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Abstract

Context One mainstay of soundscape ecology is to

understand acoustic pattern changes, in particular the

relative balance between biophony (biotic sounds),

geophony (abiotic sounds), and anthropophony (hu-

man-related sounds). However, little research has been

pursued to automatically track these three

components.

Objectives Here, we introduce a 15-year program

that aims at estimating soundscape dynamics in

relation to possible land use and climate change. We

address the relative prevalence patterns of these

components during the first year of recording.

Methods Using four recorders, we monitored the

soundscape of a large coniferous Alpine forest at the

France-Switzerland border. We trained an artificial

neural network (ANN) with mel frequency cepstral

coefficients to systematically detect the occurrence of

silence and sounds coming from birds, mammals,

insects (biophony), rain (geophony), wind (geoph-

ony), and aircraft (anthropophony).

Results The ANN satisfyingly classified each sound

type. The soundscape was dominated by anthro-

pophony (75% of all files), followed by geophony

(57%), biophony (43%), and silence (14%). The

classification revealed expected phenologies for bio-

phony and geophony and a co-occurrence of biophony

and anthropophony. Silence was rare and mostly

limited to night time.

Conclusions It was possible to track the main

soundscape components in order to empirically esti-

mate their relative prevalence across seasons. This

analysis reveals that anthropogenic noise is a major

component of the soundscape of protected habitats,

which can dramatically impact local animal behavior

and ecology.

Keywords Soundscape � Cold forest � Automatic

classification � Anthropophony � Climate � Protected
area
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Introduction

Due to anthropization, land use and climate change

may alter all types of landscape through mixed effects

on plant and animal population ecology (Opdam and

Wascher 2004; Opdam et al. 2009; Jennings and

Harris 2017). The analysis, prediction and possible

mitigation of these effects require appropriate moni-

toring methods that can retrieve relevant ecological

information on large spatial scales and over long time

periods. Long-term research is a requisite to estimate

past, current and future changes (Hughes et al. 2017)

and to develop general theories in ecology and

evolutionary biology (Kuebbing et al. 2018). Ecoa-

coustics, more specifically soundscape ecology which

works at the landscape scale, offers valuable tools to

retrieve ecological information with remote field-

based sensors on large spatio-temporal scales (Pi-

janowski et al. 2011; Sueur and Farina 2015). The use

of autonomous recorders led to a long series of recent

papers which, among others, showed that ecoacoustics

can be involved in a wide range of ecological and

conservation applications (Sugai et al. 2018, 2020).

Soundscape ecology and ecoacoustics have both been

put forward as interesting approaches for the study of

the impacts of climate change (Krause and Farina

2016; Sueur et al. 2019).

A mainstay of soundscape ecology is the under-

standing of the acoustic patterns that compose a

soundscape. These patterns can be separated into three

categories: the biophony (biotic sounds), the geoph-

ony (abiotic sounds), and the anthropophony (human

related sounds) (Krause 2008). A sub-classification

might be considered by including the technophony as a

sub-component of anthropophony which refers to the

sound of human technology (Mullet et al. 2015).

Biophony, geophony and anthropophony are repeat-

edly referred to as major structuring components of

soundscapes (Krause 2008; Farina 2014). Biophony

contains all sounds produced by living organisms,

whether they are intentional (such as animal commu-

nication signals) or incidental (such as leaves rustling).

Biophonic sounds can, therefore, work as proxies of

life traits, ecological processes, and biodiversity (Gibb

et al. 2018). Acoustic biodiversity can be evaluated

with two major types of indicators: acoustic richness

and acoustic abundance (Farina 2019). Although

geophonic sounds are less studied than anthropogenic

and biophonic sounds, they are a major soundscape

component, as found in any type of environment. Such

sounds can be a source of noise or information that can

alter species behavior in the short term (Lengagne

et al. 2002; Tishechkin 2013; Farji-Brener et al. 2018;

Geipel et al. 2019) and the long term (Brumm 2004;

Zollinger and Brumm 2015). Anthropogenic noise due

to urbanization, transportation, industry, recreation,

and military activity is invading all possible land-

scapes (marine, aquatic and terrestrial) even when they

are protected by local or national legislation. If the

negative effects of anthropogenic noise have been

thoroughly studied at the individual level through

animal behavior and animal physiology studies

(Slabbekoorn and Ripmeester 2008; Barber et al.

