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Methods  We simulated landscapes of variable het-
erogeneity and sampled at increasing densities using 
gridded and random strategies. We applied three local 
interpolation methods (i.e., Inverse Distance Weight-
ing, Universal Kriging, and Nearest Neighbor) to the 
sampled data and estimated accuracy (slope and inter-
cept) and precision (R2) between interpolated surfaces 
and the original surface. Finally, we applied these 
analyses to in situ data using a normalized difference 
vegetation index raster collected from pasture with 
various resolutions.
Results  In our simulations, all interpolation meth-
ods and sampling strategies yielded similar accuracy 
and precision except in the case of Universal Kriging 
with random sampling. Additionally, low heteroge-
neity and increasing sample density improved both 
accuracy and precision, with cross-validation slopes 
and R2 values approaching optimal values. In  situ 
analysis demonstrated that heterogeneity decreased 
with resolution. Nearest Neighbor under both sam-
pling strategies and Universal Kriging using the grid-
ded sampling strategy had the highest accuracy and 
precision. Decreased heterogeneity and increased 
sampling density improved accuracy and precision 
for all combinations of interpolation method and sam-
pling strategies.
Conclusions  Heterogeneity of the landscape is a 
major influence on the accuracy and precision of 
interpolated maps. There is a need to create struc-
tured tools to aid in determining sampling design 

Abstract 
Context  Obtaining accurate and precise maps of 
landscape features often requires intensive spatial 
sampling and interpolation. The data required to gen-
erate reliable interpolated maps varies with sampling 
density and landscape heterogeneity. However, there 
has been no rigorous examination of sampling density 
relative to landscape characteristics and interpolation 
methods.
Objectives  Our objective was to characterize the 
3-way relationship among sampling density, interpo-
lation method, and landscape heterogeneity on inter-
polation accuracy and precision in simulated and 
in situ landscapes.
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most appropriate for interpolation methods across 
landscapes of various heterogeneity.

Keywords  Optimal sampling · Landscape 
interpolation · Heterogeneity · Kriging · Inverse 
distance weighting · Nearest neighbor

Introduction

Measurement of ecological processes at a landscape 
level requires a thorough understanding of spatial 
relationships of the target resource across landscape 
gradients. Originally focused within landscape ecol-
ogy or biogeography (Turner and Gardner 2015), 
measuring landscape heterogeneity has emerged as 
an important research front in movement ecology, 
agroecology, disturbance ecology, precision agricul-
ture, and other landscape-level sciences focused on 
ecological processes and the spatial configuration of 
resources (Carlile et  al. 1989). For example, spatial 
configuration of forage mass and quality influence 
landscape utilization and grazing pressure by cattle 
(Bos taurus) and bison (Bison; Kohl et al. 2013) and 
browse selection by moose (Alces; Balluffi-Fry et al. 
2020; Leroux et al. 2017). Further, spatial sampling is 
commonly used in agricultural fields to identify areas 
which may need alternative management strategies, 
such as increased nutrient inputs (Franzen 1995), 
or designate wildlife habitat and conservation areas 
(Burger 2019), which can result in economic and 
environmental improvements (Sun and Brus 2021). 
As such, a common objective of landscape-level stud-
ies is the creation of data layers or maps that accu-
rately portray the distribution forage biomass, nutri-
ent density, species distribution, habitat, soil quality 
or landscape condition (Turner and Gardner 2015).

Given that complete measurement of resources 
across the landscape is virtually impossible, the full 
landscape of resource availability is often approxi-
mated by sampling predetermined locations and per-
forming spatial interpolation to estimate resource 
values at unobserved locations (Li and Heap 2008). 
Accuracy and precision of estimated resource val-
ues generally depend upon: (1) the sampling strategy 
employed (Cobby et al. 1985); (2) number of samples 
collected (Tsutsumi et  al. 2007); (3) the degree of 
variability among samples across the landscape (Sun 
and Brus 2021); (4) the interpolation method used 

