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underestimated denitrification (81.9% less) but over-
estimated  NH4

+ efflux and organic matter degrada-
tion (2594.1 and 14,879.9% more). Kriging produced 
more accurate results and the predicted functions only 
differed from the estimated values by 14.7, 29.4 and 
3.9% respectively.
Conclusions Our work shows that the choice of the 
scaling method is crucial in estimating intertidal soft 
sediment functions and highlights the need for empir-
ical and theoretical models that link ecosystem func-
tioning to biological attributes that can be measured 
remotely over large areas. Integrating measures of 
heterogeneity through the spatial structure of the data 
leads to outcomes that are more realistic and relevant 
to resource management.

Keywords Intertidal landscapes · Scaling · 
Ecosystem functions · Heterogeneity · Benthic fluxes

Introduction

Estuarine and coastal ecosystems provide a variety 
of important benefits over temporal and spatial scales 
relevant to humanity but are also some of the most 
heavily used and threatened natural systems globally 
(Lotze et al. 2006; Halpern et al. 2008; Barbier et al. 
2011). However, predicting the effects of broad scale 
anthropogenic impacts on ecosystem functions typi-
cally measured in seafloor ecosystems at small scales 
is hindered by the need to address scale-up processes 

Abstract 
Context Heterogeneity in coastal soft sediments 
and the difficulty of data collection hinder our abil-
ity to scale up ecological data (necessarily obtained 
at small-scale) to large-scale. The use of scaling in 
marine ecology is not as common as in terrestrial 
ecology and current practices are often too simplistic 
and inadequate.
Objectives We aimed to demonstrate that the use 
of different scaling approaches leads to considerably 
different results and that not accounting for ecologi-
cal heterogeneity decreases our ability to accurately 
extrapolate measurements of ecosystem functions 
performed by intertidal soft sediment habitats.
Methods High resolution raster maps of sediment 
denitrification, ammonia  (NH4

+) efflux and organic 
matter degradation were sampled to produce a simu-
lated dataset and compare the performance of three 
different scaling approaches: direct scaling, spatial 
allometry and semivariogram/kriging.
Results Direct scaling underestimated denitrifi-
cation,  NH4

+ efflux and organic matter degrada-
tion (84.1, 84.9 and 90.3% less) while allometry 
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(Hewitt et al. 2007). Our knowledge of the function-
ing of marine seafloor ecosystems, in fact, mainly 
derives from small-scale laboratory and field studies 
(Gammal et  al. 2019). Extrapolating the results of 
these experiments is critical to addressing issues most 
relevant to society but this is not a trivial task (Levin 
1992; Dixon Hamil et  al. 2016). Moreover, environ-
mental heterogeneity is known to increase with scale, 
making extrapolations that do not incorporate het-
erogeneity prone to inaccuracy (Thrush et al. 1997b; 
Peterson 2000; Hewitt et  al. 2007; Snelgrove et  al. 
2014; Lohrer et al. 2015).

Scaling is defined as the process of translating 
information between or across spatial and temporal 
scales or organizational levels (Wu 1999). Although 
the importance of scaling in ecology has been rec-
ognized in recent decades, how to conduct scaling 
across heterogeneous ecosystems remains a challeng-
ing question (Wu et al. 2006; Chave 2013). In marine 
environments, the high heterogeneity and the lack of 
high-resolution data due to the challenges related to 
extensively sample marine ecosystems further com-
plicate this process (Snelgrove et al. 2014; Townsend 
et  al. 2014). However, to successfully manage these 
ecosystems scientists need to find ways to map them 
and upscale discrete measurements despite the lim-
ited data and uncertainty. One of the simplest ways to 
transfer information between two scales is to assume 
that the broader-scale system behaves like the average 
value of the finer-scale system. In this case, scaling 
is obtained simply by multiplying the sample–scale 
average with the total study area. This process is 
often referred to as “lumping” or “direct scaling” and 
assumes that the relationship describing the system 
is linear (King 1991; Miller et al. 2004). As a conse-
quence of the oversimplifying assumptions however, 
this simple upscaling procedure could produce large 
scaling errors (Englund and Cooper 2003).