2009; Brumm 2013; Shannon et al. 2015), less

research has been conducted at larger ecological

scales. Anthropophony has been shown to be a

prevalent part of preserved soundscapes (Francis

et al. 2011a, b; Mullet et al. 2015), and to have a

role in the structure of soundscapes, in relation to

massive noise generators, such as industrial sites

(Duarte et al. 2015; Deichmann et al. 2017) or

highways (Munro et al. 2018; Khanaposhtani et al.

2019). Anthropogenic noise can alter the benefits that

humans may experience from natural soundscapes

(Francis et al. 2017). Anthropogenic noise can also,

through cascading effects, induce changes in singing

species communities by altering species interactions

(Francis et al. 2009), disturbing trophic chains

(Hanache et al. 2020), and disrupting pollination and

seed dispersal by modifying animal communities

(Francis et al. 2012). Because biophony, geophony

and anthropophony are part of a single ecological

system, it appears necessary to understand their cross-

correlated patterns over the long term.

Therefore, it seems essential, as a very first step, to

automatically assess the presence of biophony,

geophony, and anthropophony in long soundscape

monitoring protocols. This decomposition appears as a

challenge since biotic, abiotic and human sound

sources can display great diversity regarding ampli-

tude, time and frequency pattern, and moreover, they

often overlap and interfere with each other. So far,

such decomposition was operated either manually

through listening and spectrographic visualization

(Matsinos et al. 2008; Liu et al. 2013; Duarte et al.

2015; Mullet et al. 2015; Gasc et al. 2018; Rountree

et al. 2020) or on the basis of frequency delimitation,

anthropophonymainly occurring between 1 and 2 kHz
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(Joo et al. 2011; Gage and Axel 2014; Fairbrass et al.

2017; Ross et al. 2018; Doser et al. 2020). However,

the choice of frequency limits is questionable as

animals can produce sound at a lower or higher

frequency range (Kasten et al. 2012). The biophony/

anthropophony ratio has been quantified through

spectrographic decomposition but neither geophony

nor silence were estimated (Dein and Rüdisser 2020).

Eventually, artificial intelligence appears as a promis-

ing solution to tease apart the soundscape components.

Convolutional neural networks (CNN) have indeed

been involved in acoustic biodiversity monitoring

(Sethi et al. 2020), soundscape labelling (Bellisario

et al. 2019), species identification (LeBien et al. 2020)

and sound source separation (Lin and Tsao 2019). Yet,

most of these recent tools require important efforts as

most of them are based on complex algorithms, large

training datasets and costly hardware components.

In Western Europe, mountain landscapes may

suffer important land use and climate change at the

same time. The Haut-Jura region, a middle altitude and

cold area across France and Switzerland, is a typical

example of a mountain landscape that could be

substantially altered by climate change. The Haut-

Jura region is dominated by a typical coniferous forest

landscape inhabited by a very rich diversity of resident

and migrating bird species. The region also includes

the city of Geneva, the second largest urban area of

Switzerland, which is served by one of Europe’s major

airports. The region is therefore a mix of cold,

preserved natural environment and urbanized zones.

To estimate the possible changes in soundscape

composition over the long-term, in relation to land use

and climate change, we started a 15-year monitoring

program in one of the largest continuous coniferous

forests in Europe, localized in the Parc naturel

Régional du Haut-Jura and protected by several

conservation tools. Using the first year of audio data,

encompassing 2336 h of sound files, we first aim at

understanding the dynamics of the soundscape cate-

gories over the seasons. We trained an artificial neural

network, based on cepstral features, to automatically

classify biophony (birds, mammals and insects),

geophony (wind and rain), anthropophony (aircraft)

and silence. The annual and diel phenology of each

class could then be estimated, serving as a baseline for

further research in the long-term and revealing for the

first time the predominance of aircraft noise

competing with biophony and limiting silence in a

protected natural area.