(Li and Heap 2008); and (5) the spatial scale under 
investigation (Wu 2004; Turner and Gardner 2015). 
These effects have been individually examined, often 
in detail. For example, ecologists have utilized grid-
ded, random, stratified random, and cyclic sampling 
strategies in hopes of identifying some optimum 
strategy that efficiently and accurately describes a 
landscape variable (Burrows et al. 2002; Turner and 
Gardner 2015). Additionally, the minimum number of 
samples required to accurately model the landscape 
must be considered given that sample collection is 
often labor and cost intensive (Burrows et  al. 2002; 
Tsutsumi et al. 2007; Turner and Gardner 2015). Spa-
tial heterogeneity is driven by underlying biotic and 
abiotic processes and their interactions. For instance, 
the heterogeneity of available forage can be driven 
by interactions between grazing patterns of herbivo-
rous animals, soil type, moisture availability and 
infiltration, slope gradient, plant species distribution, 
and soil microbe populations (Barthram et  al. 2005; 
Hirata et  al. 2012). Interpolation methods provide a 
means of creating a continuous surface from point 
processes; however, selection of the best method for 
a specific process and sample strategy is difficult (Li 
and Heap 2008). Finally, defining the appropriate 
spatial scale matched with the correct sampling strat-
egy and sample number is required to accurately and 
precisely model landscape resources (Wiens 1989; 
Fryxell et  al. 2008; Turner and Gardner 2015; Sun 
and Brus 2021).

Clearly there has been substantial attention to each 
of these components regarding spatial sampling; 
however, there is not yet a comprehensive demon-
stration of how these factors interact to determine 
the accuracy and precision of common interpolation 
strategies. In keeping with recent calls for critical 
utilization of currently existing metrics of landscape 
structure and scale (Turner and Gardner 2015), herein 
we use well-defined metrics with clear application 
to examine the relationship among sampling strat-
egy, sampling density, and landscape heterogeneity 
within the context of scale (Wu 2004). Particularly, 
we focus on systematic and random sampling strate-
gies because these are commonly used techniques 
for landscape sampling in agriculture and forestry 
(e.g., Burrows et  al. 2002; Jordan et  al. 2003; Clark 
et  al. 2008; Sun and Brus 2021). We generate mul-
tiple simulated landscapes representing a gradient of 
landscape heterogeneity and perform interpolation 



2745Landsc Ecol (2022) 37:2743–2756	

1 3
Vol.: (0123456789)

using 3 common geostatistical techniques (i.e., Near-
est Neighbor, Universal Kriging, Inverse Distance 
Weighting) to estimate continuous surfaces from 
derived samples (Li and Heap 2008). We then explic-
itly consider how landscape heterogeneity interacts 
with sample size and the interpolation method itself 
to determine the accuracy (i.e., a 1-to-1 relationship) 
and precision (i.e., goodness-of-fit; R2) between pre-
dicted and observed surfaces (Fig.  1). Finally, we 
repeat these procedures using in situ data to validate 
our findings from simulation with empirical data, and 
to evaluate interpolation accuracy as spatial resolu-
tion decreases.

Methods

Simulated landscapes

We simulated a series of landscapes, similar to, 
Matthiopoulos et al. (2015), using the bkde2D ker-
nel density function in the kernsmooth package 
in program R (Wand, 2021). Landscape dimen-
sions and average resource availability were held 
at 600 × 600 pixels and 50 units, respectively. 
Resources were distributed across the landscape 
around one resource epicenter and smoothed out-
ward according to unique bandwidths (analogous 
to the extent to which resources were spread) rang-
ing from 30 to 740. This created a landscape dataset 
of 300 unique landscape simulations with a broad 
representation of heterogeneity. Then, we meas-
ured landscape heterogeneity for each simulated 

landscape using rho (Tsutsumi et  al. 2007), with 
higher rho values indicating greater landscape simi-
larity and autocorrelation structure. Rho was calcu-
lated as the squared mean divided by the squared 
standard deviation of the landscape resource ( μ2∕σ2 ; 
Tsutsumi et al. 2007).

