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Abstract

Context Nitrogen (N) and phosphorus (P) exports

from rural landscapes can cause eutrophication of

inland and coastal waters. Few studies have investi-

gated the influence of the spatial configuration of

nutrient sources—i.e. the spatial arrangement of

agricultural fields in headwater catchments—on N

and P exports.

Objectives This study aimed to (1) assess the

influence of the spatial configuration of nutrient

sources on nitrate (NO3
-) and total phosphorus (TP)

exports at the catchment scale, and (2) investigate how

relationships between landscape composition (%

agricultural land-use) and landscape configuration

vary depending on catchment size.

Methods We analysed NO3
- and TP in 19 headwa-

ters (1–14 km2, Western France) every two weeks for

17 months. The headwater catchments had similar soil

types, climate, and farming systems but differed in

landscape composition and spatial configuration. We

developed a landscape configuration index (LCI)

describing the spatial organisation of nutrient sources

as a function of their hydrological distance to streams

and flow accumulation zones. We calibrated the LCI’s

two parameters to maximise the rank correlation with

median concentrations of TP and NO3
-.

Results We found that landscape composition con-

trolled NO3
- exports, whereas landscape configura-

tion controlled TP exports. For a given landscape

composition, landscape spatial configuration was

highly heterogeneous at small scales (\ 10 km2) but

became homogeneous at larger scales ([ 50 km2).
Supplementary Information The online version contains
supplementary material available at https://doi.org/10.1007/
s10980-021-01308-5.

A. Casquin (&) � R. Dupas � P. Durand
INRAE, UMR SAS 1069, L’Institut Agro, 65 Rue de St

Brieuc, 35200 Rennes, France

e-mail: a.casquin@gmail.com

R. Dupas

e-mail: remi.dupas@inrae.fr

P. Durand

e-mail: patrick.durand@inrae.fr

S. Gu � E. Couic � G. Gruau
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Conclusions The spatial configuration of nutrient

sources influences TP but not NO3
- exports. An ideal

placement of mitigation measures to limit diffuse TP

export should consider both the hydrological distance

to streams and flow accumulation zones.

Keywords Eutrophication � Landscape pattern �
Landscape organisation � Landscape composition �
Heterogeneity � Scaling

Introduction

Excessive loads of nitrogen (N) and phosphorus

(P) cause the eutrophication of marine and freshwater

ecosystems (Dodds and Smith 2016; Le Moal et al.

2018), which threatens biodiversity and human activ-

ities (Steffen et al. 2015). In streams and rivers that

drain agricultural landscapes, N and P originate

mainly from fertilised agricultural fields. Water qual-

ity mitigation measures such as set-aside areas, buffer

zones or cover crops often result in reduced yields or

increased production costs; hence, they decrease

profitability for farmers (Withers et al. 2014). It is

therefore necessary to locate mitigation options where

they will be most effective (Cole et al. 2020).

Mechanistic models (McDowell et al. 2014; Casal

et al. 2019) and methods based on statistical analysis

of landscape properties (Doody et al. 2012; Hashemi

et al. 2018) have been used to optimise locations of

mitigation practices.

Most N and P enter the hydrographic network in

headwater streams (Dodds and Oakes 2008), which

represent 90% of global stream length (Downing

2012) but are rarely monitored, except for research

purposes (Bishop et al. 2008). At this scale, nutrient

exports vary greatly in space (Temnerud and Bishop

2005; Abbott et al. 2018). While in large ([ 100 km2)

catchments, both N and P exports can be statistically

related to proxies of agricultural pressure, such as

percentage of agricultural land-use or agricultural

surplus (Dupas et al. 2015; Goyette et al. 2018), these

relationships break down at the scale of headwater

catchments (\ 20 km2) (Burt and Pinay 2005; Bol

et al. 2018). The reason why the relationship between

landscape composition (percentage of agricultural

land-use) and nutrient exports is scale-dependent is

unclear. Identifying the factor(s) responsible for this

loss of relationship, and the characteristic spatial scale

at which it occurs, would help guide water quality

mitigation measures at the catchment scale. In this

article, we explore the hypothesis that the spatial

configuration of nutrient sources—i.e. the spatial

arrangement/distribution/organisation of agricultural

fields, hereafter called ‘‘landscape configuration’’,—

influences N and P exports at the headwater catchment

scale. For a given region, landscape spatial configu-

ration can be highly heterogeneous among headwater

catchments but homogeneous among larger catch-

ments (Temnerud and Bishop 2005; Abbott et al.