Allometric scaling is one of the most common 
approaches found in scaling literature (Brown et  al. 
2000, 2004; West et  al. 2003; Kerkhoff and Enquist 
2007; Rodil et  al. 2020; Fang et  al. 2021). Allome-
try is based on the underlying concept of incomplete 
similarity or fractality, which implies that the funda-
mental features of a system exhibit an invariant, hier-
archical organization that holds over a wide range of 
spatial scales (Barenblatt 1996; Li 2000; Brown et al. 
2002). One of the main advantages of this approach 
is that it is characterized by relatively simple 

mathematical or statistical scaling functions, gener-
ally in the form of a power law (Brown et al. 2002). 
Nevertheless, the underlying ecological processes 
may be complex. Although most of the allometric 
equations do not directly address the problem of spa-
tial scaling, space can be incorporated into a scaling 
relationship through, for example, population density 
or home range (Wu et al. 2006). In particular, allom-
etry as a general method can be applied to spatial 
scaling when the independent variable is spatial scale 
instead of body mass (“spatial allometry”; Schneider 
2001). While the benefit of using allometric scaling 
is recognized for a variety of fields, from physiology 
to economics, these simple power law may not be 
adequate to describe the upscaling of ecosystem func-
tions (Brock 1999; Marquet et  al. 2005). However, 
some examples exist of how allometric laws can be 
used to upscale, from individual to population level, 
the effect of sediment dwelling animals on particle 
and solute movement that play an important role in 
many sedimentary ecosystem functions (Fang et  al. 
2021). Nonetheless, in seafloor landscapes heteroge-
neity and non-linear processes can be hard to measure 
and incorporate in scaling process (Snelgrove et  al. 
2014).

Most ecological data are inherently composed of 
several levels of spatial structure: large-scale trends 
(e.g., species responses to climate conditions, migra-
tions), multi scale patterns or patchiness (e.g., physi-
cal conditions, dispersal mechanisms, facilitation), 
and error (Klopatek and Gardner 2001). Structure 
functions attempt to describe spatial structures in 
the data and allow us to quantify spatial dependence 
and partition it amongst distance classes (Legendre 
and Legendre 2012). For example, previous work has 
demonstrated the feasibility of variograms to quantify 
spatial heterogeneity and explore spatial patterns and 
describe phenomenon as a function of space (Garri-
gues et  al. 2006; Lausch et  al. 2013). Successively, 
geostatistical techniques, such as kriging, that employ 
knowledge of the spatial covariance (as contained in 
the variogram) can then be used to produce a spa-
tial model (Klopatek and Gardner 2001; Christianen 
et al. 2017; Zhou et al. 2017). To be able to accurately 
describe these spatial structures and incorporate as 
much heterogeneity as possible, a high amount of 
data is usually necessary. Such high-resolution infor-
mation on the spatial arrangement of the data, pro-
vides information about patterns at different scales 
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(Fortin and Dale 2005). While spatial analysis deals 
with the problems associated with spatial heteroge-
neity, synergistic effects arising from the interaction 
between species with different functionalities are also 
likely to confound the upscaling of ecological pro-
cesses (Schenone and Thrush 2020).

Another complication posed to scaling in seafloor 
ecosystems involves the difficulty of extensively and 
intensively sampling marine environments and the 
consequent scarcity of data (Townsend et  al. 2014). 
To accurately describe the relationship of a variable 
to changes in scale in these complex systems often 
requires more data than it is practical to obtain with 
traditional sampling (Strong and Elliott 2017). This 
has important consequences for marine ecosystem 
assessments compared to their terrestrial counterpart. 
Seafloor habitats in fact are often classified based on 
easily measured physical characteristics (e.g., depth, 
sediment grain size), thus overlooking much of the 
heterogeneity and diversity at scales relevant for the 
functionality of these systems (Lavorel et  al. 2017). 
This has profound implications for management 
applications. Maps are critical for ecological stud-
ies and environmental management and it is com-
mon practice to estimate the delivery of ecosystem 
services based on coarse grained habitat maps and 
the use of scoring factors or average literature values 
for each habitat rather than using spatially explicit 
data (Thrush et  al. 1997a, b; Hewitt et  al. 2007). In 
our study, we addressed the issue of whether vari-
ous upscaling methods commonly used in metabolic, 
ecophysiological and other ecological relationships 
are suitable to upscale species–ecosystem function 
relationships in heterogeneous marine landscapes, 
where the data available is usually limited (Table 1). 
We used high–resolution maps of ecosystem func-
tions to simulate a new dataset and compare the use 
of different scaling approaches (direct scaling, allo-
metric scaling, variogram/kriging). The use of simu-
lated data to test different sampling or modelling 
methods is common in landscape ecology due to the 