We created sampling densities ranging from 0.28 
to 2.8 samples per 10,000 pixels, which equate to 
10 to 100 locations increased in 1-step increments 
(range = 10 – 100 samples), resulting in 91 unique 
sampling densities. Sampling points were created via 
regular gridded and uniform spatial random sampling 
using the spsample function from R package sp (Hij-
mans et al. 2021). Gridded sampling points were set 
a specified distance apart at the intersection of evenly 
spaced gridlines laid across the landscape. For both 
gridded and random sampling strategies, and for each 
simulated landscape × sample number combination, 
we extracted resource values from simulated land-
scape surfaces at each sampling location and used 
extracted values to create predicted landscape sur-
faces using each of 3 interpolation methods. First, 
we used Universal Kriging by implementing the 
autokrige function within the automap R package 
(Hiemstra 2013; Gräler et al. 2016) to create a kriged 
surface. Next, we created an Inverse Distance Weight-
ing interpolated surface with the idw function availa-
ble within the gstat R package (Gräler et al. 2016). 
Finally, we created a Nearest Neighbor interpolated 
surface using Thiessen polygons and identifying 
the closest observed point from which to interpolate 
using the whichmin function (Brunson 2019; R Core 
Team 2021). Interpolated landscape surfaces cre-
ated from each combination of interpolation method, 
sampling strategy, and sampling density were then 
compared to their original simulated landscape using 
simple linear regression between the interpolated 
and true landscape surface with the lm function (R 
Core Team 2021). This is a common cross-validation 
technique whereby performance of a defined model 
(here, an interpolation method and sampling den-
sity) is evaluated based on 1-to-1 agreement between 
the predicted (interpolated) and observed (true) sur-
face (Harrell, 2001; Tedeschi 2006). Accuracy of the 
interpolation model is indicated when the intercept 
of the regression equals 0 and the slope equals 1, 
and precision when the R2 value approaches 1 (Har-
rell 2001; Tedeschi  2006). This provided a robust 
framework from which to make comparisons among 

Fig. 1   Conceptual representation of the expected precision 
(R2) due to sampling density (left) and an increase in landscape 
heterogeneity (right)
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interpolation method, sampling strategy, and sam-
pling density given decreasing levels of landscape 
heterogeneity.

To see whether methods performed similarly, we 
compared R2 values for each sampling strategy and 
interpolation method using Pearson Correlation Coef-
ficients calculated via the cor function and pairwise 
comparisons via the t.test function, in the base R 
package (R Core Team 2021). For Pearson Correla-
tion Coefficients we determine high correlation with 
a coefficient > 0.70 (Nettleton, 2014) and for t-tests, 
we adjusted significance for multiple comparisons 
using the Bonferroni correction given the number 
of comparisons (Ott & Longnecker 2016). We then 
examined the effect of landscape surface heteroge-
neity (rho), interpolation method (Inverse Distance 
Weighting, Nearest Neighbor, or Universal Kriging), 
sampling strategy (gridded or random), and sampling 
density (n) on accuracy and precision of interpolated 
landscape surfaces using generalized linear regres-
sion with the glm function (R Core Team 2021). We 
tested post-hoc mean differences using the emmeans 
function in the emmeans R package (Lenth et  al. 
2018). Effect comparisons were demonstrated using 
density and line plots with the geom_density and 
geom_line functions in the ggplot2 package 
(Wickham et al. 2019). Finally, we ran a series of beta 
regression models using the betareg R package 
(Cribari-Neto and Zeileis 2010) to evaluate the effect 

of landscape heterogeneity (rho), sampling strategy 
and density, and interpolation method on the preci-
sion (R2) value obtained from interpolated versus true 
surface cross validations (values fell between 0 and 1, 
range = 0.001–0.98). Given the large variation in raw 
values (Figure S1), we used beta regression model to 
create 3-dimensional plot using wireframe within the 
lattice R package (Sarkar 2008).

