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Abstract

Context Alteration of natural vegetation cover

across the landscape drives biodiversity changes.

Although several studies have explored the relation-

ships between vegetation cover and species richness,

as well as between land-cover variance and species

richness, few have considered the non-independence

of these two biodiversity drivers.

Objectives The goal of this perspective paper is to

present theoretical and empirical relationships linking

vegetation cover to land-cover variance at the land-

scape scale, and the implication of these relationships

for species richness change along a gradient of

increasing anthropization.

Methods and results We used simulated and empir-

ical Normalized Difference Vegetation Index data to

examine the generality of the relationship between

vegetation cover and land-cover variance. Using the

province of Québec (Canada) as a case study, our

results show that decreasing vegetation cover captures

the transition from landscapes with low land-cover

variance (non-anthropized landscapes), to intermedi-

ate variance (agricultural landscapes), to high variance

(urban landscapes).

Conclusion Based on this relationship between veg-

etation cover and land-cover variance, and assuming

independent positive monotonic relationships between

biodiversity and both of these drivers, we predict a

unimodal relationship between species richness and

anthropization. This suggests a threshold of

anthropization beyond which the positive effects of

land-cover variance no longer compensate for the

negative effects of vegetation cover loss. Identifying

these thresholds could be key to setting conservation

targets at a landscape scale.
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Introduction

A central goal of conservation ecology is to under-

stand how organisms respond to our increasing human

footprint. Organisms’ responses to habitat alteration

are highly complex, multifaceted, and variable among

species and across contexts (Bender et al. 1998;

Connor et al. 2000; Debinski and Holt 2000; Prugh

et al. 2008). Nevertheless, at a landscape scale, the net

effect of anthropization is driven in large part by the

response of species to changes in vegetation cover

and/or changes in spatial land-cover variance. Early

conceptual models in landscape ecology expressed the

anthropization gradient as follows (Forman 1995;

McIntyre and Hobbs 1999): (1) start with a uniform

natural landscape with relatively high vegetation

cover and low land-cover variance; (2) progress to a

heterogeneous semi-natural landscape with an inter-

mediate vegetation cover and increased land-cover

variance; (3) end with an impacted landscape with

relatively low vegetation cover and low land-cover

variance. This trajectory suggests a decreasing rela-

tionship between the anthropization gradient (i.e.,

transitioning from stages 1 to 3 above) and vegetation

cover, and a hump-shaped relationship between the

anthropization gradient and land-cover variance.

We define vegetation cover as the average leaf area

per unit of land area, typically known as the Leaf Area

Index. Vegetation cover changes over space in relation

to the proportion of land occupied by plants, but also

how tall or densely packed plants are. In practice,

vegetation cover can be quantified using surrogate

measures like the normalized difference vegetation

index (NDVI) or the enhanced vegetation index (EVI).

Mean vegetation cover decreases along an anthropiza-

tion gradient if newly created land-cover patches, such

as roads, abandoned fields, or crops, do not contain as

much leaf area as the original vegetation. Likewise, we

define land-cover variance as the magnitude of

contrast (in terms of vegetation cover) among different

areas within the landscape. Land-cover variance thus

measures only compositional heterogeneity, and

ignores its configurational component (sensu Fahrig

et al. 2011). For present purposes, we quantified

vegetation cover as the mean of NDVI values across a

landscape and land-cover variance as the mathemat-

ical variance of these NDVI values.

Although vegetation cover and land-cover variance

are well-studied variables, few authors have

investigated how the two are interrelated. We expect

they are related, as this is often the case for the mean

and variance of measured variables (here, NDVI) (e.g.,

Tokeshi 1995). Possible relations for vegetation cover

and land-cover variance have been postulated in

conceptual models (Tilman and Pacala 1993; Abrams

1995), but the relationship between them remains

unexplored. In this perspective paper, we present both

theoretical and empirical arguments for the presence

of a non-linear hump-shaped relationship between

vegetation cover and land-cover variance at landscape

scales. We discuss the ecological and conservation

implications of this relationship, providing a new

perspective on productivity-biodiversity and hetero-

geneity-biodiversity relationships observed in nature.

How are vegetation cover and land-cover variance

related?