2018). If verified, these two hypotheses could explain

the breakdown of the relationship between agricultural

pressure and nutrient exports at the headwater catch-

ment scale.

Several authors have reviewed the influence of

landscape spatial configuration on nutrient loads at

multiple scales (Uuemaa et al. 2007; Lintern et al.

2018). Metrics used in landscape ecology are based on

the area/density/edge, shape, isolation, interspersion,

and connectivity of patches, and they have been

applied to predict water quality parameters at the

catchment scale (Shi et al. 2013; Xiao et al. 2016; Liu

et al. 2020). However, these approaches often rely on

regressions of several landscape metrics and water

quality parameters, which risks over-fitting certain

relationships and/or spurious correlations. Landscape

spatial configuration can also be viewed as the overlap

and proximity of features such as streams, depressions,

and flow accumulation areas to land-use patches (e.g.

crops, forest fragments, urban fabric). In line with this

concept, Peterson et al. (2011) related parameters of

stream ecological conditions to multiple spatially

explicit landscape ‘‘topological’’ metrics and found

that these spatially explicit methods clearly had more

predictive power than landscape composition metrics.

Staponites et al. (2019), using similar metrics, sug-

gested that the spatial organisation of nutrient sources

(i.e. landscape configuration) influenced the transfer of

reactive or labile water quality parameters (e.g. total

phosphorus (TP), orthophosphate- and nitrite),

whereas percentages of land use (i.e. landscape

composition) have more predictive power for more

temporally stable water quality parameters [e.g. cal-

cium, nitrate (NO3
-), conductivity]. These results are

consistent with current knowledge on transfer path-

ways of nutrients in catchments, with deeper flowpaths

for N species than for P species (Strohmenger et al.

123

3384 Landscape Ecol (2021) 36:3383–3399



2020), and explains why landscape features had less

influence on NO3
- than P (Thomas and Abbott 2018).

These landscape metrics, however, are relatively rigid,

as topological influences (e.g. hydraulic distance to

stream, surface flow accumulation, slope), whether

considered in the metrics or not, cannot be weighted.

In addition, certain topological features vary over a

much wider range of values than others, which may

obscure other features when no weighting coefficient

is included in the landscape metric. For example, flow

accumulation (which can have large values) can

overshadow the influence of slope (which varies over

a narrow range of values) in an index that considers

both without weighting them.

The idea that landscape configuration influences N

and P loads is the basis for the concept of critical

source area (CSA), i.e. the idea that a small percentage

of the agricultural area (e.g.\20% of the agricultural

area within a catchment)contributes disproportion-

ately to the nutrients transferred to streams (e.g.[80%

of the load)—CSAs are defined as the intersection of

nutrient sources and hydrologically sensitive areas

(Gburek and Sharpley 1998; Pionke et al. 2000).

Initially defined at the sub-field scale, the concept of

CSA was extended to larger scales; entire fields or

subcatchments can also be classified as CSAs (Page

et al. 2005; Srinivasan and McDowell 2009; Sharpley

et al. 2011; Buchanan et al. 2013b; Reaney et al.

2019). Substantial uncertainties remain, however, in

their delineation at all scales (Doody et al. 2012).

Validation at the sub-field scale can be based on

observing erosion marks (Reaney et al. 2019) or

tracers (Collins et al. 2012). However, studies that

validate CSA delineation based on N or P concentra-

tions in streams and rivers are rare and are based on

only a few hydrologically contrasting headwater

catchments (McDowell and Srinivasan 2009; Shore

et al. 2014; Thomas et al. 2016a) or larger catchments

for which land-use composition is already a good

predictor (Giri et al. 2018).