Material and methods

Study site

The site consisted of a temperate cold climax forest

locally named ‘Risoux’. The forest is located in the

East of France in the Jura Mountains at the Swiss

border and the closest city is Morez (46� 310 2200 N, 6�
010 2300 E). The forest consists of a 4400 haWest–East

flat anticline crossed by 26 km of roads, hiking and

cross-country skiing trails. The climate is semi-

continental. The anticline and the average altitude of

1230 m a.s.l. fosters cold air conservation, inducing

low annual average temperature (5.5 �C), important

snowfalls ([ 2 m), and an extended winter period with

a very narrow vegetation period between April and

October. Vegetation is mainly composed of European

spruce (Picea abies), European beech (Fagus sylvat-

ica), and European silver fir (Abies alba), their relative

density depending on the altitude. Due to rich native

flora and fauna, this old forest is protected by a natural

park (Parc Naturel Régional du Haut-Jura) and a

European Natura 2000 zone network, since 2003.

Conservation measures and legal protection aim at

ensuring the long-term protection of Europe’s most

valuable and threatened species and habitats, listed

under both the European Birds Directive and the

Habitats Directive. However, these conservation tools

do not exclude human activities so that the Risoux

Forest is still exploited for recreational hunting and

commercial logging.

Recording

The forest soundscape was recorded using four

automatic SongMeter 4 recorders (Wildlife Acoustics

Inc, Concord, MA, USA). These recorders were

installed across the Risoux Forest central zone, along

a West–East axis. The distance between the recorders

was 1.00 ± 0.10 km. The position of the recorders

was chosen to (1) cover the forest area, (2) sample a

single habitat defined by the dominance of the

European spruce, (3) avoid pseudo-replication

between neighboring recorders, and (4) avoid
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anthropogenic noise due to car traffic and local

activities (Fig. 1).

The recorders were attached to trees at a height of

2.5 m and oriented on a 45�–315� axis so that the

microphones were parallel to the main circulation

axes. The microphones were protected with a plastic

roof to reduce rain noise and damage and were facing

south to limit ice and moisture. The recorders were

powered with an external 12 V battery and were

programmed to record for 1 min every 15 min (1’ on,

14’ off, 96 recordings per day) all year round, in

accordance with reviewed literature (Depraetere et al.

2012; Bradfer-Lawrence et al. 2019). The recordings

started on July 13, 2018 and were programmed to work

over 15 years. Sounds were recorded in lossless

stereo.wav format with a 44.1 kHz sampling fre-

quency, 16-bit digitization depth, no analog filtering

and a total gain of 42 dB. Mono and right channels

were considered as duplicate sampling units, so that

only the left channel was considered. The sound

database recording, covering the first monitoring year,

began on August 1st, 2018 and stopped on July 31st,

2019. This recording method resulted in a yearly

database of 140,160 sound files (96 9 365 days 9 4

sites) for a total of 2.36 h of recording. Due to some

recorder failures, the effective database contained

137,087 sound files for a total of 2285 h of effective

recording.

Supervised sound classification

In order to assess variations in the main forest

soundscape components over space and time, a

supervised sound classification was achieved. Five

sound types were classified: aircraft (anthropophony),

wind (geophony), rain (geophony), biophony, and

silence (Fig. 2). Anthropophony was dominated by

aircraft, as the recording sites were chosen to be

distant from other human activities (ground based

transportation, hiking, skiing, hunting and logging).

Biophony was defined as any sound attributed to

animal vocalization or movement. Silence was defined

Fig. 1 Map of the study site. The recording site was localized in

the Haut-Jura, in France at the border between France and

Switzerland (inset). The four recorders were evenly distributed

along the central zone of the Risoux forest which is crossed by

roads, ski trails (left). The forest mainly consists of European

spruce (Picea abies) (right)
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Fig. 2 Sound types monitored. Examples of each sound type

automatically recorded and detected. Short-time Fourier trans-

form parameter: Hanning window of 512 samples with no

overlap, 50 dB dynamic with a relative maximum defined for

each sample. Obtained with seewave R package (Sueur 2018).

For a sake of clarity the duration of the examples was limited to

10 s and with only one type of sound per example but the ANN

could detect several sound types for each recording
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as the absence of any emergent sound. Classification

was based on an artificial neural network (ANN)

trained on a subsample of manually labelled sounds.

