
RESEARCH ARTICLE

Management strategy influences landscape patterns of
high-severity burn patches in the southwestern United States

Megan P. Singleton . Andrea E. Thode . Andrew J. Sánchez Meador .

Jose M. Iniguez . Jens T. Stevens

Received: 16 July 2020 / Accepted: 3 August 2021 / Published online: 28 August 2021

� The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract

Context Spatial patterns of high-severity wildfire in

forests affect vegetation recovery pathways, water-

shed dynamics, and wildlife habitat across landscapes.

Yet, less is known about contemporary trends in

landscape patterns of high-severity burn patches or

how differing federal fire management strategies have

influenced such patterns.

Objectives We assessed fires managed for ecologi-

cal/resource benefit and fires that are fully suppressed

and investigated: (1) whether spatial patterns of high-

severity patches differed by management strategy, (2)

whether spatial patterns were related to fire size and

percent high-severity fire, and (3) temporal trends in

spatial patterns.

Methods We examined high-severity spatial patterns

within large fires using satellite-derived burn severity

data from 735 fires that burned from 1984 to 2017 in

Arizona and NewMexico, USA.We calculated a suite

of spatial pattern metrics for each individual fire and

developed a method to identify those which best

explained variation among fires.

Results Compared to managed fires, spatial pattern

metrics in suppression fires showed greater patch

homogeneity. All spatial pattern metrics showed

significant relationships with fire size and percent

high-severity fire for both management strategies.

Mean annual spatiotemporal trends in suppression

fires have moved toward smaller, more complex,

fragmented patches since the early 2000s.

Conclusions Increases in fire size and proportion

high-severity fire are driving more homogenous

patches regardless of management type, with percent

high-severity more strongly driving average temporal

trends. Anticipated shifts in fire size and severity will

likely result in larger, more contiguous, and simple-

shaped patches of high-severity fire within southwest-

ern conifer forests.

Keywords Patch dynamics � Spatial pattern �
RdNBR � Stand replacing patches � High-severity �
Heterogeneity � Fire ecology
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Introduction

Wildfire is an important disturbance process and a

major driver of landscape dynamics in forests of

western North America (Hessburg et al. 2019).

Wildfire is inherently a spatially contiguous process,

generating spatial patterns of burned vegetation that

vary in size, shape, and severity as the fire spreads.

Fire severity (i.e., the degree of aboveground loss of

dominant vegetation due to fire; Lentile et al. 2006;

Keeley 2009) is a key spatially explicit outcome of

fire. Within forests, fire severity is generally catego-

rized by the proportion of aboveground tree foliage

killed by fire within a given area (from a satellite pixel

to an entire burned landscape), with ‘‘high-severity’’

or ‘‘stand-replacing’’ fire describing areas where most

to all overstory trees are killed (Lentile et al. 2006).

High-severity fire effects are of particular importance

because of the immediate changes in vegetation

structure, wildlife habitat (Wan et al. 2019), water-

sheds (Neary et al. 2003), and carbon storage (Rogers

et al. 2011) that have lasting effects on forest

ecosystem processes over large spatial and temporal

scales.

Given the ecological and social significance of

high-severity fire, it is important to understand its

temporal trends and key drivers in forests across

western North America. A number of studies have

investigated trends and drivers of high-severity fire by

assessing basic metrics describing high severity fire,

namely area burned severely and proportion burned

severely (Miller et al. 2009; Dillon et al. 2011; Miller

and Safford 2012; Picotte et al. 2016; Singleton et al.

2019). Evidence is mixed, but broadly suggests an

increase in these variables over time in some (Miller

et al. 2009; Miller and Safford 2012; Reilly et al. 2017;

Singleton et al. 2019; Mueller et al. 2020) but not all

(Dillon et al. 2011; Picotte et al. 2016; Parks and

Abatzoglou 2020) regions in the western US. These

trends have been attributed to well-documented

increases in surface and canopy fuels and stand

density following over a century of grazing, logging,

and fire exclusion (Covington and Moore 1994;

Safford and Stevens 2017; Parks et al. 2018b), as well

as increasing temperature, water deficit, and other

climate parameters that have been linked to anthro-

pogenic climate change (Abatzoglou and Williams

2016; Westerling 2016; Mueller et al. 2020; Parks and

Abatzoglou 2020).

Concurrently, there has been recognition that while

metrics that describe area and proportion burned

severely are indicative of broad trends in fire effects,

they do not explicitly account for the spatial pattern

and configuration of high-severity burn patches

(Collins et al. 2017). By spatial pattern we refer to

the size, shape, and distribution of discrete patches of

high-severity fire that represent treeless patches on the

landscape. The spatial patterns of high-severity burn

patches are critical from a vegetation perspective

because most western US conifer forest types are

dispersal-limited, and conifer regeneration in high-

severity patches has been clearly linked to distance

from the nearest seed source (Haire and McGarigal

2010; Chambers et al. 2016; Welch et al. 2016; Owen

et al. 2017; Haffey et al. 2018; Shive et al. 2018;

Rodman et al. 2020). Landscapes with large high-

severity patches, high patch aggregation, and minimal

patch edge may exist in a prolonged state of non-forest

vegetation (Coop et al. 2020), have significantly

elevated water yield and flood peak flows (Neary

et al. 2003), are less suitable for some forest-depen-

dent wildlife species (Jones et al. 2020), and have

reduced snowpack duration (Harpold et al. 2014;

Stevens 2017). Thus, the relationship between fire

size, severity, and spatial pattern of high-severity fire

needs to be examined, especially as western US

wildland fire management strategies have shifted in

recent decades.

For over a century, land management agencies in

the western US have primarily used full suppression

strategies aimed at limiting fire extent to protect

natural resources and rural communities (Busenberg

2004). This strategy largely excluded fire in forests

resulting in the rapid accumulation of fuels culminat-

ing with larger and more severe fires in recent decades

(Singleton et al. 2019). To combat this trend, agencies

have begun using other fire management strategies

including ‘‘managed fires,’’ which are naturally

ignited wildfires managed, or allowed to burn to

benefit resources (i.e., reduce fuel loads). Although

this strategy has been widely used in more remote

areas of the western US since the 1970s (Hunter et al.

2014), recent changes in wildland fire management

have accelerated its use in most regions across the

western US (Young et al. 2019). The main goal of this

strategy is to reduce fuels across landscapes (North

et al. 2015); however, it is less clear how spatial

patterns within managed fires compare to
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‘‘suppression fires,’’ which are fires that often burn

under more extreme weather conditions favorable to

rapid fire spread (Stevens et al. 2017; Young et al.