To address the limits of ‘‘expert-based’’ delineation

of CSAs and the rigidity of spatially explicit landscape

metrics, we developed a stochastic, data-driven

approach based on 30 synoptic samplings of 19

agricultural headwater catchments to answer two

questions: (i) Does landscape configuration influence

N and P exports?; and (ii) Does the location of CSAs

depend on the hydrological distance of the nutrient

source to the hydrological network, their overlap with

flow accumulation areas, or both? We then investi-

gated why some relationships between water quality

parameters and landscape composition metrics break

down below a certain catchment size. For this, we

studied how the relationship between landscape com-

position and configuration varied as a function of

catchment size in 500 randomly selected subcatch-

ments in the study area.

Methods

Study site

The Yvel catchment is a 375 km2 agricultural catch-

ment of Strahler order 5 in Brittany, western France

(Fig. 1). The Yvel River is the main tributary of a three

million m3 water reservoir that has been subjected to

cyanobacteria blooms since the 1970s (ODEM 2012),

for which N and P are deemed responsible (Shatwell

and Köhler 2018).

The climate is temperate oceanic with mean annual

precipitation (1998–2017) of 777 mm (standard devi-

ation, SD = 132 mm), mean annual temperature of

11.7 �C (SD = 0.5 �C), and mean annual runoff of

254 mm (SD = 143 mm). The Yvel River’s discharge

is monitored for 300 km2 of its 375 km2 (Fig. 1), and

monthly mean discharge at the DREAL station

J8363110 varies from 0.16 m3s- 1 in August to 5.60

m3s- 1 in February. The low-flow season generally

spans from July to October while the high-flow season

spans from December to May, November and June

being transition months. The hydrology is controlled

by the dynamics of the shallow groundwater within

unconsolidated weathered material that caps impervi-

ous schist bedrock (Casquin et al. 2020). The land use

is dominated by arable fields (maize and winter

cereals), which cover 54% of the catchment (Fig. 1).

Grasslands (21%, mainly leys in rotation), forests

(18%), and urban areas (6%) comprise the rest of the

catchment area. Hedgerow density is 7.1 km km-2.

Soils in the catchment are generally shallow

(\ 100 cm), are well-drained in the upland part of

the hillslope, and are often hydromorphic in valley

bottoms. The elevation varies from 33 to 297 m above

sea level. The centre of the catchment is the flattest

area (most slopes\ 5%), with long and regular

hillslopes. In the north and south, the relief is more

rugged, with shorter and steeper slopes. The southeast
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portion of the watershed of the catchment is forested

and has the steepest slopes (5–15 %). A more detailed

description of the study site can be found in Casquin

et al. (2020).

Subcatchment monitoring

The monitoring strategy consisted of repeated synop-

tic sampling of 19 subcatchments (Fig. 1). The 19

subcatchments were selected based on Strahler order

(1–2), size (0.8–12.6 km2, mean = 5.1 km2), absence

of a wastewater treatment plant, and accessibility.

Their percentage of agricultural land-use ranged from

17 to 94% (mean = 74%), with mean slopes ranging

from 2.7 to 6.6% (mean = 4.9%). Together, these 19

subcatchments covered 28% of the Yvel catchment’s

area. All 19 monitoring stations were sampled 30

times, approximately every two weeks from April

Fig. 1 Monitored subcatchments, land use in 2018, hydrography and roads/ditches in the Yvel catchment. The inset shows the location

of Brittany, France, in western Europe
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2018 to July 2019. Samples were filtered in situ

immediately after sampling with cellulose acetate

filters of 0.20 lm pore size for nitrate (NO3
-)

analysis. All filters were rinsed in the laboratory with

20 ml of deionised water before use. An unfiltered

water sample was also collected to analyse TP. The

samples were transported to the laboratory in a cool

box and then refrigerated at 4 �C until analysis. TP

was analysed within 48 h of sampling, while NO3
-

was analysed within one week. TP was determined

colorimetrically via reaction with ammonium molyb-

date (Murphy and Riley 1962) after digesting the

samples in acidic potassium persulfate. The precision

of TP measurements was ± 13 lg L- 1, while that of

NO3
- concentrations, analysed by ionic chromatog-

raphy (Dionex, DX120), was± 4 %. Previous work in

the Brittany region showed that nitrate repre-

sented[ 85 % of total N (Dupas et al. 2015). Hydro-

chemical data are available at https://www.

hydroshare.org/resource/7c7d7f6dd1f14450883ae1c24

3c3c28f/ (Dupas et al. 2020).