impossibility to know the ‘true’ value of ecosystem 
functions and properties at large scale (Zurell et  al. 
2010). In particular, semi-virtual studies based on 
high-quality data are useful because they contain, and 
can hence depict, the ‘true’ pattern of interest (Hir-
zel and Guisan 2002; Albert et  al. 2010). We com-
pared approaches that account for no or low spatial 
heterogeneity—often used in marine systems due to 
data scarcity—and others that account for more het-
erogeneity. While high-resolution maps can be used 
to estimate ecosystem functions at scale, the abil-
ity to identify scaling relationships is crucial to esti-
mate ecosystem functions and services across land-
scapes that cannot otherwise be extensively mapped 
(Thompson et  al. 2017). The performance of each 
approach in predicting ecosystem functioning at scale 
was compared to estimated values calculated from the 
ecosystem function maps produced in Schenone et al. 
(2021). Current landscape ecology literature recog-
nises the importance of accounting for heterogeneity 
when variables are non-normally distributed in space 
(Franklin 2005; Lecours et  al. 2015; Gonzalez et  al. 
2020). However, partly due to the aforementioned 
challenges faced in marine habitats, current practices 
in seafloor ecology are clearly obsolete and lacking 
behind terrestrial ecology and studies that address 
this known but ignored issue are needed. In our study, 
we investigated highly heterogeneous coastal biotur-
bated landscapes and hypothesized that traditional 
scaling approaches, that fail to take into account the 
effect of heterogeneity and the functional interactions 
between different organisms, would produce a poor 
representation of broad-scale ecosystem functioning.

Methods

Study design

For this study, we used data from a 2018 mensurative 
experiment that we carried out in the Whangateau 

Table 1  Characteristics of the scaling methods used in this study

Approach Complexity Data intensity Underpinning theory Scaling function

Direct scaling Very low Low Geometric similarity Linear
Spatial allometry Low Low Incomplete self-similarity/fractality Power law
Variogram/kriging High High Autocorrelation/covariance Variable
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Estuary (New Zealand) to quantify the relationships 
between multiple ecosystem functions and the density 
of two key species: Macomona liliana (Iredale, 1915) 
and Macroclymenella stewartensis (Augener, 1926). 
Both M. liliana (tellinid bivalve) and M. stewartensis 
(maldanid polychaete) are ecosystem engineers that 
alter the sediment and its biogeochemical properties 
and differentially influence various sedimentary rates 
and processes (Schenone et  al. 2019); details of the 
sites and the sampling design are presented in (Sche-
none and Thrush 2020). Briefly, to measure fluxes, 
we deployed opaque benthic incubation chambers and 
rapid organic matter assay (ROMA, O’Meara et  al. 
2018) plates. Concurrently, we sampled the sediment 
characteristics and macrofaunal community, as well 
as M. liliana and M. stewartensis surface features at 
each station. Surface features generated by M. liliana 
(feeding tracks) and M. stewartensis (faecal mounds) 
are a reliable proxy of their density and in fact 
explain more variance in ecosystem functioning than 
their density (Schenone and Thrush 2020). Finally, 
we combined ecosystem functioning models that 
explained the relationship between field measured 
biogeochemical fluxes and the density of key spe-
cies features, with a drone survey of the distribution 
of those species in the estuary to map the delivery of 
ecosystem functions at a 1 × 1  m resolution (Sche-
none et  al. 2021). Maps of the distribution of each 
species were obtained by counting surface features in 
the drone images through a dedicated neural network 
and successively interpolating the data through krig-
ing. These layers were then combined using the mod-
elled relationships to produce ecosystem functions 
maps. In the present study, we sampled these high-
resolution raster datasets as described below to build 
the different scaling relationships. For each scaling 
approach the same rasters were sampled but with dif-
ferent sampling strategies to better suit the approach.

Study location

Whangateau Harbour is a sandspit-barrier estuary 
located on the east coast of the North Island of New 
Zealand. Considered to be one of the most valued 
estuaries within the Auckland region, it is made up of 
a unique mix of high-value, high-quality habitats con-
tained within a relatively small harbour (~ 7.5  km2), 
with approximately 85.4% of this area being inter-
tidal (Kelly 2009). These extensive intertidal flats are 

predominantly composed of medium to coarse grain 
sand with a relatively low percentage of mud (< 6%). 
Both our target species are abundant in Whangateau 
and dominate vast patches of the landscape as well as 
transitional areas where their distributions overlap. A 
map of the habitats of Whangateau was first devel-
oped in 2000 and successively updated in 2010 (Har-
till et  al. 2000; Townsend et  al. 2010). These maps 
show that our study area is entirely covered by sand-
flat habitat and all of it has been characterized simply 
as “sand” habitat (Fig. 1).