2019). Such information is critical especially as

managed fires are becoming more widely used to

restore natural fire regimes in forested areas.

In recognition of the ecological significance of

spatial pattern of high-severity patches, several studies

have quantified various metrics of spatial pattern, and

important drivers of these metrics across space and

time (Cansler andMcKenzie 2014; Harvey et al. 2016;

Reilly et al. 2017; Stevens 2017; Steel et al. 2018).

These studies have been largely regional in scope,

leaving some regions of the western US unstudied.

Further, there has not always been a systematic

selection among the multitude of available metrics

that describe spatial pattern, or a rigorous assessment

of the relationship between spatial pattern metrics and

the more conventional metrics of area and proportion

of high-severity fire, as part of these analyses. Given

the ecological significance of spatial pattern described

above, there is increasing interest in whether managed

fires might achieve spatial patterns more consistent

with frequent fire regimes, compared to suppression

fires, which may generate more homogenous spatial

patterns of high-severity fire (Stevens et al. 2017).

While the aforementioned regional studies investigate

the impacts of fire weather on spatial pattern, fewer

(e.g., Stevens et al. 2017; Steel et al. 2018) explicitly

make the connection to a managed wildfire

prescription.

The goal of this study was to investigate the

consequence of differing federal fire strategies on

landscape patterns of high-severity burn patches in a

regionally focused assessment. We address current

knowledge gaps by conducting the first comprehen-

sive study of contemporary spatial pattern of high-

severity burn patches in the southwestern US (Arizona

and New Mexico)—a region perhaps most well-

characterized for other aspects of historical fire

ecology (Covington and Moore 1994; Fulé et al.

1997). Importantly, we first introduce a novel method

for the systematic selection of the most relevant

metrics of high-severity spatial pattern within an

individual fire (hereafter ‘‘spatial pattern metrics’’)

among the multitude of available metrics. This method

may be applied more broadly and comparatively in

other regions. Then, with respect to selected spatial

pattern metrics, we investigated the following

questions: (1) whether spatial pattern metrics differed

by fire management strategy, (2) whether metrics that

do not explicitly account for spatial pattern (hereafter

‘‘basic metrics’’; e.g., area burned and proportion

burned severely) were related to spatial pattern metrics

within managed and suppressed fires, and (3) whether

spatial pattern metrics within managed and suppressed

fires have changed over the study period (1984–2017).

Given recent changes in US federal fire policies over

the past few decades and the need for increased

burning on many landscapes, we hypothesized that

managed wildfires would show distinct spatial patterns

compared to suppressed fires and would be more

consistent with the fine-grained landscape heterogene-

ity of historical frequent fire regimes. Second, based

on seminal work relating landscape connectivity to

spatial patterns of landscapes (Turner et al. 1989;

Gustafson and Parker 1992), we expected a relation-

ship with fire growth, severity, and spatially homoge-

neous patterns of high-severity patches in both fire

types. Lastly, if we found a relationship between basic

metrics and spatial pattern metrics in both managed

and suppressed fires, we hypothesized that spatial

patterns of high-severity burn patches would display a

higher degree of patch size, aggregation, and connec-

tivity over time. This work draws a connection

between fundamental landscape ecology theory and

practical applications of fire to achieve more desirable

outcomes.

Methods

Study area

Our study region covers over 19 million ha of forest

and woodland across Arizona and New Mexico, USA

(Fig. 1). The climate is semi-arid and characterized by

dual annual precipitation peaks which constitute the

region’s primary sources of moisture (Sheppard et al.

2002). Late summer monsoonal rains, occurring from

July through September, account for up to 50% of the

moisture received annually and play a vital role in

modulating fire extent and severity in the Southwest

(Sheppard et al. 2002; Holden et al. 2007). From

November through March, more than 75% of precip-

itation falls as snow over mountainous portions of the

region (Sheppard et al. 2002). During the time frame

of the study (1984–2017), Arizona had a mean annual
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precipitation of 30.5 cm and New Mexico had a mean

annual precipitation of 36.7 cm (NOAA 2019). Mean

annual summer temperature ranged from 20.8–27 �C,
while mean annual winter temperatures ranged from

0.78–8.4 �C across the region.

The forest and woodland vegetation of Arizona and

New Mexico vary widely along climate and eleva-

tional gradients (elevation ranges from 448 to 3990 m

above sea level). The dominant species at lower

elevations include Pinyon pine (Pinus edulis) and

Juniper spp. (Juniperus spp.), ponderosa pine (Pinus

ponderosa) at mid-elevations, and Engelmann spruce

(Picea engelmannii) and subalpine fir (Abies lasio-

carpa) at higher elevations. Within the study region,

we distinguished forest and woodland vegetation

using the Southwest Ecological Response Unit

vegetation framework (ERUs; Whalberg et al. 2014)

which groups homogenous vegetation classes based

on similar site potential and natural disturbance

regimes prior to European settlement (Whalberg

et al. 2014). Our study does not include non-forested

areas of the region (Fig. 1).

Data

We mapped burn severity for all large fires ([ 404 ha)

in Arizona and NewMexico from 1984 to 2017 across

all ownerships of forested land (Fig. 1). For each fire,

we derived Landsat-based severity data (RdNBR;

Miller and Thode 2007) by implementing Parks et al.

(2018b) novel burn severity mapping methodology

within the Google earth engine (GEE) platform. We

Fig. 1 Map of the study region in Arizona and New Mexico,

USA showing location of the 735 large fires ([ 404 ha) in this

study that burned between 1984 and 2017. Fires were separated

by management type (suppression fires n = 493; managed fires

n = 242) and sampled to analyze spatial patterns of high-

severity fire. Green shading represents the distribution of forests

and woodlands based on the Ecological Response Unit

Framework (Whalberg et al. 2014). (Color figure online)
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obtained fire perimeter shapefile data for Arizona and

New Mexico from the Monitoring trends in burn

severity (MTBS) project and input these data into

Parks et al. (2018b) open-source code within GEE

(Eidenshink et al. 2007; Voss et al. 2018). We selected

the ‘RdNBR with offset’ calculation and set the scene-

stacking date range from April to June (sensu Parks

et al. 2018b). We chose the RdNBR index over other

burn severity indices (e.g., dNBR or RBR) to account

for change relative to pre-fire vegetation cover and to

facilitate comparisons among multiple fires (Miller

and Thode 2007). The offset calculation is applied to

RdNBR images to account for potential phenological

differences in pre- and post-fire scenes. For each fire,

the offset is determined by averaging dNBR values

within a 180 m ring outside the fire perimeter and

subtracting this value from the dNBR raster (Parks

et al. 2018b).