Spatial data sources and pre-processing

To investigate the influence of landscape configura-

tion on N and P exports, we computed a landscape

metric (see Sec. ‘‘Landscape configuration index’’)

that considers the hydrographic network, topography

and nutrient sources.

Hydrographic network

The hydrographic network consisted of both the

‘‘natural’’ stream network and the ditch network

because (1) it is often difficult to distinguish a ditch

from a rectified stream and (2) our synoptic sampling

verified that most of the ditches were deep ([ 1 m)

and were active in winter (high-flow season). Ditch

networks are a shortcut between agricultural areas and

the ‘‘natural’’ river network (Ahiablame et al. 2011;

Buchanan et al. 2013a). Moreover, evidence suggests

that ditches act as 1st order streams when considering

nutrient spiralling and can retain and remobilise N and

P (Dunne et al. 2007; Smith 2009; Hill and Robinson

2012). Thus, we considered them part of the hydro-

graphic network. We used the road network as a proxy

for the ditch network, as we observed that ditches

bordered all roads in the study area. Streams (perma-

nent and intermittent) and roads were extracted from

vector data (accuracy of ca. 1.5 m) provided by the

Institut National de l’Information Géographique et

Forestière (IGN) at 1:25,000 scale. We converted

these vector data to raster format (spatial resolution of

10 m) and aligned them with the Digital Elevation

Model (DEM) for later analysis.

Digital elevation model

The DEM, with a native resolution of 5 m (IGN 2018),

was resampled to 10 m using cubic splines in ArcGIS

10.6 and was used as a reference layer for the

rasterisation of the hydrographic network layer and

nutrient sources layer. Filling was used to remove the

depressions on hillslopes (Planchon and Darboux

2002), and the value ‘‘NA’’ was assigned to the pixels

corresponding to roads and streams. We calculated

flow accumulation and the hydrological distances to

streams (i.e. following the surface flow paths) using

the multiple flow direction algorithm (Qin et al. 2007).

We chose this algorithm for its ability to generate

realistic flow accumulation maps, unlike the D8

algorithm (O’Callaghan and Mark 1984).

Nutrient sources

We extracted the agricultural area data from the

national land parcel identification system (Le-

vavasseur et al. 2016). The data are provided as a

vector dataset at the 1:5000 scale for each year since

2010 and contain field boundaries and a code that

identifies the crop type. We used the 2018 dataset and

verified the spatial accuracy of the agricultural area

boundaries based on 50 cm orthophotos and the

hydrography. We then rasterized this dataset aligned

with the DEM (spatial resolution of 10 m). We

assigned the value 1 to agricultural areas and 0 to

non-agricultural areas. We included riparian buffer

strips in agricultural areas because they are recent and

have been fertilised for years, and are a well-

documented legacy source of nutrients in headwater

catchments (Gu et al. 2018).

Landscape configuration index

We developed the landscape configuration index

(LCI) (Eq. 1) to test the hypothesis that the hydrolog-

ical proximity of agricultural areas to watercourses

and their overlap with flow accumulation areas
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influence nutrient exports at the headwater catchment

scale. For each monitored subcatchment, the LCI was

calculated as follows:

LCI a; bð Þ ¼
1
n �

Pn
i¼1LUi � FAccai � FLS�b

i

1
N �

PN
i¼1LUi � FAccai � FLS�b

i

ð1Þ

where a and b are calibrated parameters, i = 1…n are

the pixels of a subcatchment; i = 1…N are the pixels

of the entire Yvel catchment, FAcci is the flow

accumulation on pixel i (m2), FLSi (m) is the distance

along the surface flow line from pixel i to the stream/

ditch, and LUi equals 1 if pixel i is a source of nutrients

(i.e. an agricultural area), otherwise 0.

Figure 2 Steps used to calculate the LCI given

a = 1.5 and b = 1.0 for 2 of the 19 monitored

subcatchments. Example of agricultural subcatch-

ments with similar landscape composition [% agri-

cultural area, proportional to LCI for (a, b) = (0, 0)] but

contrasting landscape configuration [LCI values for (a,

b) = (0, 0)]. a Denominator (Eq. 1) calculation steps

for a = 1.5 and b = 1. b and c Numerator (Eq. 1) and

LCI calculation steps for a = 1.5 and b = 1 in two

monitored subcatchments. Pixel colour indicates the

value of the pixel for the different terms of Eq. 1. Note

the logarithmic colour scale, blank is NA.