A mathematical example

Let us imagine a landscape in which vegetation cover

is measured on a continuous scale, for example, as

NDVI on the bounded interval [- 1,1]. Each portion

(pixel) of the landscape has a value of NDVI. Let us

now assume that the distribution of vegetation cover

values over the landscape is described statistically by

the Beta distribution:

P xð Þ ¼ Cðaþ bÞ
C að ÞC bð Þ x

a�1ð1 � xÞb�1;

which is often the case for ecological variables with

bounded distributions (Stoy et al. 2009). Following

our definitions of vegetation cover and land-cover

variance, the mean is directly related to the a and b
parameters of the Beta distribution as follows:

E X½ � ¼ a
aþ b

;

and its variance depends on the same two parameters:

var X½ � ¼ ab

aþ bð Þ2 aþ bþ 1ð Þ

Hence, the mean vegetation cover of a landscape

will directly affect the land-cover variance that can be

observed (Remmel 2009). The intuition behind such

mathematical statements is that, in the context of a
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bounded distribution, large deviations around the

mean can only exist when the mean is towards the

middle of the range of possible values. Any distribu-

tion with a mean near the upper or lower bound of the

range implies small deviations around that mean. This

relationship can be visualized by sampling evenly

spaced intervals of a and b parameters and calculating

the mean and variance of each combination. Techni-

cally, the procedure is equivalent to simulating

landscapes over a large range of NDVI spatial patterns

and calculating the mean and variance of these values.

Plotting the mean vs. variance of NDVI values in these

landscapes reveals a clear hump-shaped envelope

between them (Fig. 1A). Each combination of mean

and variance in Fig. 1A translates into a different type

of landscape pattern.

Empirical illustration

To characterize the predicted mean-variance relation-

ship in real landscapes, we calculated vegetation cover

and land-cover variance using Sentinel-2 radiometric

data (Drusch et al. 2012). We selected 10 000 random

longitude and latitude coordinates from a gaussian

distribution centered around Montréal, QC (Latitude

45.50, Longitude - 73.56, standard deviation 2.5�)
covering the whole gradient of ecosystems found

throughout the province of Québec (Canada), includ-

ing tundra, boreal, mixed, and deciduous forests, as

well as urban and agricultural areas. A land-cover

classification conducted using 2015 data from the

Operational Land Imager (OLI) Landsat sensor

(Government of Canada et al. 2019) was associated

with each pair of coordinates. We removed coordi-

nates falling outside the boundaries of Québec or

directly on water, ice, snow or wetland land-cover

categories, leaving 8970 landscapes.

Gradients in vegetation cover and land-cover

variance in this dataset stem from a combination of

natural (e.g., across biomes) and anthropized areas.

For each pair of coordinates, we used Google Earth

Engine (Gorelick et al. 2017) to create circular 100 m

radius and 564 m radius (i.e., 1 km2) landscapes

centred on the coordinates on Sentinel-2 images (10 m

ground resolution). These sizes correspond respec-

tively to the radius around which bird songs can

typically be heard in point count surveys and the home

range size of most passerine birds (Brown and

Sullivan 2005). We refer to these arbitrarily-selected

scales as small and large landscapes hereafter. We

selected all Sentinel-2 images taken between 1 Jun and

1 Sep 2018, to ensure that they are representative of

summertime vegetation cover. For each band and each

pixel forming the image, we calculated the median

value of the time series to remove the influence of

Fig. 1 Mathematical and empirical relationship between

vegetation cover and land-cover variance. Each point on a plot

represents a prediction (A) or observation (B and C) for an

individual landscape. A Predicted relationship between vegeta-

tion cover and land-cover variance based on the mathematical

parameterization of a Beta distribution. Each pair of mean and

variance values notionally represents the mean and variance of

vegetation cover for a hypothetical landscape. They are sampled

from the Beta distribution, using an evenly spaced grid of a and

b parameters, both ranging from 0.5 to 5.0. B and C Relation-

ship between vegetation cover and land-cover variance mea-

sured in 8970 landscapes across the province of Quebec,

Canada, at two different scales (B 564-m-radius landscapes,

C 100-m-radius landscapes) with corresponding land-use cat-

egory. Vegetation cover and land-cover variance were calcu-

lated for NDVI values across each landscape. Land-cover

variance was log-2 transformed to better visualize the hump-

shaped pattern
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cloud cover and cloud shadows (Namikawa 2017). We

then calculated the Normalized Difference Vegetation

Index (NDVI; Rouse et al. 1974) for each pixel, using

bands B8 (near infrared) and B4 (red). In a subsequent

step, we extracted NDVI mean and variance across

pixels, which we interpreted as vegetation cover and

land-cover variance values for each landscape. Graph-

ically representing these variables together revealed a

hump shape, which we illustrated using a thin-plate

spline with penalized regression coefficients (Wood

2003). Spline functions fitted to small (100 m radius)

and large landscapes (564 m radius) explained respec-

tively 28 and 41% of land-cover variance using only

vegetation cover as the explanatory variable (Fig. 1B,

C).