We used the ERU layer to map RdNBR pixels that

burned in forest or woodland vegetation types (Whal-

berg et al. 2014) and retained all fires that burned

C 40% of its area within forests and woodlands for

analysis. Then, for each fire, we classified continuous

RdNBR data into a single binary class representing

high-severity by applying a field-validated threshold

value. We used regression analysis to model the

relationship between 1283 field measurements of burn

severity (composite burn index; CBI) and their

corresponding RdNBR values (Fig. 2). From this

model, we calculated a high-severity threshold equiv-

alent to a CBI C 2.25 (RdNBR C 687). Field-mea-

sured CBI values C 2.25 represent C 95% basal area

mortality (Rivera-Huerta et al. 2016; Lyderson et al.

2016). The CBI plot field measurements were taken in

fires that burned in the Grand Canyon National Park,

Coconino, and Gila National Forests (Gdula and

Brannfors 2014).

Fires were also classified based on management

strategy and were categorized as either ‘‘suppression

fire’’ or ‘‘managed fire’’. We define managed fires as

prescribed burns, Wildland fire use (WFU), or

resource objective fires. We used the MTBS database

to classify fires from 1984 to 2008 then used Young

et al. (2019) suppression containment model along

with Inciweb reports to identify the dominant man-

agement strategy from 2009 to 2017 (inciweb.nwcg.-

gov). MTBS classifications were not used after 2008

due to the release of the Guidance for Implementation

of Federal Wildland Fire Management Policy in 2009,

which effectively removed the classification of fires as

Wildland Fire Use (US DOI/USDA 2009). In cases

where we were unable to identify a fire’s dominant

management strategy, they were excluded from the

study (n = 83).

Fig. 2 Quadratic regression model of 1283 field-measured

Composite burn index (CBI) plots as a function of the relativized

differenced normalized burn ratio (RdNBR). RdNBR images

were derived using Parks et al. (2018b) Google Earth Engine

mean composite approach. Crosshairs indicate threshold for

high-severity fire (RdNBR C 687) equivalent to a CBI C 2.25
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Metric selection analysis

Spatial pattern metrics (hereafter ‘‘metrics’’ in this

section) summarize the cumulative properties of

discrete patches of high-severity fire within a single

fire perimeter. A number of studies have quantified

spatial patterns of burn severity across various regions

in the western US and have done so by selecting

metrics a priori (Cansler and McKenzie 2014; Harvey

et al. 2016; Meddens et al. 2018; Steel et al. 2018).

Here, we selected the most relevant metrics more

systematically by using Principal component analysis

(PCA) and K-means clustering methods to identify

metrics that explained the most variation within our

dataset (Cushman et al. 2008). First, using FRAG-

STATS version 4.2, we calculated relevant metrics on

the high-severity class of mapped fires (n = 867;

McGarigal and Marks 1995; Table S1). In FRAG-

STATS, metrics are calculated for individual discrete

high-severity burn patches, of which there are usually

multiple per fire. To develop a single metric for an

entire fire, individual metrics are either averaged or

summed depending on the type of metric used. We

performed all calculations using the 8-cell-neighbor-

hood rule with a minimum high-severity patch size of

900 square meters (1 pixel; Harvey et al. 2016). Prior

to the PCA, we removed fires that had less than one

hectare of total high-severity area because it rendered

some metrics incalculable or caused them to perform

poorly (removed n = 132; McGarigal et al. 2000;

Cansler and McKenzie 2014). In total, we calculated

44 metrics (Table S1) for 735 fires (of which 493 are

suppression fires and 242 are managed fires).

Since all metrics in FRAGSTATS can belong to

one of four categories (1) area/edge, (2) shape

complexity, (3) aggregation and, (4) core area, our

goal was to identify the strongest metric in the PCA

and cluster analysis for each of these four categories to

more fully quantify high-severity burn patch compo-

sition and configuration. We performed the PCA and

cluster analyses using the FactoMineR version 2.3 (Le

et al. 2008) and factoextra packages version 1.0.6

(Kassambara and Mundt 2019) in R version 4.0.2,

respectively (R Core Development Team 2019). We

retained seven principal components (PC) based on

the latent root criterion (eigenvalues[ 1) which were

found to explain 88.81% of the variation for high-

severity (McGarigal et al. 2000). We calculated the

contribution of each metric on PC 1 through 7

(Fig. S1) then performed a cluster analysis of similar

metrics on the first two principal components (PCA

biplot) using the K-means algorithm (Fig. S1). To

determine the optimal number of clusters within our

dataset, we used the gap statistic method (Tibshirani

et al. 2001). This method resulted in an 11-cluster

solution, from which, four metrics were selected

(Table 1) based on two criteria: (1) metrics must be

from separate clusters (Fig. S2), and (2) must hold the

highest contribution (explained the most variability) in

principal components 1–7 (Fig. S2) in each of the four

aforementioned patch characteristic categories.

Metrics that parsed out the most variability were:

(1) area-weighted mean radius of gyration (GYRA-

TE_AM), (2) area-weighted mean perimeter area ratio

(PARA_AM), (3) Percentage like adjacencies

(PLADJ), and (4) Total core area (TCA; Table 1;

McGarigal and Marks 1995). In addition to these four

metrics identified from the PCA and cluster analysis,

we selected two other metrics for evaluation: Class

area (CA) and the stand-replacing decay coefficient

(SDC; Table 1). CA is a commonly reported ‘basic’

metric that describes the total high-severity area

within individual fire perimeters and was selected to

draw comparisons to recent burn severity analyses

(Dillon et al. 2011; Harvey et al. 2016; Steel et al.

2018). We also included the novel SDC metric

because it utilizes an ecological-based approach to

quantify the relationship between percent high-sever-

ity and the distance to patch edge (Collins et al. 2017;

Stevens et al. 2017). The SDC metric is unique in that

it encompasses multiple patch characteristic cate-

gories including patch size, shape, and core area. In

total, we used six metrics to quantify the spatial pattern

of high-severity fire in the southwestern US. All

metrics used in this analysis are described in Table 1.

Statistical analysis

To address objectives one and two, we investigated

differences in spatial pattern of high-severity burn

patches as a function of fire management strategy

(managed vs suppression fires), fire size, and percent

high-severity. To test for significant differences in

spatial pattern metrics of high-severity burn patches

by management strategy, we used the nonparametric

one-way Kruskal–Wallis ANOVA test (a = 0.05;

Hollander and Wolfe 1973). To test if fire size and

percent high-severity were significant predictors of
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each spatial pattern metric, we used simple linear

regression and beta regression models (a = 0.05).