Application to in situ data from pastoral landscape

Following our simulation exercise, we applied the 
same approach to remotely sensed data collected 
from an experimental grazing facility in Starkville, 
Mississippi, USA (33 26′07 N 88 48′03 W; Fig. 2) in 
June 2019. The pasture was ~ 9.35 ha and consisted of 
a mixture of tall fescue (Festuca arundinacea), ber-
mudagrass (Cynodont dactylon), and annual ryegrass 
(Lolium multiflorum), which was inter-seeded across 
one-half of the pasture in fall 2018. Remotely sensed 
imagery was collected using a Red Edge MX hyper-
spectral camera (MicaSense®, Seattle, WA, USA) 
mounted on a Matrice 100 unmanned aerial system 
(DJI, Shenzhen, Guangdong, China). The camera 
collected reflectance in the green, blue, red, near-
infrared, and red-edge spectral bands at 8.5 cm reso-
lution from a flight altitude of 122  m above ground 
level with 80% overlap. After imagery was collected, 
individual pictures were mosaiced utilizing Pix 4D 

Fig. 2   The 307 forage 
sampling locations (equat-
ing to a sampling density 
of 32 samples/ha) used 
to collect forage samples 
during an 11-month grazing 
study in 2019 in a pasture in 
Starkville Mississippi, USA 
(inset)
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software (Pix 4D Inc. Prilly, Switzerland). Last, we 
calculated the normalized difference vegetation index 
(NDVI) at each pixel following standard procedure 
(Huete et al. 2002).

We conducted an identical analysis to that used in 
the simulated landscapes, increasing resolution from 
0.085 to 100 m at 1 m increments and measured accu-
racy and precision metrics (cross-validation model 
intercepts, slope, and R2) to observe the consequences 
of decreasing heterogeneity on the landscape (Wu 
2004). At each resolution, resampling was conducted 
at increasing rates of sample density, ranging from 
1 to 185 samples per hectare (equating to 0.003 to 
0.49 samples/10,000 pixels at a 0.085  m resolution 
and 26 to 261,515 samples/10,000 pixels at 100  m 
resolution) with a minimum of 9 and maximum 1726 
actual samples collected at each resolution. Sampling 
points were identified using gridded and random sam-
pling designs identical to the simulated procedures 
outlined above. Interpolation techniques, identical to 
those used for simulated landscapes, were applied to 
each combination of landscape resolution (i.e., het-
erogeneity measured with rho), interpolation method, 
sampling strategy, and sampling density, and then 
compared to the original landscape to measure inter-
polation accuracy and precision, resulting in 111,000 
interpolation attempts. All simulations and applica-
tions of simulation methods to in situ data were per-
formed in R version 3.6.3 (R Core Team 2021).

Results

Simulated landscapes

We depict the expected relationship of the predictive 
accuracy and precision for each interpolation method 
(Fig.  1) as landscape complexity decreases across 
simulated landscapes (Fig. 3). Across simulated land-
scapes, average values of rho were 98 and ranged 
from 0 (most heterogeneous) to 333 (least heterog-
enous; Figure S2). In total, 163,800 interpolations 
were attempted but 163,292 were successful because 
508 simulation attempts using original kriging failed 
to fit a variogram when using the grid sampling strat-
egy. This provided a robust dataset from which to 
make inference for each combination of interpola-
tion method, sampling strategy, sampling density, and 
landscape heterogeneity.

To evaluate the effect of interpolation method, 
sampling strategy, sampling density, and landscape 
heterogeneity on precision and accuracy of interpo-
lated surfaces, we conducted both Pearson correla-
tions, a generalized linear model, and paired t-tests. 
Pearson correlation tests between interpolated and 
true surfaces demonstrated substantial differences 
among combination of interpolation method and sam-
pling strategy for metrics of accuracy and precision 
(Table S1 –S6). For accuracy, correlation coefficients 
indicated that only Inverse Distance Weighting and 
Nearest Neighbor gridded sampling intercepts were 
similar (i.e., r ≥ 0.70, Table  S1), while there were 
no slopes across interpolation method and sampling 
strategies that were similar (Table S3). However, pair-
wise t-test demonstrated varying and significant dif-
ferences between both cross-validation intercepts and 
slopes across both interpolation method and sampling 
strategy (Table  S2 and S4), with Universal Kriging 
paired with random points showing the greatest diver-
gence in accuracy from all other methods. For pre-
cision (i.e., R2 values), 5 interpolation methods and 
sampling strategies performed similarly according to 
both correlation coefficients and paired differences 
(Table 1. Pearson correlations between linear model 
intercept values for 3 interpolation methods (Inverse 
Distance Weighting, Nearest Neighbor, or Universal 
Kriging) and 2 sampling strategies (gridded or ran-
dom points).S5 and S6).