The subsample contained 1% (i.e. 1402 files) of all

recordings and was built to ensure a balanced dataset

that is representative of (1) the four recording sites, (2)

the 12 months of the year, (3) the seven week days and

(4) the 24 h of a day-and-night cycle. Each recording

was then listened to and manually classified as one of

the five sound types by one of us (EG) using Audacity

v2.3.2 (Audacity team 2019). The files were listened to

through high-quality headphones with a noise reduc-

tion option (Bose Quiet Comfort 35 II, Bose, USA)

and visualized with a grey-scale spectrogram with a

Fourier window of 1024 samples with no overlap and a

dynamic range of 60 dB.

The recordings were parameterized with mel fre-

quency cepstral coefficients (MFCCs), obtained with

the R package tuneR v1.3.3 (Ligges et al. 2018).

Successive MFCCs were computed over time, using a

moving window of 512 samples with no overlap

between successive windows. The time precision

(dt = 0.0116 s) was enough to track fast sound events.

This computation resulted in a matrix of 86 columns

(windows) and 26 rows (MFCCs) for each 1 min audio

recording. The matrix was then compressed by

computing the average according to the rows and the

26 MFCCs so that the initial recording was parame-

terized with a vector of 26 coefficients (Sueur 2018).

These coefficients were the input data used by the

ANN multi-label classification algorithm using the R

package neuralnet v1.44.2 (Fritsch et al. 2019). The

settings of the ANN algorithm were: (1) an input layer

of 26 neurons corresponding to the 26 MFCCs, (2) a

hidden layer of five neurons, (3) an output layer of five

neurons corresponding to the five sound types, and (4)

a stopping criteria (threshold for the partial derivatives

of the error function) of 0.4. The algorithm used was a

resilient backpropagation with weight backtracking

and the activation function was a logistic function.

Due to the random start of the algorithm, the ANN

procedure was repeated so that true positive rate (TPR)

was maximized and false positive rate (FPR) mini-

mized. The output of the ANN was the probability of

the presence for each sound type. The optimized

decision threshold for each sound type was automat-

ically determined using the inflection point of the

respective receiver operating characteristic (ROC)

curve. The final selected ANN was then used to

classify the remaining dataset

(140,160–1402 = 138,758 files). Consequently, the

final output was a presence/absence (0/1) decision for

each sound type and for each recording, so that a

presence/absence matrix of 140,160 rows (recordings)

and five columns (sound types) was obtained.

Statistical analysis

The presence/absence matrix obtained with the ANN

was first treated with an ordination analysis to assess

the role of temporal and spatial factors on sound type

classification. A multiple correspondence analysis

(MCA) was applied to the matrix using sound type

absence/presence as the variables to be explained and

(1) recording sites, (2) months, (3) week days and (4)

hours as explanatory variables. MCA results were

visualized by plotting the projections of both

explained and explanatory variables on the two first

axes. The analysis was run with the R package

FactoMineR v1.34 (Lê et al. 2008).

Spatio-temporal trends of sound types were also

assessed with generalized additive models (GAM-

s) and generalized additive mixed models (GAMMs).

These models accounted for nonlinear relationships

between variables to be explained (number of detec-

tions per hour and per month) and the explanatory

variables, i.e., the spatio-temporal covariates (hour

and month as continuous variables) and the sites

(categorical variable) (Hastie and Tibshirani 1986).

The nonlinear relationship was modelled with smooth

functions of covariates which can be isotropic and/or

tensor product smooths (Wood 2017). Tensor product

smooth modelled interactions between covariates with

different units. The tensor product could include both

the effect of the two variables and the interaction

effect (Fewster et al. 2000). Model selection was based

on the Akaike’s information criterion (dAIC\ 2)

(Burnham and Anderson 2002; Shadish et al. 2014).

Seasonal patterns, their differences between sites and

common temporal nonlinear trends were assessed with

boxplot, quantile–quantile, and frequency plots (Zuur

et al. 2010; Zuur and Ieno 2016). Using the function

gam from the R package mgcv (Wood 2017), a full

model was then fitted on data exploration with a

Poisson error distribution and a log link function for

each of the five variables to be explained. Collinearity

among explanatory variables was assessed on a

standard regression model with the variance inflated
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factor (VIF), applying the function vif from the R

packages car (Fox and Weisberg 2011). Concurvity

among smooth functions of covariates was checked

using the function concurvity from the R package

mgcv (Ramsay et al. 2003; Wood 2017). The residual

temporal dependences of each of the five models were

visualized with auto-correlation functions (ACF).