The vegetation cover gradient captures the transi-

tion from natural landscapes with a high vegetation

cover (low land-cover variance), to croplands (mod-

erate variance), to urban lands (high variance), and

finally to landscapes with a naturally low vegetation

cover (low variance) (Fig. 1). In particular, several

urban landscapes in southern Québec show very high

levels of land-cover variance; i.e., black points in the

upper left of the envelope (Fig. 1B, C). Considering

the proximity of these landscapes to the upper

boundary of the relationship, further losses of vege-

tation cover are likely to translate into decreasing

land-cover variance. In other words, the land-cover

variance of urban landscapes at the boundary will start

decreasing if they are pushed farther to the left on the

vegetation cover axis (Fig. 1).

The extent of the landscape influences some aspects

of the cover-variance relationship. Although the

overall shape of the data envelope did not change,

the strength of the relationship increased with increas-

ing spatial extent. Indeed, at a large spatial extent it is

hard to find landscapes with either very high or very

low land-cover variance, thus decreasing the variation

of observed values on that axis. Spatial extent also

influences the relative position of landscapes along the

vegetation cover axis. For instance, the same urban

area could reveal a low vegetation cover at a small

spatial extent (e.g., a parking lot), but a much higher

vegetation cover if observed at a larger extent that

incorporates green spaces such as residential yards or

municipal parks. The effect of extent will be especially

marked if the landscape overlays different land-cover

classifications (e.g., urban and cropland areas).

Implications for biodiversity conservation

The relationships between vegetation cover and land-

cover variance described above have implications for

our understanding of how species richness changes

along an anthropization gradient. To highlight these

implications, let us consider circumstances where

species richness increases monotonically with both

vegetation cover and land-cover variance. Such a

scenario is supported by an extensive literature on the

productivity-species diversity hypothesis (Cusens

et al. 2012; Gillman et al. 2015) and the heterogene-

ity-species diversity hypothesis (Tews et al. 2004;

Stein et al. 2014). The above hypotheses are repre-

sented by positive monotonic relationships between

vegetation cover and species richness, as well as

between land-cover variance (i.e., spatial heterogene-

ity) and species richness (Fig. 2).

Conceptually, the anthropization gradient captures

how landscapes change as they move along the non-

linear relationship between vegetation cover and land-

cover variance, and combines their joint effects. These

gradients are represented by a decreasing relationship

between anthropization and vegetation cover, and a

hump-shaped relationship between anthropization and

land-cover variance (Fig. 2). Assuming for our pur-

poses that vegetation cover and land-cover variance

have independent and additive effects on the species

richness of a landscape, a concave relationship is then

obtained between species richness and the level of

anthropization (Fig. 2).

From our investigation, we speculate that confusion

may arise when studying the bivariate empirical

relationship between biodiversity variables and veg-

etation cover at the landscape scale. Although many

species might respond monotonically to vegetation

cover (Gilroy et al. 2014), our results above reveal that

vegetation cover and land-cover variance are in fact

interrelated in a non-linear fashion (Fig. 1). Thus, the

observed bivariate relationship between vegetation

cover and species richness could appear hump-shaped;

although this would be the net result of the two factors

acting at one on species richness (see Evans et al.

2005).

Our conceptual model predicts a concave response

of species richness to anthropization whenever vege-

tation cover and land-cover variance are respectively a

monotonic decreasing and a unimodal function of
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landscape anthropization. Other studies support the

idea that species richness varies unimodally with

anthropization. The PREDICTS project, for Projecting

Responses of Ecological Diversity In Changing Ter-

restrial Systems, is a large concerted effort to better

understand the influence of land-use change on species

richness and composition. The database consists of

320,924 records at 11,525 sites, from 284 publications,

including 26,953 species from 13 terrestrial biomes

(Newbold et al. 2015). The main results of PREDICTS

show that intensive land-use of plantation, cropland,

or urbanization is associated with a steep decline of

species richness based on rarefied estimates (ca.

- 40 %). In contrast, areas of lower human population

density, as well as extensive land cover of primary and

secondary natural vegetation, are associated with a

slight increase in species richness (ca. ? 5 %). While

there exists considerable spatial variation in the data,

the overall inference would be that species richness

should increase, on average, with increasing human

population from low to moderate density (up to 20–40

persons/km2), then decrease steadily at higher human

density (Newbold et al. 2015). In particular, the

relationship between species richness and human

population density (extended data Fig. 2 in Newbold

et al. 2015) bears striking similarities with the

conceptual ones presented herein (Fig. 2).

Another global analysis of 375 studies distributed

worldwide evaluated the effect of land-use intensity

on plant diversity (Gerstner et al. 2014). The study

found negative effects of intensive land-use practices,

like nutrient-input farming and tree plantations, on

plant diversity (correlation of ca. - 0.46). Yet, the

study also reports positive, although weak, effects on

plant diversity of extensive management practices,

such as mowing/grazing of grasslands and logging/

thinning of forests (correlation of ca. ? 0.14).