Generalized linear regressions for accuracy 
(cross-validation intercept and slope) and precision 
(cross-validation R2) revealed that interpolation 
method combined with sampling strategy provided 
the largest effect on both the accuracy and preci-
sion of the interpolated landscape surface, (Fig. 4) 
compared to landscape heterogeneity (Fig.  5 and 
7). Universal Kriging paired with random sampling 
strategy over-predicted resource availability and 
provided the least accurate and precise interpola-
tion sampling strategy as demonstrated by a positive 
intercept greater than 0, slope less than 1 (Fig. 4 a, 
c), and the lowest R2 values (Fig.  4e). At greater 
sampling densities, Universal Kriging with random 
sampling intercepts were closer to 0, slopes were 
closer to 1, and precision increased, though values 
were always well below idealized values (Fig. 4b, d, 
f). Conversely, for both sampling strategies, Inverse 
Distance Weighting under-predicted resource avail-
ability, with cross-validation model intercepts and 
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slopes ranging from -10 to -40, and slopes 1.0 to 
1.8, respectively (Fig. 4 a, c). Intercepts and slopes 
for Inverse Distance Weighting did get closer to 0 
and 1, respectively, as sampling density increased 
although these changes were marginal (Fig. 4b, d). 
However, Inverse Distance Weighting predicted 
with similar precision as other interpolation meth-
ods and sampling strategies across sampling den-
sities other than random sampling with Universal 
Kriging (Fig.  4e, f). Both sampling strategies with 
Nearest Neighbor produced the most accurate pre-
dictions across all sampling densities (Fig.  4). All 
pairs of interpolation methods and sampling strate-
gies interacted in a positive manner with increasing 

sampling density and lower landscape heterogene-
ity demonstrated in Fig. 4 (panels b, d, and f). The 
positive interaction is most pronounced in Universal 
Kriging paired with random sampling, and Inverse 
Distance Weighting where both gridded and random 
sampling strategies demonstrated increased accu-
racy and precision (approached 0 and 1 for cross-
validation model intercept and slope, respectively) 
as sample density increased. In all instances, we 
see cross-validation model intercept, slope, and R2 
approach theoretical perfect agreement between 
interpolated and original landscape surfaces (0, 1, 
and 1 for cross-validation model intercept, slope, 
and R2, respectively).

Fig. 3   Examples of 
simulated landscapes, each 
containing the same volume 
of resources, but with vary-
ing gradients around the 
resource epicenter, resulting 
in heterogeneities ranging 
from 0 (most heterogene-
ous) to 300 (least heteroge-
neous)
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Finally, we focused on the effect of landscape 
heterogeneity and its interaction with interpolation 
method, sampling strategy, and sample density on 
interpolation precision (R2) using beta-regression 
model. Results from simulated landscapes indicated 
that all combinations of interpolation methods and 
sampling strategies had similar levels of precision 
(values between 0.8 and 1.0) except for Universal 
Kriging combined with random sampling strategy 
(Fig. 4 and 5). The greatest precision for these inter-
polation-sampling combinations occurred at low lev-
els of landscape heterogeneity regardless of sampling 

density and values beyond 10 approached a 1:1 rela-
tionship (Fig. 5). In contrast, Universal Kriging under 
a random sampling strategy yielded a convex relation-
ship with consistently low precision before increasing 
markedly as sampling density increased; landscape 
heterogeneity had no effect on precision (Fig. 5).