Scaling

We used a semi-virtual simulation study to illustrate 
the consequences of the choice of the scaling method 
on the estimation of ecosystem services. Knowledge 
of the true levels of ecosystem functions at scales 
relevant to management and to society is impossible. 
Therefore, to test our hypothesis, first we estimated 
the total value of different ecosystem functions across 
the study area from the raster maps described above 
and presented in Schenone et al. (2021). These values 
were used as a surrogate of reality and used as our 
true values. Then, we compared the performance of 
different scaling approaches and assessed their results 
against these estimates of ecosystem functions. The 
results were expressed as the difference between these 
estimates and the scaled values for each approach. 
We considered the rates of three ecosystem functions: 
denitrification (expressed as the release of  N2 from 
the sediment), ammonia  (NH4

+) efflux and organic 
matter degradation at the sediment surface  (Co). 
These functions are the result of important biogeo-
chemical sedimentary processes and underpin crucial 
supporting and regulating ecosystem services, such as 
the cycling of nutrients and organic matter (Huettel 
et al. 2014).

Direct scaling

To upscale and calculate the delivery of each eco-
system function across the mapped area we first 
sampled the ecosystem function rasters simulat-
ing ten transects with three sampling points per 
transect (Fig.  2). From these 30 sampling points, 
we calculated the mean value of each func-
tion and then multiplied it by the extent of the 
study (1,695,158  m2). This approach is consistent 
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with traditional approaches that to quantify the 
total ecosystem services would use the available 

habitat characterization and assume that the whole 
sampling area is of one habitat class—sandflat 

Fig. 1  Habitat map of the Whangateau estuary (modified from Townsend et al. 2010). The black contours highlight our study area
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habitat (Fig.  1)—and that the services are consist-
ent throughout that class. Then, to produce a more 
accurate calculation and increase the performance 
of the scaling by accounting for some heterogeneity, 
the data was divided into 4 subunits. The subunits 
differed in area but were defined based on geomor-
phological and environmental characteristics. The 
subunit mean value of each function was multiplied 
by the area of the subunit and the total upscaled 
value for the study area was calculated by the sum 
of the four subunit values.

Allometric scaling

We tested the presence of fractal-like relationships in 
the form of the power law equation:

Y = Y
0
A
b

where Y  is the ecosystem function of interest, Y
0
 is 

a scaling constant equal to the plot average value of 
the function, A is space in  m2, and b is the scaling 
exponent.

We sampled the raster data from the ecosystem 
function maps and calculated fluxes across ten areas 
of different size that shared the same centroid. These 
areas were squares of 1  m2, 625  m2, 2500  m2, 5625 
 m2, 10,000  m2, 15,625  m2, 22,500  m2, 30,625  m2, 
40,000  m2 and 50,625  m2 respectively. Four centroids 
were haphazardly chosen to develop four replicates of 
the scaling process. The average values from the four 
replicates for each surface size were plotted against 
the surface area to check for the presence of disjunc-
tions that could indicate multi-fractality. The allomet-
ric model was then fitted to the data using a linear 
model and was evaluated graphically and by means of 
the  r2 value. Finally, using the scaling exponent calcu-
lated from the model, we estimated the value of each 

Fig. 2  Conceptual design of the study. The top panels present 
the drone derived maps of ecosystem functions, specifically A 
denitrification in µmol  N2  m−2   h−1, B efflux of  NH4

+ in µmol 
 NH4

+  m−2   h−1, C organic matter degradation at the sediment 
surface in g C  m−2   day−1— modified from Schenone et  al. 
(2021); D for direct scaling, 30 locations were samples along 

10 transects and successively the study area was divided in 4 
subunits, showed respectively in green, red, blue and yellow; 
E for allometric scaling, squared polygons of increasing area 
and with the same centroid were used to calculated ecosystem 
functions at different scales; F for kriging, a grid of 50 evenly 
distributed locations were sampled
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function across the study area from the average 1  m2 
value using the equation above.