Specifically, we used ordinary least squares (OLS)

models for CA, GYRATE_AM, TCA, PARA_AM,

SDC data and beta regression models for PLADJ data

since these models are designed to accommodate

common issues with rate or proportion data such as

heteroskedasticity and asymmetrical distributions

(Cribari-Neto and Zeileis 2010; Schmid et al. 2013).

To assess whether spatial patterns are changing in

suppression and managed fires over time, we analyzed

average temporal trends for each spatial pattern metric

from 1984 to 2017 by fire management type. Although

testing for linear changes (i.e., changes in slope of a

Table 1 Description and interpretation of spatial pattern metrics applied to high-severity burn patches in 493 suppression fires and

242 managed fires that burned between 1984 and 2017 in Arizona and New Mexico, USA

Patch

category

Metric

acronym

Description Meaning of low

values

Meaning of

high values

Units Range

Area CA Class area:

Basic measure of landscape

composition equaling the

sum of all high-severity

patch areas within a fire

Less high-

severity area

Greater high-

severity area

Hectares CA[ 0, without

limit

Reach GYRATE_AM Area-weighted mean radius of
gyration:

Measure of patch reach or

extent equaling the mean

distance between each cell in

the patch and the patch

centroid

Smaller and/or

more

compact

patches

Elongated,

large,

contiguous

patches

Meters GYRATE C 0,

without limit

Shape

complexity

PARA_AM Area-weighted perimeter-area
ratio:

Measure of patch shape

representing edge (m2) to

area (m) relationship

Large and/or

simple in

shape

Small and/or

complex in

shape

None PARA[ 0,

without limit

Aggregation PLADJ Percentage of like adjacencies:

Measure of spatial distribution.

Sum of cells sharing same

border (like adjacencies)

divided by the total number

of cell adjacencies

Dispersed,

fragmented

patches

Highly

aggregated

patches

Percent 0 B PLADJ B 100

Core area TCA Total core area:

Measure of patch interior. Sum

of all high-severity

areas[ 200 m from patch

edge within in a fire

Less high-

severity area

within patch

interior

Greater high-

severity area

within patch

interior

Hectares TCA C 0, without

limit

Decay SDC Stand-replacing decay
coefficient:

Measure of high-severity patch

size, shape complexity, and

core area. SDC is the

continuous relationship

between remaining patch

area in a fire and distance

inward from patch edges

(Collins et al. 2017)

Faster decay,

large,

homogenous,

contiguous

patches

Slower decay,

small and/or

more

complexly

shaped,

patches

None 0 B SDC 0 B 1

CA, GYRATE_AM, PARA_AM, PLADJ, and TCA were calculated using FRAGSTATS (McGarigal and Marks 1995).

GYRATE_AM, PARA_AM, PLADJ, and TCA were selected based on PCA and cluster analysis; CA and SDC were selected a priori

123

Landscape Ecol (2021) 36:3429–3449 3435



linear function) are important in describing general

trends over time (Singleton et al. 2019; Mueller et al.

2020), our goal was to identify best-fitting models

because they can provide a more nuanced understand-

ing of spatiotemporal trends and potentially provide

insight into underlying ecological processes. This is an

important distinction because this approach and its

corresponding results are not directly comparable to

most studies that have assessed temporal trends in

burn severity in the western US (Dillon et al. 2011;

Picotte et al. 2016; Reilly et al. 2017; Singleton et al.

2019; Mueller et al. 2020; Parks and Abatzoglou

2020).

We performed regression analyses on the mean of

each metric by year (sensu Stevens et al. 2017) and

eliminated years where only one fire occurred. Since

time series data tend to be autocorrelated, we tested for

serial dependence using the Durbin–Watson test

(a = 0.05) and by examining patterns in autocorrela-

tion functions (ACFs) and partial autocorrelation

functions (PACFs). In cases where data exhibited

autocorrelation, we used generalized least squares

models (GLS) with either a first-order autoregressive

structure or first-order moving average structure

(Dillon et al. 2011). When data were not autocorre-

lated, we used ordinary least squares regression and

beta regression models for proportion data. If higher-

order terms were included in models, we mean-

centered the predictor variable to mitigate collinearity.

Prior to OLS and time-series regression analyses,

we natural log (ln) transformed fire size, CA,

GYRATE_AM, TCA, PARA_AM, and SDC data

and logit transformed percent high-severity to satisfy

OLS model assumptions and to stabilize time-varying

heteroskedasticity. When modeling SDC data, we

removed fires with a null SDC value (total remaining

suppression fires n = 400 and managed fires n = 175)

since fires must have at least one cluster of 3 9 3 high-

severity pixels to render a SDC value. We compared

all competing models and tested goodness-of-fit using

the Akaike information criterion (AIC), and selected

models with the lowest AIC value (Burnham and

Anderson 2004; Shumway and Stoffer 2010). In OLS

models, we tested for significant trends (a = 0.05)

using the P-value of the slope estimate for linear

models and used the overall P-value of the F-test for

quadratic models. For beta regression and generalized

least square models, we performed likelihood ratio

tests and calculated the P-value of the fitted models

against the null model. Ordinary least squares, beta

regression, and generalized least squares models were

analyzed using the stats package version 4.0.2 (R Core

Development Team 2019), betareg package version

3.1–3 (Cribari-Neto and Zeileis 2010), and the nlme

package version 3.1–151 (Pinheiro et al. 2021)

respectively.

Results

Differences between managed and suppression

fires

Area burned severely represented 20% of the burned

forested landscape in suppression fires and 5% in

managed fires (Table 2). Means for all six spatial

metrics in the high-severity class were significantly

different between management strategy types

(P\ 0.0001; Fig. 3). Compared to spatial pattern

metrics in managed fires, high-severity burn patches in

suppression fires had significantly greater high-sever-

ity area (CA), larger patch reach (GYRATE_AM),

greater high-severity area C 200 m from patch edges

(TCA), were simpler in shape (PARA_AM), were

more aggregated (PLADJ), and decayed slower (SDC;

Fig. 3).