Application to in situ pastoral landscape

We decreased the resolution of the pasture (Figure 
S3) in 1-m increments from 0.085 to 100  m, which 
resulted in moderate levels of heterogeneity (rho = 34 

Fig. 4   Effects of inter-
polation method (Inverse 
Distance Weighting, Near-
est Neighbor, or Universal 
Kriging), sampling strategy 
(Gridded or Random) and 
sampling density (n) on the 
accuracy (cross-validation 
model intercepts and 
slopes) and precision (R2 
values) for simulated land-
scapes. Perfect accuracy 
of 0 and 1 for intercepts 
and slopes, respectively, 
and perfect precision of 1 
for R2 values are indicated 
by solid horizontal black 
lines. Density distributions 
of model a) intercepts, c) 
slopes, and e) R2 values, 
along with the change in 
b) intercepts, d) slopes and 
f) R2 as sampling density 
increases is provided
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Fig. 5   Precision (R2) of Inverse Distance Weighting, Nearest 
Neighbor, and Universal Kriging interpolation applied to simu-
lated landscapes at increasing sample densities and landscape 
heterogeneities (with 0 being more heterogeneous) using a sys-

tematic or random sampling strategy. Raw values are provided 
in Supplementary Fig.  3 and values for some heterogenei-
ties < 10 (given the rates of change at these values of rho) are 
provided in Supplementary Tables 4–9
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– 111) compared to simulated landscapes. Again, 
there were large deviations for intercepts, slopes, 
and R2 values for most interpolation methods and 
sampling techniques, although Nearest Neighbor 
under both sampling strategies and gridded Uni-
versal Kriging had distributions of values closest to 
idealized values (Fig. 6). Increased sampling density 
allowed the intercepts and slopes of these interpola-
tion-sampling combinations to get closer to 0 and 1, 
respectively, although Universal Kriging with grid-
ded sampling obtained the best precision (Fig.  6). 
Decreased landscape heterogeneity and increasing 

sample density were associated with increased preci-
sion from all interpolation techniques, although the 
level of precision was again highest for Universal 
Kriging with gridded sampling (Fig. 6 and 7). In this 
case, there was a greater effect of landscape hetero-
geneity on precision compared to sampling density 
(Fig.  7). Gridded sampling resulted in the highest 
accuracy values for Universal Kriging, and this per-
formance was matched in random sampling for Near-
est Neighbor and Inverse Distance Weighting (Fig. 6 
and 7). Decreasing landscape heterogeneity increased 
the accuracy and precision of both Inverse Distance 

Fig. 6   Effects of inter-
polation method (Inverse 
Distance Weighting, Near-
est Neighbor, or Universal 
Kriging), sampling strategy 
(Gridded or Random) 
and sampling density (n) 
on the accuracy (cross-
validation model intercepts 
and slopes) and precision 
(R2) values of interpolated 
landscapes applied to 
NDVI values collected via 
remote sensing, controlling 
for the effect of land-
scape heterogeneity (rho). 
Perfect accuracy of 0 and 
1 for intercepts and slopes, 
respectively, and perfect 
precision of 1 for R2 values 
are indicated by solid hori-
zontal black lines
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Fig. 7   Precision (R2) of Inverse Distance Weighting, Near-
est Neighbor, and Universal Kriging interpolation applied to 
NDVI values collected via remote sensing at increasing sample 

densities and decreasing landscape resolution to reduce hetero-
geneity (with 0 being more heterogeneous) using a gridded or 
random sampling strategy
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Weighting and Nearest Neighbor interpolation 
(Fig. 7). We observed qualitative agreement between 
our simulation analysis and our application to in situ 
pastoral landscapes except in the case of Universal 
Kriging with random sampling.