Since GAM models do not integrate autocorrelation

error structures, models were adjusted as GAM mixed

model with an adaptive autoregressive error structure

using the function gamm from R package mgcv. When

over-dispersion occurred, models were re-fitted with a

Tweedie distribution. Pertinence of the distribution

correction was evaluated through AIC comparison.

Models were validated after checking residual

assumptions with graphical diagnostic tools using

the function gam.check from the R package mgcv and

non-parametric tests compiled in the function

check.residuals from the R package forecast (Hynd-

man and Khandakar 2008). All statistical analyses

were performed with R software version 3.6.1 (R Core

Team 2019).

Models for biophony and silence sound types were

designed to establish whether the number of detections

followed a site-specific pattern over time, or whether

sites shared a common pattern (Pedersen et al. 2019).

Three models were built. Model 1 (M1) tested hourly

and monthly effects with a common trend over time

for the four sites, using a tensor product smooth

function with a cyclic cubic spline (hour) and a thin

plate regression spline (month). Model 2 (M2) tested

hours, months and sites with a common trend over

time and species-specific random deviations around

the common trend. It was specified with the same

structure as M1 plus another three dimensional tensor

product, which integrated sites as a random smooth.

Model 3 (M3) tested hours, months and sites using a

common trend and a site-specific trend over time,

using M1 structure plus a spatio-temporal two dimen-

sional tensor product for each site. The mathematical

expression of each is detailed in Supplementary

Information.

Regarding biophony, model M1 fitted with a

second-order autoregressive structure did not show

any residuals issue. Model M2 violated the

homoscedasticity hypothesis, even after re-fitting the

model with a second-order autoregressive structure in

link with the low number of levels of the variable site.

Model M3, applied to biophony, did not converge.

Regarding silence, model M1 was adjusted for

temporal dependence with a first-order autoregressive

structure and fitted with a Tweedie distribution with a

square root link and a p parameter of 1.01. Model M3

did not converge, whereas model M1 had a lower AIC

than model M2.

Regarding wind, rain and aircraft sound types, the

site effect was not considered due to a risk of pseudo-

replication. Model M1 was fitted with a first-order

autoregressive structure for aircraft and wind.

A Tweedie distribution with a logarithm link and a

p parameter of 1.06 was specified for the wind sound

type model. For rain sound type, model M1 showed

residual patterns, as well as a model with an hourly

smooth by monthly trend.

Results

Automatic sound type classification

The area under the curve (AUC) of the ROC curve,

when training the artificial neural, network was 0.92

for aircraft, 0.93 for wind, 0.88 for rain, 0.85 for

biophony, and 0.95 for silence. The respective false

positive rate (FPR) and true positive rate (TPR) were

3.75% and 71.66% for aircraft, 13.56% and 72.51%

for biophony, 12.99% and 87.05% for wind, 11.11%

and 78.26% for rain, and 10.65% and 94.12% for

silence. The application of the trained artificial neural

network on the total database led to a detection of

102,195 files with aircraft (75%), 58,348 files with

biophony (43%), 49,287 files with geophony (57%),

49,287 files with wind (36%), 28,546 files with rain

(21%)), and 18,890 files with silence (14%).

The percentage of the number of detections per file

per month and per hour reveals specific patterns for

each sound type (Figs. 3, 4). Aircraft was nearly

constant across months and less abundant during the

night than during the day, with a maximum around

noon and a minimum at 3 am.Wind was almost evenly

distributed across the year at the exception of a peak in

March and showed a broad peak around 4 pm. Rain

showed a maximum value in December and a mini-

mum value in January, and was evenly distributed

across day and hours. Biophony followed a clear

seasonal pattern with a peak in June corresponding to

spring and a trough in January corresponding to

winter. Nevertheless, silence did not show any
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particular seasonal pattern but a clear pattern accord-

ing to days and hours, with less silence during the day

than during the night and a peak at 3 am. This

confirmed that silence patterns were opposite to

aircraft sounds as suggested by the MCA.

Ordination analysis

The first two axes of the multiple correspondence

analysis (MCA) explained 65.13% of the total vari-

ance. The third and fourth axes explained 28.78%

additional variance but did not reveal interesting

patterns. The projection of the variables to be

explained (aircraft, biophony, wind, rain, silence)

and the explanatory variables (sites, months, week

days and hours) along the two first axes revealed that

the variables sites and week days had a weight close to

zero (Fig. 5a). A second MCA was therefore calcu-

lated excluding these variables. The first two axes of

this second MCA explained 65.40% of the total

variance.