Variogram/kriging

To understand whether the use of information about 
the spatial structure of ecosystem functions would 
help improving their upscaling and accuracy and pre-
diction, we used a systematic sampling design and 
calculated functions in 50 evenly distributed points 
on the maps. First, we checked for the presence of 
global trends and anisotropy in the data. Then, for 
each function we calculated the empirical semivari-
ogram. Finally, we used anisotropic kriging to inter-
polate and extrapolate the data to the study area and 
create new raster maps of each function. These krig-
ing results were used to extract and calculate the up-
scaled values of the functions across the entire study 
area.

The geostatistical processing was performed using 
ArcMap 10.7.1 software (ESRI 2019) and its Geo-
statistical Wizard and Geostatistical Analyst tools. 
All other statistical analyses were performed with R 
v3.6.1 (R Core Team 2013).

Results

Direct scaling underestimated the delivery of all 
ecosystem functions and allometry underestimated 
denitrification but overestimated ammonium  (NH4

+) 
efflux and organic matter degradation (Table  2). 
Direct scaling predicted 84.1% less denitrification 
than the estimated value, 84.9% less  NH4

+ efflux and 
90.3% less organic matter degradation  (Co) across 
the sandflat habitat. Dividing the habitat into 4 sites 
and calculating the sum of the predicted value for 

each site provided a slightly better estimate of func-
tions but still underestimated the functional contribu-
tion of the sandflat (75.2% less denitrification, 69.7% 
times less  NH4

+ efflux and 82.5% less organic matter 
degradation).

Allometric scaling performed better than direct 
scaling in estimating denitrification. The calculated 
denitrification was in fact 81.9% lower than the esti-
mated value. However,  NH4

+ efflux was 2594.1% 
higher and  Co was 14,879.9% higher. No multi-frac-
tality was observed and all 3 functions showed very 
similar scaling exponents, respectively 1.18, 1.35 and 
1.2.

The use of kriging provided a quantification of 
functions that was much closer to the estimated val-
ues. This method was able to detect and account for 
anisotropy in the data and the predicted functions 
only differed from the estimated values by 14.7, 29.4 
and 3.9% for denitrification,  NH4

+ efflux and  Co 
respectively.

Discussion

Using a semi-virtual dataset based on extensive, 
high–resolution data on the spatial distribution and 
delivery of ecosystem functions, we were able to 
compare the performance of different scaling meth-
ods in predicting denitrification,  NH4

+ efflux and 
organic matter degradation. In marine ecosystems, 
the difficulty of large-scale but intensive sampling 
and the consequent scarcity of spatially explicit data 
often translates into simple upscaling approaches that 
overlook the role of heterogeneity. Our results show 
that scaling performance is sensitive to the approach 
chosen and that methods that do not account for spa-
tial heterogeneity lead to differences in the estimates 

Table 2  Summary of the results of the different scaling methods and comparison with the values calculated from the map of func-
tions in Schenone et al. (2021)

Functions are calculated for an area of 169.5 ha

Approach N2 (kg  h−1) NH4
+ (kg  h−1) Co (tonnes  h−1)

Direct scaling 2.07 0.18 7.51
Direct scaling with 4 sites 3.23 0.36 13.5
Spatial allometry 2.36 32.06 11,567.5
Variogram/kriging 14.94 1.54 80.26
Mapped estimate 13.02 1.19 77.22
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of functions of an order of magnitude compared 
to those that account for it. Direct scaling showed 
very poor performance and underestimated all func-
tions by more than 84%. Spatial allometry underes-
timated denitrification in a similar measure (81.9%) 
but grossly overestimated  NH4

+ efflux (2594.1%) and 
organic matter degradation (14,879.9%). The use of 
kriging instead led to predictions that varied less than 
30% from the estimated values.

Direct scaling, one of the simplest scaling meth-
ods, merely consists in the multiplication of the plot-
scale average with the total study area (King 1991; 
Miller et al. 2004). By doing so, it assumes that the 
relationships describing the system are linear and 
it can lead to considerable bias, because it does not 
account for additional variability and ignores nonlin-
ear changes that often occurs with changes in scale 
(Rastetter et  al. 1992; Turner and Gardner 2015). 
Despite the acknowledgment of its flaws, in ecosys-
tem services assessment of seafloor ecosystems direct 
scaling is still often used because of our limited abil-
ity to sample and detect heterogeneity, which leads 
their oversimplified characterization (Lavorel et  al. 
2017). To improve the prediction and incorporate 
some measure of heterogeneity it is possible to divide 
the study area into a tractable number of discrete ele-
ments based on some characteristics, for example 
land use or different habit type (Turner and Gardner 
2015). However, when we applied this concept to 
our study, the predictions only improved by 8–15%. 
Given the dependence of the performance of direct 
scaling on the number of sites chosen, one could 
expect a relationship between sampling effort and 
gain in performance to grow asymptotically to a level 
where an increase in sampling effort doesn’t produce 
appreciable results on the performance of the scaling.