Remarkably, abandonment of extensively managed

landscapes (e.g., meadow or pasture) decreased plant

diversity, while abandonment of intensively managed

landscapes (e.g., conventional farming or tree planta-

tion) increased diversity (Gerstner et al. 2014).

We emphasize that the relationship we describe

here is not equivalent to other conceptual models that

have predicted a hump-shaped response of species

richness to increasing temporal disturbance (the

Fig. 2 Conceptual representation of the net effect of vegetation

cover and land-cover variance on species richness along the

anthropization gradient. The framework assumes positive

monotonous relationships between vegetation cover and species

richness, as well as between land-cover variance (i.e., spatial

heterogeneity) and species richness. Conceptually, the

anthropization gradient captures how landscapes change as

they move along the non-linear relationship between vegetation

cover and land-cover variance, and combines their joint effects.

These gradients are represented by a decreasing relationship

between anthropization and vegetation cover, and a hump-

shaped relationship between anthropization and land-cover

variance. Assuming that vegetation cover and land-cover

variance have independent and additive effects on the species

richness of a landscape, a concave relationship is obtained

between species richness and the level of anthropization
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intermediate disturbance hypothesis; Connell 1978)

or more recently to spatial heterogeneity; i.e. the

intermediate heterogeneity hypothesis (Fahrig et al.

2011) also called the area-heterogeneity trade-off

(Allouche et al. 2012). While the intermediate distur-

bance hypothesis was criticized on both empirical and

theoretical grounds (see Fox 2013), the area-hetero-

geneity trade-off has received some support (Yang

et al. 2015; Schuler et al. 2017; but see Ben-Hur and

Kadmon 2020). These two hypotheses suggest that

‘‘environmental variation’’, either in time or space,

drives species coexistence. In contrast, we herein

propose that this environmental variation is a (non-

linear) function of vegetation cover change, and that

both factors affect species richness at the landscape

scale. We also note that our framework has the

advantage of clearly defining landscape properties in

terms of mean and variance of the vegetation cover.

This last point is particularly important as concepts

like ‘‘disturbance’’ or ‘‘heterogeneity’’ have received

multiple interpretation in the literature (e.g., Stein and

Kreft 2015). Even the term ‘‘area’’ in the area-

heterogeneity trade-off can be challenging in practice

because it implies that species habitats are discrete,

measurable quantities. However, the generality of the

framework we propose also has its downsides, as it

makes no prediction about which species should be

favoured or disfavoured with increasing anthropiza-

tion. For example, species richness may increase

mostly through the addition of cosmopolitan exotic

species as well as a few disturbance-tolerant native

species (McKinney and Lockwood 1999; McCune and

Vellend 2013).

Future directions

In a metapopulation-based model describing species

coexistence in patches of fragmented habitats, Tilman

et al. (1994) showed that the relationship between the

proportion of habitat destroyed and the proportion of

species driven extinct should be relatively flat in the

early stages of anthropization and rapidly accelerate

with further habitat loss. Syntheses of biodiversity

changes at landscape scales in the Anthropocene point

to a flat response, or even a slight increase with

anthropization of species richness in plants (Vellend

et al. 2017) and vertebrates (Pautasso 2007). Such

compensatory effects could precede the steeper and

more consequential part of Tilman et al.’s (1994)

prediction, where species extirpation rapidly increases

following further habitat losses. However, Tilman’s

model assumes that no species can survive in habitats

with a vegetation cover below some level. The

conceptual model we propose here offers a simple,

yet realistic, explanation for the observed increase in

biodiversity with landscape anthropization. Increasing

land-cover variance in the early stages of anthropiza-

tion might compensate for natural habitat loss (Fig. 1).

It suggests that each landscape has a threshold beyond

which the loss of vegetation cover will switch from

increasing to decreasing variance, with synergistic

negative effects on the persistence of species. Identi-

fying where this shift occurs along various anthropiza-

tion gradients and environmental contexts could be

key in setting conservation targets at a landscape scale.

Future work on this topic should explore the influence

of spatial scale (Fig. 1), as well as assumptions of a

linear mapping of species richness on vegetation cover

and land-cover variance (Fig. 2).

In summary, our framework implies that species

richness responses to land-use intensification result

from the opposing effects of decreasing vegetation

cover and increasing land-cover variance at low to

moderate anthropization levels, and from synergistic

negative effects of these two factors at high

anthropization levels. Results from two global syn-

theses so far corroborate these general predictions

across many species and environmental contexts

(Gerstner et al. 2014; Newbold et al. 2015).
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