The projection of the variables to be explained

along the two first axes showed that silence and

aircraft contributed the most to the MCA first dimen-

sion axis, whereas rain and wind strongly contributed

to the MCA second dimension axis (Fig. 5b). Silence

and aircraft were negatively correlated, meaning there

was silence when there were no aircraft. Rain and

wind were positively correlated, meaning there was

rain when there was wind. The projection of the

explanatory variables revealed that the hours cate-

gories could be separated into two groups: (1) the night

hours between 22:00 and 06:00 were located close to

silence presence and aircraft absence, and (2) the day

hours between 07:00 and 21:00 were located close to

silence absence and aircraft, wind and rain presence.

The months categories could be split into three groups:

(1) March and December were located close to wind
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Fig. 3 Sound type presence according to month. The percentage of each sound type was obtained by dividing the number of files

containing the sound type by the total number of files. Note that the year starts with the beginning of the recordings, that is in August

123

574 Landsc Ecol (2022) 37:567–582



and rain presence, (2) August and September were

close to wind and rain absence, and (3) other months

were close to the origin.

Regression analysis

The phenology of each sound type shows a clear

pattern according to months and hours (Fig. 6). The

model for aircraft sound type explained 93.7% of the

variance, with a tensor product term significant at

169.3 estimated degrees of freedom, suggesting a high

nonlinear relation between temporal covariates and

the number of detections (Fig. 6). Aircraft were

characterized by a clear diel pattern with a morning

peak activity followed by a plateau until 22 and then a

sudden decline for the four sites. The morning peak

was reached at 8 am from November to March and at 7

am for the rest of the year.

The model for wind explained 72% of the variance

with a tensor product term significant at 108.6

estimated degrees of freedom. Wind followed three

patterns along the day depending on the month of the

year: a constant and low number of detections from

December to January, and a bell shape in the afternoon

during the rest of the year, from 8 am to 7 pm in

February and from 7 am to 9 pm in August. The

number of detections per hour was the lowest around

at 40 in October, November and January; the highest

being around 80 in March and July. For rain sound

type, the model did not converge and could not be

analyzed.

The model for biophony explained 89.7% of the

variance with a tensor product term significant at

121.3 estimated degrees of freedom, suggesting a high

nonlinear relation between temporal covariates and

the number of detections for the four sites. Biophony
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detections followed two diel patterns changing

monthly: (1) from March to August, the highest peak

was reached in the morning, followed by a downward

trend, a second peak and a sudden decline the next

hour, and (2) from September to December a similar

pattern was observed but without the second afternoon

peak. A slight peak in the morning in November was

also observed, probably because of specific autumn

sounds due to birds and deer vocalizations. The time of

the first peak differed per month with the earliest

activity at 6 am from May to July, progressively

shifting to 9 am from December to January. Biophony

activity was also characterized by a yearly trend with

increasing activity from February to June, and a two-

fold decrease in activity from September to January.

The model for silence explained 93.6% of the

variance, with a tensor product term significant at

130.5 estimated degrees of freedom (Fig. 6). Silence

occurred during the night following a bell shape and

then was absent through the day. The presence of

silence was prevalent from 10 pm to sunrise.

Discussion

Monitoring and understanding natural soundscapes in

the long-term necessitates distinguishing biophony,

geophony and anthropophony (Krause 2008; Farina

2014). This step is a prerequisite to (1) track the

relative importance of each component across space

and time and (2) study individually (that is to filter out)

the dynamic and composition of each component.