The denominator is a normalisation factor that

corresponds to the mean value of the numerator for the

entire Yvel catchment. When LCI[ 1, a subcatch-

ment’s nutrient sources are located predominantly in

flow accumulation zones and/or near streams com-

pared to the entire Yvel catchment.

By construction, when a and b equal 0 for a

subcatchment, its LCI equals its percentage of agri-

cultural land-use (i.e. the landscape composition)

divided by the percentage of agricultural land-use in

the entire Yvel catchment. For other values of a and b,

the LCI indicates the landscape configuration. High

values of parameter a increase the weight of pixels in

flow accumulation zones in the LCI, while high values

of parameter b increase the weight of pixels in near-

stream zones.

Optimisation of (a, b) parameters

and interpretation

We varied a and b to maximize Spearman’s rank

correlation (q) between the LCI and median NO3
- and

TP concentrations of the 19 monitored subcatchments

(Fig. 3). For large values of a or b, the LCI assigns

high weights to a small percentage of the area. We

restricted the ranges of parameters a and b so that a few

pixels with the highest FAcc and lowest FLS would

not control the values of LCI. We explored the

parameter space for pairs of (a, b) for which the sum of

FAcci
a9FLSi

-b in the top 5% pixels did not exceed

95% of the sum of FAcci
a9FLSi

-b in all pixels in the

Yvel catchment. We performed a systematic compu-

tation of the LCI in the 19 subcatchments, by sampling

a and b every 0.1 from 0 to 2 for a and 0 to 4 for b. This

lead to 595 correlations computed (for NO3
- and for

TP), when excluding the cases when too few pixels

determine the total value of the LCI.

Since several of the subcatchments were intermit-

tent, we calculated the median concentrations for the

22 dates (out of 30) when at least 17 of the 19

subcatchments were flowing, so as not to bias calcu-

lation of the median concentrations. We focused on

ranks rather than concentrations because several

studies have shown that concentration estimates had

high uncertainty when calculated with low-frequency

data (e.g. Cassidy and Jordan 2011; Moatar et al.

2020), while the ranks of subcatchments could be

predicted with high degree of confidence, as they are

stable across flow conditions (Abbott et al. 2018;

Dupas et al. 2019, Gu et al., 2021). The result

interpretation was twofold:

• The spatial configuration of sources was consid-

ered to have an effect if q for at least one pair (a, b)

= (0, 0) was statistically significant (p\ 0.05) and

substantially higher ([ 0.1) than that for (a, b) = (0,

0).

• Optimal values of a and b were examined to assess

the relative importance of hydrological distance to

streams and flow accumulation on hillslopes.

Scaling of the optimized LCI

In order to verify the hypothesis that landscape

configuration can be highly heterogeneous at small

scales among subcatchments but homogeneous among

larger subcatchments, we calculated the optimized

LCI at the field scale, in 1 and 25 km2 subcatchments

of the study area. We then calculated the ratio of LCI

with optimal (a, b) (landscape configuration) to LCI

with (a, b) = (0, 0) (landscape composition) for 500

randomly generated subcatchments (range: 0.5–375
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km2) in the Yvel catchment. Finally, we analysed how

the relationship between these two metrics evolved as

catchment size increased.

Results

Comparison of land-use composition

and configuration metrics as predictors of NO3
-

and TP concentrations in headwater catchments

Landscape composition [i.e. LCI with (a, b) = (0, 0)]

predicted median NO3
- concentrations well

(q = 0.84, p\ 0.05) but not those of TP (q = 0.33,

p[ 0.05). Varying (a, b) did not substantially

improved (maximum q = 0.86, for a = 0.1 and

b = 0) the prediction of median NO3
- concentration

rank; thus, landscape composition predicted NO3
-

exports well at the headwater catchment scale, and

considering landscape configuration did not improve

the prediction (Fig. 3a). For NO3
-, this result refutes

our first hypothesis that the spatial configuration of

nutrient sources influences nutrient exports.