Sampling the three functions at different scales 
showed the emergence of allometric relationships, 
with similar scaling exponents of 1.18, 1.35 and 1.2 
for respectively denitrification, ammonium efflux 
and organic matter degradation, suggesting a com-
mon pattern in the relationship between ecosystem 
functioning and scale. Allometric scaling still fails 
to accurately predict functioning at larger scales and 
results in underestimated denitrification and overesti-
mated ammonium efflux and organic matter degrada-
tion compared to our estimates. However, the fluxes 
measured across polygons of increasing area showed 
a clear allometric growth and the fitted models always 

had  r2 > 0.9. This may indicate the presence of multi-
fractality at scales bigger than those measured. For 
several decades allometry has focused primarily on 
the body size (or mass) of organisms as the funda-
mental variable (e.g. Taylor et al. 1982; Calder 1983; 
McMahon et  al. 1983; Schmidt-Nielsen 1984). In 
biology, allometric studies have successfully scaled 
up metabolic and physiological relationships (e.g. 
Labarbera 1989; Brown et  al. 2000; Schmid et  al. 
2000). However, the effect of scale on ecosystem 
functions is still poorly understood and to the authors’ 
best knowledge, fractal theory in marine biodiver-
sity–ecosystem functioning research has only been 
applied using species body size, biomass or density 
(Belgrano et  al. 2002; Beaugrand et  al. 2010; Fang 
et  al. 2021). The reason why the estimates of func-
tions from allometric scaling still differ from the 
actual estimates can be sought in the lack of meas-
ures of heterogeneity and in the oversimplification of 
the scaling relationship. This approach, in fact, aims 
to describe the complex nature of these habitats with 
a rather simple mathematical function. Although 
this simplification represents one of the limits of the 
method, it is also its major appeal due to the need 
to find easy ways to describe complex phenomena, 
which would otherwise be impossible to describe 
when the data is scarce. Similarly to direct scaling, 
increasing the number of discrete sites to account 
for more heterogeneity would likely produce better 
results but increase the sampling effort.

The approach that led to the most accurate esti-
mates of ecosystem functions was the investigation of 
spatial structures through variograms/kriging. Spatial 
statistics have a long history in the context of extrapo-
lation (Miller et al. 2004), but they have been rarely 
applied to mapping seafloor ecosystem functions or 
the underpinning biophysical interactions rather than 
simple physical sediment characteristics (Wei et  al. 
2010; Jerosch 2013; Gaida et al. 2019). Probably one 
of the most commonly used methods in this context, 
kriging relies on autocorrelation functions to gener-
ate spatially explicit predictions (Webster and Oliver 
2001). The raster dataset sampled to perform our 
analysis had a modelling component, which could 
lead to concern for circularity in our analysis. How-
ever, kriging was used to produce raster layers of the 
distribution of species biogenic features, which were 
then combined following empirically derived rela-
tionships between surface features and ecosystem 
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functions to produce the ecosystem function maps 
(Schenone et  al. 2021). Therefore, the semivario-
grams and kriging functions used to upscale ecosys-
tem functioning in this study are very different from 
those used to produce the species distribution layers 
in the original dataset [see Fig. S1 in Supplementary 
Information, and the Supplementary Information pro-
vided in Schenone et al. (2021)]. Moreover, while for 
some functions kriging clearly outperforms the other 
scaling approaches, for other functions the difference 
is not as marked, supporting the absence of circular-
ity. Although it produced results that quite accurately 
reproduced the estimated values, this process requires 
a larger amount of data compared to the other meth-
ods. A good estimation of the parameters of the vari-
ogram, in fact, is crucial for the subsequent kriging 
steps (Fortin 1999). Therefore, estimating functions 
at the landscape scale would typically require that at 
least ~ 50 sites are sampled (Fortin and Dale 2005). 
This number could be a realistic compromise between 
sampling effort and good model performance from 
a statistical perspective but still represents massive 
practical problems for many seafloor ecosystem func-
tion variables. A larger sample size—often not pos-
sible in marine ecosystems—would result in better 
predictions, while a smaller sample would decrease 
the performance. Choosing the correct sample size 
is therefore a trade-off between practicality and accu-
racy. However, when prior knowledge on the study 
area is available or can be easily obtained (through 
remote sensing for example), it can be used to tailor 
the sampling design.