However, this preliminary task is challenging due to

the variability of each component, so much that a

separation based on simple sound parameterization is

not optimal. Convolutional neural networks (CNN)

offer attractive solutions but are difficult to enforce

due to a need for large training datasets and long

computing time. Unsupervised clustering methods

solve some of the CNN limitations. They do not

require annotations and specific hardware, but the

classification performance depends on the right choice

of the acoustics features, such as acoustics indices

(Sueur et al. 2014; Buxton et al. 2018), in order to be

able to disentangle acoustics components and create

meaningful clusters (Phillips et al. 2018). Here, we

used a simple artificial neural network (ANN) with

only a single hidden layer applied on a vector of

MFCCs features to decompose the soundscape of a

(a) (b)

Fig. 5 Multiple correspondence analyses (MCA). a Two first

axes explaining 66.13% of the total variance. The variables to be

explained were the aircraft, biophony, wind, rain, silence and the

explanatory variables were the site, month, week day, and hour.

b Two first axes explaining 65.40% of the total variance. The

variables to be explained (red) were the aircraft, biophony,

wind, rain, silence. The explanatory variables were the month

(green) and hour (blue)
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cold protected forest over the first year of a 15-year

monitoring program. The training dataset contained

only a small fraction (1%) of the complete dataset for

which labelling was completed in less than 24 working

hours by a single person (EG). The ANN algorithm

was trained in a few minutes on a standard computer

and returned robust results with an area under the

curve between 0.85 and 0.95. Therefore, workflow

appears reliable and easy to implement on local

computers using standard and open-source scientific

languages (e.g. R, Python and Julia). The main

drawback of such an approach was that the output

returned by the ANN consisted of presence/absence

data so that no abundance information of the sound-

scape components was available. If this lack of

abundance information could limit fine scale interpre-

tation, data absence/presence could still reveal mean-

ingful soundscape phenology on annual and diel

scales.

The annual and diel phenologies of each sound-

scape component showed patterns that were, indeed,

in agreement with the forest structure, surrounding

human activities, and local weather. In particular, the

annual phenology of biophony followed vegetation

phenology, increasing at the time of plant growth and

flowering between March and August, i.e. in spring
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Fig. 6 Regression analysis. Estimated hourly number of

detections per month for biophony, silence, wind and aircraft

sound types. Grey ribbon illustrates the 95% confidence interval

around the predicted values represented by the solid line.

Vertical black lines indicate sunrise and sunset time
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and summer. During this period, the diel phenology of

biophony followed the activity of the species that were

acoustically the most active. In particular, biophony

started with sunrise and decreased with sunset at the

time of dawn and dusk bird choruses (Gil and Llusia

2020).

It should be noted that anthropophony, which was

dominated by aircraft noise, and biophony showed

convergent daily patterns all year long as aircraft

followed clear diel cyclicity, corresponding to human

diel activities from the nearest airport (Geneva,

Switzerland). Aircraft were detected in 75% of the

files, revealing noise exceedance in the soundscape of

a protected high-diversity forest. Aircraft noise has

already been shown to be pervasive at a large scale in

the USA’s preserved or remote areas (Dumyahn and

Pijanowski 2011; Barber et al. 2011; Buxton et al.

2017; Stinchcomb et al. 2020). Aircraft noise impacts

bird distribution, behaviour and ecology (Gil et al.

2014; Dominoni et al. 2016; Sierro et al. 2017;

Wolfenden et al. 2019) and might induce cascading

effects that can affect ecosystems and landscapes

(Francis et al. 2012). The growth of air transport seems

to be inescapable, French civil aerial transport is

estimated as doubling between 2030 and 2050

(Courteau 2013). The Haut-Jura is particularly char-

acterized by a rising trend of flight activity due to a

century of aircraft development. In 2019, Geneva

airport welcomed 17.9 millions passengers with a 58%

growth since 2009 (Genève Aéroport 2020). All year

long, daily flight activity for non-cargo airports (such

as Geneva airport) starts around 5 am and ends around

10 pm (Wilken et al. 2011), at the time of bird chorus.

The evaluation of local aircraft-borne anthropogenic

noise and its impact on local forest ecosystems is

therefore a major issue for landscape conservation.

The reduction of aircraft traffic since March 2020 due

to the COVID-19 pandemic drastically changed the

soundscape, so much that the effect on bird activity

has already been documented (Derryberry et al. 2020).

Further studies should estimate the possible acoustic

interference of aircraft and biophony inside and

outside lockdown periods. Such a study should be

achieved by estimating sound overlap at a fine time

scale and, more importantly, along the frequency

spectrum. Referring to civil aircraft traffic data, it

would also be possible to compare the acoustic impact

of aircraft traffic according to aircraft altitude, trajec-

tory and national and international destinations.