Discussion

Our objective was to evaluate the ability of different 
interpolation methods to produce accurate and precise 
representations of a known landscape under variable 
landscape heterogeneity, sampling strategies, sample 
densities, and spatial scales. Our simulations and use 
of in situ pastoral NDVI data showed that both accu-
racy and precision are strongly affected by the inter-
polation method and sampling density (Fig. 4 and 6), 
and that the choice of interpolation method, sampling 
strategy and sampling density interact with landscape 
heterogeneity to have substantial influence on the pre-
cision and accuracy of interpolated landscapes (Tsut-
sumi et al. 2007). Accuracy and precision are affected 
negatively by increased landscape heterogeneity, with 
decreased heterogeneity substantially improving the 
accuracy and precision of interpolated landscape 
surfaces. However, in the case of simulated data, the 
effect of landscape heterogeneity could be overcome 
by employing gridded sampling strategies, increasing 
sample density, and carefully selecting the interpola-
tion method (Fig.  5). In contrast, while careful con-
sideration of the interpolation method and sampling 
strategy also applied to NDVI data, there was a strong 
effect of landscape heterogeneity, which would likely 
not be overcome by sampling density across interpo-
lation methods (Fig.  7). For both datasets, trends in 
sampling density and heterogeneity indicate there are 
threshold levels of sampling given the heterogeneity 
encountered (Fig. 5 and 7).

We demonstrated that random sampling strategies, 
especially when paired with the Universal Kriging 
method for interpolation, provides the least accurate 
and precise interpolated surface. This is surprising 
given it has been shown in other landscape simula-
tions that random sampling is superior for estimat-
ing forage biomass on the landscape (Tsutsumi et al. 
2007) and better captures the necessary lag distance 
within a pine wood stands (Burrows et  al. 2002). 
As such, it is suggested that a systematic approach 
to landscape sampling better captures landscape 

structure than does a random sampling strategy. 
While there has been use of other sampling strategies 
including transect sampling, stratified random sam-
pling, and cyclic sampling (Sun and Brus 2021), tran-
sect and stratified random sampling combine methods 
inherent to both grid and completely random strate-
gies, and likely would have similar results to the ones 
obtained in this study. In contrast, cyclic sampling 
strategies attempts to match the sampling distance to 
the expected spatial autocorrelation pattern across the 
landscape and reduce the number of redundant points 
sampled; however, implementation requires prior 
knowledge of the landscape to inform the expected 
autocorrelation of landscape structure (Sun and Brus 
2021), which cannot be easily obtained. Further strat-
egies should be explored if they are believed to be of 
value in improving interpolations.

In addition to demonstrating the importance of 
selecting the appropriate sampling strategy, we also 
showed variation in accuracy, but not necessarily 
precision, across interpolation methods (Fig.  4 and 
6, Tables S1 – S6). We note that while pairwise dif-
ferences between accuracy and precision varied 
between combinations of interpolation methods and 
sampling strategy were statistically significant, we 
would expect these results given the high  n  used in 
comparisons and thus caution should be used when 
interpreting those results. This is consistent with 
other studies where it has been shown that Nearest 
Neighbor and Universal Kriging can have a greater 
ability to capture landscape heterogeneity, particu-
larly at lower sampling densities within more heter-
ogenous landscapes compared to other interpolation 
methods (Coelho et  al. 2008). Our use of random 
sampling with no prior attention given to matching 
sampling point distance to an expected variogram 
inhibited Universal Kriging as we failed to capture 
the appropriate lag distance. Under these conditions, 
we would recommend a systematic sampling strategy, 
such as gridded, paired with Universal Kriging if the 
sample point distance captured the appropriate lag as 
demonstrated by the variogram.

There were increases in accuracy and preci-
sion with increasing sample density, but this effect 
was dependent on the interpolation method (Fig.  4 
and 6). While it is known that sampling density can 
increase precision (Tsutsumi et al. 2000; Jordan et al. 
2003), this relationship is often described as asymp-
totic, which assumes that ever increasing numbers 
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of samples will continue to push accuracy and preci-
sion ever closer to a 1:1 match at some diminishing 
rate. In our case, sampling never achieved a perfect 
asymptote, which is most likely due to the low sam-
pling densities explored within our simulations given 
the size of the simulated landscape. A moderate sam-
pling strategy is typically sufficient to accurately cre-
ate interpolated maps of forage quality (Jordan et al. 
2003), and simulation exercises within grasslands of 
varying levels of heterogeneity demonstrated a simi-
lar phenomenon (Tsutsumi et al. 2007).