Relationships between basic metrics and spatial

pattern metrics

From 1984 to 2017, the 735 large fires observed in this

study burned a total of 2,661,819 ha in forests and

woodland systems with 17% burning severely

(Table 2). Fire size was a significant predictor of all

metrics (P B 0.005; Table 3; Fig. 4) and was most

strongly correlated with class area (CA) for both

managed and suppression fires (R2 = 0.44 and

R2 = 0.16, respectively; Table 3; Fig. 4A). Percent

high-severity fire was also a significant predictor of all

six spatial pattern metrics and was a stronger predictor

than fire size based on higher correlations values

(P\ 0.0001; Table 4; Fig. 5). In general, percent

high-severity in suppression models had stronger

correlations with spatial pattern metrics compared to

managed fire models (Table 4; Fig. 5). Percent high-

severity had the highest correlations with patch reach

(GYRATE_AM) in suppression fires and class area

(CA) in managed fires (Table 4).
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Trends in spatial patterns from 1984 to 2017

Over the 34-year time span, high-severity burn patch

area (CA), reach (GYRATE_AM), total core area

(TCA), shape complexity (PARA_AM), aggregation

(PLADJ), and patch decay (SDC) showed significant

quadratic relationships in suppression fires (P

B 0.032, Table 5; Fig. 6). Spatiotemporal trends in

suppression fires followed a convex and unimodal

trajectory, generally peaking between 2000 and 2004

then reversing direction (i.e., patches became smaller,

more complexly shaped, less aggregated, and decayed

faster) in the past * 13 years of the study (Fig. 6

B/D/E/F). In managed fires, class area showed a

significant quadratic trend (P B 0.038) while trends in

GYRATE_AM, TCA, PARA_AM, PLADJ, and SDC

Table 2 Summary statistics of spatial pattern metrics of high-severity burn patches calculated within 493 suppression fires and 242

managed fires in Arizona and New Mexico, USA

Suppression fires Managed fires Total

Total burned (ha) 2,111,062 550,757 2,661,819

Total class area (ha) 418,550 25,496 444,046

Total percent of landscape (%) 20 5 17

Median CA (ha) 85 (13, 455) 26 (7, 79) 51 (11, 252)

Median GYRATE_AM (m) 136 (50, 387) 63 (35, 125) 97 (40, 276)

Median PARA_AM 406 (251, 659) 603 (430, 776) 474 (298, 718)

Median TCA (ha) 0 (0, 3) 0 (0, 0) 0 (0, 0.2)

Median PLADJ (%) 70 (51, 81) 53 (35, 66) 64 (46, 78)

Median SDC 0.009 (0.004, 0.016) 0.011 (0, 0.018) 0.01 (0.003, 0.017)

‘Total’ column represents statistics for both suppression and managed fires (n = 735). Values for metrics indicate median (1st, 3rd)

quantile

CA high-severity area, GYRATE_AM patch reach, TCA total core area, PARA_AM shape complexity, PLADJ aggregation, SDC patch

decay

Fig. 3 Boxplots showing spatial pattern metrics of high-

severity burn patches as a function of fire management strategy.

High-severity burn patches in suppression fires (red) have

greater (A) area, (B) extent, (C) total core area, (D) are simpler

in shape, (E) have greater aggregation, and (F) decayed slower

than high-severity patches in managed fires (blue). Comparisons

were made using non-parametric one-way Kruskal–Wallis

ANOVA test. Graphs are in transformed units for interpretabil-

ity. Asterisk (*) indicates significant differences (a = 0.05;

P B 0.0001). (Color figure online)
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were non-significant (P C 0.102; Table 5, Fig. 6 B/C/

D/E).

Discussion

Are spatial pattern metrics different

between managed and suppression fires?

All six spatial pattern metrics of stand-replacing fire

differed significantly between management strategies

in the study area (Arizona and New Mexico). High-

severity burn patches in suppression fires had greater

area, reach, aggregation, total core area, were simpler

in shape, and decayed slower than patches in managed

fires. These results are likely a function of burning and

weather conditions. Suppression fires generally coin-

cide with extreme weather events which drive fire

growth, severity, and subsequently, more

homogeneous spatial patterns (Collins 2014). Com-

paratively, managed fires are allowed to burn under

mild or average weather conditions thereby inhibiting

fire spread, intensity, and the potential for large

patches (Young et al. 2019). Significant differences

between fire management strategies also suggest that

spatial patterns of high-severity burn patches in

suppression fires are outside the historical range of

variability (HRV) for some forest types. Based on

tree-ring reconstructions, the largest stand-replacing

patch sizes ranged from 200 to 1000 ha in southwest-

ern mixed conifer-aspen and spruce-fir forests (Mar-

golis et al. 2011; O’Conner et al. 2014) and were

typically less than 1 ha (Pearson 1923) but up to 60 ha

in ponderosa pine forests (Iniguez et al. 2009). Based

on our results, the median and maximum area-

weighted mean patch sizes in managed fires was

within the HRV for both mixed conifer-aspen and

spruce-fir and dry conifer forests (i.e., 2.3 ha and

Table 3 Results of regression analyses modeling the relationship between spatial patterns of high-severity burn patches as a function

of fire size in 493 suppression fires and 242 managed fires across Arizona and New Mexico, USA

Fire size regression

Model statistics CA GYRATE_AM PARA_AM TCA PLADJ SDC

Suppression fires

Best model Linear Linear Linear Quadratic Beta Reg Linear

b0 - 5.742 0.916 7.604 2.727 - 1.888 - 2.938

b1 1.362 0.550 - 0.223 - 1.323 0.000009 - 0.218

b2 0.146

P < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.002 < 0.0001

RMSE 1.709 1.147 0.609 1.674 0.872 0.633

R2 0.435 0.218 0.139 0.317 0.012 0.132

AIC 1933.24 1540.421 916.672 1915.023 - 1113.83 775.052

Managed fires

Best model Linear Linear Linear Quadratic Beta Reg Linear

b0 - 2.364 2.735 6.967 2.466 - 0.087 - 3.146

b1 0.777 0.210 - 0.090 - 0.886 0.00005 - 0.141

b2 0.078

P < 0.0001 0.001 0.005 < 0.0001 0.004 0.0001

RMSE 1.531 0.871 0.422 0.726 0.999 0.449

R2 0.161 0.042 0.033 0.128 0.034 0.080

AIC 899.044 625.909 274.671 540.280 - 189.078 222.442

CA high-severity area, GYRATE_AM patch reach, TCA toal core area, PARA_AM shape complexity, PLADJ aggregation, SDC patch

decay

All models are significant (P\ 0.005)

Bold typeface values indicate model significance (a = 0.05). Table in units of transformed data. ‘Beta Reg’ represent beta regression

models. Pseudo-R2 reported for beta reg models
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581 ha respectively). Within suppression fires, the

median area-weighted mean patch size (10 ha) was

close to historical ranges in dry forest types, but the

maximum patch size (7561 ha) was seven times larger

than the HRV for upper elevation forests and at least

126 times larger than the HRV for dry forests. Due to

inherent difficulties of reconstructing incomplete

extant data, it is unclear whether other spatial metrics

such as patch aggregation or shape are outside HRV.