Wind showed a clear acoustic diel cyclicity which

corresponded to the effect of daily air temperature

change on wind force. On a yearly scale, wind was

more present in spring during the day, with a peak

before sunset, and was most present in March. This

time pattern corresponded to the seasonality of ‘La

Bise’, the local wind coming from the North or North-

East. Rain was correlated with wind, indicating bad

weather and, therefore, strong geophony. Unfortu-

nately, it was not possible to fit a confident linear

model with the temporal explaining variables. Rainfall

modelling probably requires the addition of other

environmental variables such as topography (Ranhao

et al. 2008), air temperature, atmospheric pressure or

humidity (Jennings et al. 2018). The roles of wind and

rainfall in animal acoustic communication have rarely

been studied but they are major components of

soundscape, as they could impair animal acoustic

communication (Lengagne and Slater 2002), affect

sound propagation (Priyadarshani et al. 2018), and

reduce biophony. Climate change might change rain

and wind regimes. In particular, there is some

evidence of an emerging consensus from the different

regional climate models that annual wind density

might slightly increase in northern Europe by the end

of this century (Pryor et al. 2020). In the Jura

mountains, intensity and frequency of daily precipi-

tation is already perceptible (Scherrer et al. 2016),

with high rainfall during late summer afternoons

(Barton et al. 2020). Moreover, winter snowfalls,

which are standard in Jura, are expected to gradually

be replaced by rainfalls, increasing the number of rain

events in the Risoux Forest (Beniston 2003). All of

these meteorological modifications will affect the

soundscape composition with more wind and rain

geophony, in particular during spring when the

biophony reaches a peak.

As expected, silence was occurring when biophony

and aircraft were diminishing, and overall followed a

diel pattern that was opposed to the other sound types.

Silence was more prevalent during summer nights,

probably because of a decrease of the local wind ‘La

Bise’, inducing less geophony. Silent times in pro-

tected areas appeared as rather rare events which were

fully constrained by anthropophony. Although the

Risoux Forest benefits from important protection and

conservation measures, animals and visitors can only

benefit from very short time windows of quietness.
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The estimated trends of each soundscape compo-

nent illustrate a yearly acoustic profile with a winter

soundscape dominated by aircraft, progressively

evolving towards a more diverse soundscape, includ-

ing biophony from early spring until the end of

summer. The Risoux Forest soundscape is, therefore,

closely tied to geophony and anthropophony. Here, we

only monitored aircraft sounds that were dominating

the anthropophony, but other sounds, even as minor as

those of gunshots or chain saws due to hunting and

logging, should not be totally neglected and could also

be detected through acoustic methods (Hill et al. 2018;

Sethi et al. 2020).

The recording sites were close to each other

(* 1 km) and were all localized in the same subalpine

spruce forest habitat. This spatial design was inten-

tionally selected so that each recording site could be

considered as a replicate sample. Indeed, our analysis

could not reveal differences between the sites, con-

firming the replication role of each recorder. However,

we cannot rule out that further analyses over a longer

observation time, that is over several years and dealing

with more specific sounds, as birdsongs, mammal

vocalizations or insect sounds, might reveal inter-site

differences.

Using an automatic acoustic analysis, it was

therefore possible to provide a first glimpse of the

Risoux Forest soundscape structure over a complete

year. This first analysis constitutes a baseline for future

soundscape monitoring. The model generated by the

ANN is efficient enough to analyze forthcoming

datasets and display a reliable overview of the

soundscape dynamics over years. Referring to this

first year, it will be possible to estimate the relative

importance of the biophony, geophony and anthro-

pophony variation in the long term and to assess any

possible shifts in diel and season patterns that could be

linked to climate change. In addition, biophony

automatic identification opens up the possibility to

select recordings with biotic sounds and undertake

more specific analyses about acoustic biodiversity.

These analyses include the study of the composition

and dynamics of acoustic communities in the long

term, with a focus on the decline of specialist species

in mountain environments (Lehikoinen et al. 2015;

Scridel et al. 2018), an increase of generalist species,

shifts in migration and nesting dates inducing new

biophony phenologies. The development of sound

classification tools should allow for more detailed

long-term analysis about the evolution and impact of

anthropic constraints over protected areas.
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Lê S, Josse J, Husson F (2008) FactoMineR: an R package for

multivariate analysis. J Stat Soft 25:1–18

Lehikoinen A, Green M, Husby M, Kålås JA, Lindström Å
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