Like sample density, we observed a positive rela-
tionship between precision and landscape heteroge-
neity for most sampling strategies and interpolation 
methods. This is in line with our predictions, given 
that as the landscapes became more heterogenous, the 
distance over which self-similarity occurs increases; 
therefore, decreasing the total variability within the 
landscape while increasing the number of samples 
required to detect small or spatially isolated differ-
ences. These relationships were further emphasized 
when we applied the same techniques to in situ pas-
toral data where we observed a decrease in the rate 
of return as heterogeneity diminished (Fig. 7). While 
adequately measuring heterogeneity can be a com-
plex endeavor in both cases, it is worthy of increased 
attention given its influence on precision.

We demonstrated the influence of sampling strat-
egy on accuracy and precision estimates across sam-
pling densities and heterogeneities in our simula-
tions (Fig. 4 and 5). As the resolution decreased, the 
measured heterogeneity of the NDVI landscape also 
decreased, which indicates a loss of information (Sup-
plementary Figure S3). Indeed, decreased resolution 
caused dominant values on the landscape to become 
more predominant with continued aggregation 
(Turner et  al. 1989), effectively causing a reduction 
in the total observed plant productivity. This effect 
is driven by how dispersed the variation is across the 
landscape (Turner et al. 1989). Clearly, changing the 
resolution has dramatic impacts on the information 
available at that scale (Turner et al. 1989), and should 
be carefully considered with respect to meeting the 
needs and objectives of the analysis (Reynolds et al. 
2016).

Our results indicate that it is important to care-
fully consider interpolation method, sampling den-
sity, sampling strategy, and landscape heterogeneity 
and understand how heterogeneity is influenced by 

landscape-level processes to construct a useful sam-
pling design. While we showed that capturing land-
scape-level heterogeneity can occur irrespective of 
most sampling regimes and interpolation methods, 
exploring how sampling density and heterogeneity 
perform under other sampling regimes may be useful. 
Further, it is also expected that relationships between 
sampling density and heterogeneity may change with 
different landscape metrics. This was demonstrated 
in the wide variation of samples required to predict 
within crop variation in nitrogen, phosphorous, potas-
sium, and sulfur (Jordan et  al. 2003). Thus, spatial 
sampling should be structured to capture the most 
heterogenous variable of interest to ensure adequate 
sampling of all variables. Finally, while we look at 
the spatial relationships among interpolation method, 
sampling density and strategy, and landscape het-
erogeneity, it is likely that these relationships also 
change temporally. Indeed, we examined these rela-
tionships at the height of the growing season, a time 
when factors affecting landscape heterogeneity, such 
as resource restriction and grazing pressure, are likely 
less influential (Cid and Brizuela 1998). We would 
also expect sampling requirements to vary based on 
plant phenology and abiotic factors such as rainfall. 
For example, the sample number required to pre-
cisely measure silage production and plant nutrient 
values varies between cuttings over the summer and 
by metric of nutrient density (Jordan et al. 2003). As 
a result, more work on temporal changes in resource 
distribution is needed to precisely and accurately pre-
dict the level of heterogeneity expected within a given 
landscape; such an investigation is likely critical to 
target areas of rapid change.

Conclusion

Landscape ecology requires mapping resource distri-
bution across the landscape. Thus, a thorough under-
standing of spatial relationships allows for selection 
of the appropriate sampling structure and interpola-
tion method to arrive at accurate and meaningful 
results (Reynolds et al. 2016), though landscape het-
erogeneity may be an underlying driver of mapping 
accuracy for in situ pastoral data. The current body of 
knowledge offers less than desired guidance for selec-
tion between methods. This and future work should 
lay foundations for a structured decision-making 
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process which will allow researchers and managers to 
clearly identify sampling strategies and interpolation 
prediction methods to meet their specific objectives in 
a resource efficient manner.
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