However, it is evident that contemporary fires under a

suppression management strategy have resulted in

significant departures from historical spatial patterns

of high-severity fires, particularly related to patch size

in dry conifer systems. This finding is concerning

given that dry coniferous forests are not adapted to

large and severe fire, and these vast and contiguous

severely burned patches could potentially be at risk for

fire-facilitated vegetation conversion (Coop et al.

2020).

While spatial patterns appear to be changing in

suppression fires, high-severity patch sizes in man-

aged fires are closer to historical ranges and thus, are

better aligned to function as they did historically.

Although high-severity fire can adversely impact

degraded conifer stands, the heterogeneity of severity

classes within reintroduced fires is an important

component towards increasing forest resilience. Man-

aged fire that incorporates fine-grained patches of

high-severity, along with a mosaic of unchanged, low,

and moderate severity classes creates wildlife habitat

diversity, promotes post-fire regeneration, and moves

forests towards a more resilient state (Roberts et al.

2015; Huffman et al. 2017; Collins et al. 2018). In

particular, moderate severity is effective in meeting

Fig. 4 Relationship between fire size (burned area) and high-

severity spatial pattern metrics stratified by suppression fires

(red) and managed fires (blue). As fire size increased, (A) area
burned severely increased, (B) patch extent increased, (C) total

core area increased, (D) patch complexity decreased, (E) aggre-
gation increased, and (F) decayed slower in both fire types.

Asterisk (*) indicates significant relationship (P B 0.005) for

both managed and suppression fires. (Color figure online)
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structural and hazardous fuel restoration targets in

ponderosa pine stands (Huffman et al. 2017) and is

important for decreasing risk of future crown fire and

restoring natural fire regimes (Collins et al. 2018;

Hunter et al. 2011). Managed fires that burn more

actively are likely to have a more complex burn

mosaic and high-severity fire effects are often a

necessary trade-off in order to increase the represen-

tation of moderate effects on the landscape. Thus,

current high-severity patch sizes in dry forests could

be ecologically beneficial in order to achieve a matrix

of severity classes.

Are spatial pattern metrics related to fire size

and percent high-severity?

Our results showed that all six spatial pattern metrics

were significantly related to fire size and percent

burned severely for both suppressed and managed

fires. As fire size and percent high-severity fire

increased, spatial patterns of high-severity burn

patches were more contiguous, aggregated, simpler

in shape, and decayed faster regardless of management

strategy. Our results are consistent with relationships

found between fire size and spatial pattern metrics of

high-severity fire in the northern Cascade Range,

northern Rocky Mountains, and California conifer

forests (Cansler and McKenzie 2014; Harvey et al.

2016; Stevens et al. 2017). The consistency in results

across the western US suggests that as fires become

larger, they will generate more homogenous high-

severity patch characteristics, regardless of region and

other potential driving factors such as climate or

topography.

Compared to the linear relationships with fire size,

spatial pattern metrics generally exhibited strong,

Table 4 Results of regression analyses modeling the relationship between spatial patterns of high-severity burn patches as a function

of percent high-severity in 493 suppression and 242 managed fires across Arizona and New Mexico, USA

Percent high-severity regression

Model statistics CA GYRATE_AM PARA_AM TCA PLADJ SDC

Suppression fires

Best model Linear Quadratic Quadratic Quadratic Beta Reg Quadratic

b0 7.338 7.041 4.897 4.275 0.342 - 5.563

b1 1.032 0.923 - 0.513 1.965 0.045 - 0.609

b2 0.051 - 0.035 0.208 - 0.054

P < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

RMSE 1.082 0.522 0.299 1.325 1.016 0.391

R2 0.773 0.838 0.792 0.572 0.656 0.669

AIC 1483.100 766.119 218.428 1684.910 - 700.203 391.56

Managed fires

Best model Linear Quadratic Quadratic Quadratic Beta Reg Quadratic

b0 6.729 6.727 5.524 4.275 0.264 - 5.207

b1 0.889 0.882 - 0.392 0.898 0.056 - 0.487

b2 0.055 - 0.026 0.088 - 0.045

P < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

RMSE 0.860 0.498 0.294 0.659 1.004 0.387

R2 0.735 0.686 0.528 0.287 0.394 0.318

AIC 619.928 357.678 103.019 493.597 - 297.127 172.121

CA high-severity area, GYRATE_AM patch reach, TCA total core area, PARA_AM shape complexity, PLADJ aggregation, SDC patch

decay

All models are significant (P\ 0.0001)

Bold typeface values indicate significance (a = 0.05). ‘Beta Reg’ represent beta regression models. Adjusted R2 was reported for

OLS quadratic models and pseudo-R2 was reported for beta regression models. P-value obtained from F-test in OLS models or from

likelihood ratio test in beta regression models (a = 0.05)
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quadratic relationships with percent high-severity fire.

These nonlinear responses were expected based on

previous work showing the relationship between

landscape processes and observed patterns (Gardner

et al. 1987; Turner et al. 1989). As demonstrated in

neutral landscape models, the connectivity of patches

changes as a function of the proportion of a given

class: As proportion increases, a network of clustering

patches will develop and undergo a phase transition

(i.e., nonlinear response) to a single spanning cluster

once a critical threshold is reached (Gardner et al.

1987; Gustafson and Parker 1992; Villard et al. 2014;

Harvey et al. 2016). In our analysis, patch shape

(PARA_AM), aggregation (PLADJ), and decay

(SDC) exhibited nonlinear behavior with increases in

percent high-severity, suggesting that numerous

smaller patches eventually coalesced into fewer but

larger homogenous patches after reaching a critical

threshold (Fig. S3; Gustafson and Parker 1992).

Similarly, a study in the Northern Rocky Mounatins

documented sharp increases in patch size and core area

when percent high-severity exceeded a threshold of

35% (Harvey et al. 2016). Although quantifying

critical thresholds was beyond the scope of this study,

identifying these values for burn severity patterns in

the Southwest have important implication for man-

agement where percent of high-severity fire might

serve as an effective metric to better predict stand-

replacing effects or trigger alternative suppression or

management actions. More research is needed in

assessing critical threshold values for spatial patterns

of high-severity fire; however, current research offers

Fig. 5 Relationship between percent high-severity fire and

spatial pattern metrics of high-severity burn patches stratified by

suppression fires (red) and managed fires (blue). As the percent

of high-severity fire increased, the spatial pattern of burn

patches showed: (A) greater area, (B) greater extent, (C) greater

core area, (D) simpler shapes, (E) greater aggregation, and

(F) slower decay in both fire types. Asterisk (*) indicates

significant relationship (P B 0.0001) for both managed and

suppression fires. For untransformed data, see Fig. S3. (Color

figure online)

123

Landscape Ecol (2021) 36:3429–3449 3441



insight into predicting patterns of high-severity fire

based on climate data. Mueller et al. (2020) have

modeled the relationship between average maximum

monthly vapor pressure deficit (VPD) and the prob-

ability of surpassing a certain percent high-severity

fire threshold in the Southwest. Thus, for a given VPD

value, it is possible to estimate the probability of

percent high-severity fire and high-severity patch

characteristics using Mueller et al. (2020) model

predictions and graphs generated in this study (Fig. 5

and Fig. S1).