Our findings support the importance and urgency 
for marine ecosystem management and spatial plan-
ning to move towards practices that recognize and 
account for the role of ecological variability (Zajac 
1999; Zeppilli et al. 2016). Accurate estimates of eco-
system services are in fact critical for their sustain-
able management and for humans to perceive their 
value (MEA 2005; Granek et al. 2010). Soft sediment 
habitats are often considered to be homogeneous but 
are in fact are highly complex ecosystems and contain 
strong physical gradients that affect the distribution 
of species and functional performance (Hewitt et  al. 
2005). This results in the patchy spatial distributions 
of communities and ecosystem functions across mul-
tiple spatial scales (Yang et  al. 2015; Thrush et  al. 
2017). Such patchiness is often not as apparent as 
in other ecosystems where above ground structures 

define patches (e.g. terrestrial and marine forests; 
Turner et al. 2001; Clark et al. 2004). Moreover, eco-
system functioning is driven by the biological activ-
ity of species and by their interactions (Wohlgemuth 
et  al. 2017; Schenone et  al. 2019). As supported by 
our results, if we fail to sample the spatial heterogene-
ity of these systems and to include its role and that of 
the underlying biodiversity in the scaling process, we 
risk miscalculating the results of important ecologi-
cal processes that support critical ecosystem services 
(Kolasa and Pickett 1991).

Scaling and mapping ecosystem functions can 
allow the quantification of the ecosystem services 
they underpin. The choice of the scaling method 
therefore can deeply influence the assessment of their 
ecological, cultural or economic value. For exam-
ple, the value of Nitrogen removal via denitrification 
in U.S. dollars has been estimated between $13 and 
$98.70/kg N (Piehler and Smyth 2011; Watanabe and 
Ortega 2011). Using the more conservative value of 
$13/kg N, the estimate of the annual cost to replace 
the removal of N through denitrification in our study 
site would be of $US 1,701,367 using kriging to up-
scale and $US 235,731 using direct scaling. Rightly 
or wrongly, the monetising ecosystem services is 
often used to communicate to stakeholders and deci-
sion makers the value of the seafloor ecosystems that 
deliver them. Our analysis shows substantive value 
for resource managers in gathering good ecological 
data, addressing scale, and understanding ecologi-
cal complexity. Although these are just approximate 
calculations that do not take into account changes in 
rates due for example to seasonal changes, they pro-
vide a useful indication that the inappropriate use 
of scaling can lead to differences of more than $US 
1,000,000 per year in the estimate of ecosystem ser-
vices. Coastal ecosystems are dynamic, and change 
is often driven by multiple stressors and cumulative 
anthropogenic effects. Therefore, the way we estimate 
functioning and service delivery needs to be sensitive 
to such changes. Maps are ultimately created with the 
purpose of assessing the spatial distribution of eco-
system services for management, but a map of a sand-
flat based on purely sedimentological features will not 
change even if we kill all of the resident macrofauna. 
A habitat characterisation that recognises the impor-
tant scales of ecological variability is essential for 
effective management.
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The data used in this study was obtained from 
maps of ecosystem functions with a 1 × 1  m resolu-
tion and therefore relies on their accuracy (Schenone 
et al. 2021). The maps were created combining high 
resolution remote sensing data on the distribution 
of key species and ecosystem functioning models 
that relate functions to the abundance of those spe-
cies and measures of uncertainty were provided. Our 
findings highlight the importance of overcoming 
the challenge of integrating ecological variability in 
habitat description to improve estimated of ecosystem 
service. The use of empirical and theoretical models 
that link ecosystem functioning to biological attrib-
utes that can be measured remotely over large areas 
will in fact improve our understanding of heteroge-
neous landscape and overcome the problems associ-
ated with extensive sampling. However, our analysis 
highlights that in situations where functionally impor-
tant landscape features cannot be extensively mapped 
and linked to easily quantifiable features, the ability 
to properly identify and use scaling relationships is 
crucial.
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