 2017), controlled experiments 
could test the role of stabilizing feedbacks on alterna-
tive states (Kueppers et al. 2017), and/or the knowl-
edge of local communities about their current and 
past land management practices could be integrated 
into spatial analyses (Joa et al. 2018).

Conclusions

Comparing forest disturbances and structure across 
three European mountain forests with similar envi-
ronmental conditions and different social-ecolog-
ical conditions and land-use histories yielded two 
major insights. First, we found distinct differences 
in social-ecological forest disturbance regimes, with 
increasing disturbance rates over time in the Alps and 
Carpathians, yet much lower disturbance rates and 
smaller disturbance patches in the Caucasus. These 
regime differences can be attributed to differences 
in current forest management and legacies of past 
land-use. Second, despite the pronounced differences 
in disturbance regimes, we found that forests in the 
Alps, Carpathians and Caucasus show surprisingly 
similar patterns of forest structure, converging at two 
distinct, alternative states of forest structure (tall, 

closed-canopy forests and short, open-canopy forests) 
in all mountain ranges. Open-canopy forests con-
sistently occurred at the upper and lower tree line in 
cold and snow-dominated sites as well as dry, warm 
sites, but the influence of other drivers of forest struc-
ture differs between mountain ranges. The effect of 
stand-replacing disturbances was particularly impor-
tant in the Carpathians, while other anthropogenic 
drivers were more important in the Caucasus, with 
local use of fuelwood and grazing likely contribut-
ing to the prevalence of open-canopy structures near 
settlements.

Our results indicate that both current management 
and past land use play important roles in shaping 
the dynamics and structure of mountain forests, but 
also highlight that similar alternative states emerge 
consistently across a wide range of conditions. This 
suggests generalities in the drivers of mountain for-
est dynamics and indicates strong attractors of for-
est development that should be investigated further. 
Finally, our findings caution against a simplistic 
understanding of the relationship between prominent 
variables of forest change (e.g., disturbance, land use) 
with forest structure and underline that forest states 
are emergent properties of complex social-ecological 
systems.
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