Trends in spatial pattern metrics from 1984 to 2017

Temporal trends in spatial patterns of high-severity

fire varied by management strategy—all six spatial

pattern metrics in suppression fires fluctuated similarly

over time while managed fires showed inconsistent

trends among metrics. Spatiotemporal trends in sup-

pression fires were characterized by an increase in

homogenous patterns of high-severity burn patches

until 2004, then subsequently reversed. Thus, high-

severity patches within suppression fires appear to be

moving toward a higher degree of heterogeneity

within the last * 13 years of the study, and partic-

ularly in the last * 3–4 years. This was surprising

given known trends of increasing fire size and percent

burned severely in the Southwest (Singleton et al.

2019) as well as the relationship between these metrics

and selected spatial pattern metrics. As previously

described, differences between Singleton et al. (2019)

and this study are likely due to differences in methods

and objectives, but also likely due to sampling scale

and size. For example, Singleton et al. (2019) sampled

high-severity fire at a smaller scale (30m pixels), in a

greater number of fires (n = 1621), over a shorter time

period (32 years), and did not stratify fires by man-

agement type. Furthermore, temporal trends presented

in Singleton et al. (2019) represent total annual area

and percent burned severely at the pixel-level while

Table 5 Regression statistics of time series models. Models were used to analyze mean annual trends in high-severity spatial pattern

in suppression and managed fires from 1984 to 2017 across Arizona and New Mexico, USA

Temporal trends

Model statistics CA GYRATE_AM PARA_AM TCA PLADJ SDC

Suppression

fires

Best model Quadratic (0, 1)� Quadratic (0, 1)� Quadratic (1, 0)� Quadratic (0, 1)� Quadratic (1, 0)� Quadratic (0, 1)�

b0 6.355 5.990 5.946 3.827 0.909 - 4.567

b1 0.071 0.024 - 0.003 0.082 0.005 - 0.005

b2 - 0.007 - 0.005 0.002 - 0.010 - 0.003 0.002

P 0.001 0.003 0.016 0.008 0.004 0.032

RMSE 1.021 0.571 0.183 1.589 0.273 0.248

AIC 101.885 64.851 - 12.262 130.273 14.379 8.853

Managed fires

Best model Quadratic Quadratic Linear Linear Linear Linear

b0 4.641 4.817 - 3.158 - 40.226 19.768 2.337

b1 0.041 0.005 0.005 0.020 - 0.009 - 0.003

b2 - 0.014 - 0.006

P 0.038 0.102 0.374 0.509 0.295 0.699

RMSE 0.795 0.360 0.148 0.856 1.056 0.201

AIC 57.945 24.643 - 14.712 59.048 - 47.812 - 1.094

CA high-severity area, GYRATE_AM patch reach, TCA total core area, PARA_AM shape complexity, PLADJ aggregation, SDC patch

decay

Bold typeface values indicate model significance (a = 0.05). Table in units of transformed data

P-value obtained from F-test in OLS models or from likelihood ratio test in GLS models
�Generalized least squares (GLS) regression models with first-order autoregressive (1, 0) or moving average (0, 1) structure
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results in this study reflect average patch characteris-

tics within individual fires (since metrics are averaged

over all discrete patches with fire perimeters) and by

year. In this study, each fire was considered and

assessed as a distinct landscape while Singleton et al.

(2019) assessed burned pixels across a single land-

scape (Arizona and New Mexico). Temporal trends

were also sensitive to the number of fires per year and

the range of spatial pattern metrics. Thus, because the

number of fires in the Southwest has increased since

the early 2000s (Mueller et al. 2020), and because we

assessed mean statistics of temporal trends, the

influence of large fires with the greatest high-severity

area (e.g., 2011 and 2012) was dampened (Fig. 6).

This effect is particularly true for metrics (i.e., SDC

and PLADJ) whose range in values is more bounded

than the range in values of high-severity area (Table 1).

Finally, Singleton et al. (2019) explicitly tested for

linear increases over time (i.e., changes in slope),

while this study applied the best-fitting model which

may or may not have been linear.

To better understand the relationship between fire

size, severity and spatiotemporal trends of high-

severity fire within the context of this study, we

analyzed average annual fire size and percent burned

severely from 1984 to 2017 based on data and methods

presented here (Fig. S4). From this exploratory

analysis, fire size showed a significant linear increase

over time in suppression fires (P = 0.024) but not in

managed fires (P = 0.192; Fig. S4; Table S2). Thus, it

appears that the relationship between fire size and

spatial pattern metrics are independent of their

respective average temporal trends (i.e., although fire

growth is linked to more homogenous high-severity

spatial patterns and fire size has increased over time,

these results are not linked to more homogenous

patterns of high-severity fire over time). Conversely,

temporal trends in percent high-severity fire (Fig S4)

Fig. 6 Mean annual temporal trends in high-severity spatial

pattern metrics from 1984 to 2017 by suppression fires (red) and

managed fires (blue). Solid lines represent fitted trend lines that

were back-transformed to each metric’s corresponding native

units. All spatial pattern metrics (A–F) showed significant

quadratic relationships in suppression fires (P B 0.032). Only

class area (A) showed significant quadratic trends (P = 0.038) in

managed fires. (Color figure online)
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were generally reflective of trends among spatial

metrics in suppression fires (i.e., relationships and

trends in percent high-severity fire corresponded with

temporal trends among selected metrics). Overall,

these results indicate that larger percentages of high-

severity fire are linked to more homogenous patterns

across space and time. These results, along with

stronger correlations with spatial pattern metrics

compared to fire size (Table 4), also suggest that

percent high-severity fire is potentially the primary

driver of landscape patterns of high-severity burn

patches. This finding is consistent with strong corre-

lations found between proportion high-severity and

spatial patterns of high-severity patches in the north-

ern Rocky Mountain region (Harvey et al. 2016) as

well as non-empirical studies linking increasing

landcover proportion to changes in indices of spatial

patterns in neutral landscape models (Turner et al.

1989; Gustafson and Parker 1992; Hargis et al. 1998).

Ultimately, we can expect to see larger, more

homogenous patches with increasing fire size and

percent high-severity, but mean annual spatiotemporal

trends are more strongly influenced by percent high-

severity.

As emphasized above, our results represent average

stand-replacing patch configurations across Arizona

and New Mexico. Our goal was to assess, and

document mean spatiotemporal patch characteristics,

but our results minimize the impact of large fire events

and/or fire years. Recent widespread fire years in the

Southwest or outlier fire events such as the 2006Warm

Fire that produced the largest contiguous high-severity

patch in our dataset (7561 ha), may outweigh the

ecological impacts across landscapes compared to

average conditions. A recent study found that under

extreme climate conditions, outlier years (i.e., wide-

spread fire years) accounted for the majority of high-

severity area burned in dry conifer forests simulated in

the Jemez Mountains (Loehman et al. 2018). There-

fore, to better assess wildfire’s impact on landscapes

and to manage for long-term forest resilience, it may

be become increasingly important to focus on extreme

high-severity spatial patterns.

The importance of extreme weather and cli-

mate controls (Bessie and Johnson 1995; Westerling

et al. 2006) on spatial patterns of high-severity burn

patches is also evident in trend results. These

influences were apparent in years 2000–2004 where

trends in most spatial metrics in suppression fire

peaked, indicating a period in which average high-

severity spatial patterns were most extreme. Given the

synchronicity of trends among metrics and recent

literature linking climate variables to high-severity fire

in the Southwest (Mueller et al. 2020; Parks and

Abatzoglou 2020), we speculate that extremes in

spatial pattern metrics may be partially attributable to

climate and weather patterns. For example, increases

in daily maximum high temperatures were associated

with larger, simpler shaped stand-replacing patches in

California (Stevens et al. 2017) and increases in

moisture deficit were associated with larger patch

sizes, larger core areas, and simpler shaped high-

severity patches in the northern Rocky Mountains

(Harvey et al. 2016). These studies suggest that

climate may strongly control spatial patterns of high-

severity fire, however; spatiotemporal trends in sup-

pression fires are likely the result of multiple interact-

ing factors and further work is necessary to identify

primary drivers and their relative importance (e.g.

Parks et al. 2018a, b).

Given that managed fires are allowed to burn under

mostly milder weather conditions, extreme weather or

shifts in climate patterns likely played a lesser role in

influencing spatiotemporal trends in managed fires.

Unlike suppression fires, trends in spatial patten

metrics in managed fires did not consistently change

over the study period. Rather, contemporary trends in

managed fires were characterized by lower annual

means (or higher means for PARA_AM and SDC) and

highly variable linear or quadratic trends among

metrics. These results demonstrate that high-severity

burn patches are more heterogenous and fine-grained

than suppression fires, are more stable over time, and

that different controls such as topography and fuels are

potentially driving spatial patterns in managed fires.

Study limitations and future work

In our study, we used remotely sensed continuous data

to classify burn severity into discrete categorical data.

We calculated a single threshold value based on the

relationship of RdNBR to CBI data in order to classify

high-severity fire for the Southwest. Therefore, spatial

patterns of high-severity would change if different

field data or threshold values were used. We also

recognize that the RdNBR and CBI data are generally

linked to changes in canopy cover and are useful when

inferring fire effects but are not direct measures of
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specific ecological effects of severity (Morgan et al.

2014). However, CBI resulted in higher classification

accuracies than percent change in canopy cover or

basal area, and is correlated with basal area mortality

in conifer systems in the West (Miller and Thode

2007; Miller et al. 2009; Cansler et al. 2012; Lyderson

et al. 2016). Additionally, it was our goal to make

coarse assessments of high-severity patches across the

Southwest and our methods to classify burn severity

adequately approximate stand-replacing effects at this

scale. We further classified stand-replacing effects

into discrete patches within fires, which is the

traditional approach when assessing landscape pat-

tern-process relationships. However, other studies

have characterized ecological attributes by using

continuous, multi-dimensional surface models in

order to better capture spatial heterogeneity of land-

scapes (McGarigal et al. 2009; Cushman et al. 2010).

Althoughmany current surface metrics do not yet have

clear relationships with ecological processes, future

work could identify links to fire severity and incorpo-

rate gradient models to quantify burn severity patterns.

Finally, we offer spatial analysis in the high-

severity class but acknowledge that it is important to

document other severity classes (i.e., low and moder-

ate) which are important for ecological resilience and

function (Hunter et al. 2011; Huffman et al. 2017). For

example, moderate severity fire can significantly

reduce ladder and surface fuels and can create gaps

in the canopy that are critical for shade-intolerant

species regeneration (Collins et al. 2018). Fire is a

disturbance process that affects the landscape in

dynamic ways and documenting spatial patterns in

all severity classes is important in capturing a more

complete understanding of current fire regimes. Con-

tinuing to quantify burn severity spatial metrics will

remain important in understanding fire-regime ecosys-

tem interactions and transitions.

Conclusions

This is the first comprehensive study to quantify high-

severity burn pattern, trends, and response to fire

management practices in the Southwest and our results

illustrate the degree to which management strategy has

affected the burned landscape across space and time.

We demonstrate that spatial pattern of high-severity

burn patches in suppression and managed fires have

significantly diverged, with stand-replacing patch

sizes in managed fires aligning more closely to

historical ranges. We also show that fire size and

percent high-severity fire are correlated with high-

severity patch area, reach, total core area, shape

complexity, aggregation, and decay regardless of

management strategy. These findings are important

because future climate change is predicted to increase

fire activity across the Southwest, so the spatial

structure of high-severity patches will likely shift

with anticipated changes in fire size and severity.

Lastly, spatial patterns in managed fires appeared

more stable over time while suppression fires showed

synchronous unimodal quadratic trends. Notably, at

the fire-level, we show that mean annual percent high-

severity in suppression fires has decreased in the

last *13 years of the study, matching temporal trends

in all six spatial pattern metrics. These results indicate

that percent high-severity fire potentially controls

patterns of severely burned patches both spatially and

temporally. Importantly, suppression fires showed a

consistent linear increase in all spatial metrics from

the 1980s to the early 2000s but have subsequently

trended toward smaller, more complex, fragmented

patches and it remains unclear whether these down-

ward trends will continue, or the extent to which these

trends are driven by increases in numbers of fires.

Despite uncertainties in future trends, contemporary

large patches of stand-replacing fire have compound-

ing effects through time and space and repeated

burning could potentially drive abrupt vegetation

transitions and subsequent fire patterns (Savage and

Mast 2005; Coop et al. 2020). Given projected

increases in temperatures and wildfire activity, future

work focusing on drivers of extreme high-severity

burn patches will have critical implications in miti-

gating potentially undesirable patch characteristics in

future fires.
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