The correlation between the percentage of agricul-

tural land and median TP concentrations [(a, b) = (0,

0)] was 0.35 (q = 0.15, p[ 0.05) (Fig. 3b). This

correlation improved as weights increased for sources

near streams (q increased as b increased) and for

sources that overlapped surface flow accumulation (q
increased as a increased) (Fig. 3a). This confirms our

Fig. 2 presents a detailed calculations for two subcatchments with similar land-use composition, but whose LCI varies by a factor of 2

when parameters (a, b) = (1.5, 1)
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first hypothesis that landscape configuration influ-

ences P exports, and agricultural areas near water-

courses and that overlap surface flow accumulation

areas result in larger P exports. The optimum corre-

lation was obtained for a = 1.4 and b = 2.2 (q = 0.81,

p = 2.2e-5, p\ 0.05), at the limit of the exploration

domain for (a,b), which means that 5% of the area

determined nearly 95% of the LCI.

Using the same parameter exploration scheme, we

optimised (a, b) for TP concentrations on each sampling

date (Fig. 4c). The LCI with (a, b) = (0, 0) always

predicted TP concentrations better than landscape

composition (Fig. 4a). The correlation between the

optimised LCI and TP concentrations differed signif-

icantly (p\ 0.05) from 0 for all but one sampling date,

except during the low-flow periods (Fig. 4b).

During the low-flow season (Aug-Nov 2018, Jul

2019) and beginning of the rewetting season (Nov

2018), TP concentrations in the headwaters did not

correlate with the optimised LCI (p[ 0.05) (Fig. 4b).

Note that 13 of the 19 streams were dry at the peak of

the low-flow season. Outside the low-flow season,

optimal values of parameters a and b were stable,

varying little around a median value of 1.4 and 2.2,

respectively. Therefore, the total weight of the top 5%

of weighted area remained close to 95% (Fig. 4d),

except during the low-flow season. The optimised LCI

based on median TP concentrations, hereafter referred

to as LCI-TP, appears to be a robust sensitivity index

to determine TP CSAs across flow conditions.

Fig. 3 a Optimisation plans for LCI parameters a and b used to

predict median concentration of NO3
- and TP in 19 headwater

catchments. Rank correlations (q) not shown (blank) indicate (a,
b) outside of the exploration domain. For each optimisation

plan, black dots indicate 10% highest q, red square the best

correlation b Scatter plots between ranks of median [TP] and

ranks of landscape composition (left) and optimised LCI for TP

(right). Each point represents a monitored subcatchment.

Annotations show LCI(a, b) values:median [TP] values
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Spatial aggregations of the LCI-TP

The LCI optimized for TP assigned nearly all of the

weights (95%) to small areas (5%). Most of these areas

were located near streams and ditches, but their width

varied (Fig. 5a). The CSAs often extended ca. 100 m

or more into agricultural areas, especially on long and

convex hillslopes. Using LCI-TP values at the pixel

level, we calculated LCI-TPfield as the mean LCI-TP of

each agricultural field. The LCI-TPfield (Fig. 5b)

revealed that most fields were weak sources of P (i.e.

LCI-TPfield\\ 1), whereas a few fields were CSAs,

as their LCI-TPfield exceeded 10 and even 40. The

associated histogram (Fig. 5c) followed a lognormal

distribution, which confirms the high variability at the

field scale (5th percentile-95th percentile, q5-q95 =

2.02e-03-1.40e ? 01, SD = 38.41). When the

LCI-TP was aggregated into 1 km2 subcatchments

(LCI-TP1km2) (Fig. 5d), its variability decreased dras-

tically (Fig. 5f, min-max = 0–5.79, SD = 0.71). The

number of subcatchments with LCI-TP1km2[ 1 was

approximately the same as the number of subcatch-

ments with LCI-TP1km2\ 1 (Fig. 5f, median = 0.87),

but the distribution remained lognormal. Following

the same pattern, the LCI-TP aggregated into 25 km2

subcatchments (LCI-TP25km2) had even lower vari-

ability (min-max = 0.64–1.44, SD = 0.26): at this

scale the distribution was symmetrical (normal), and

no subcatchment could be considered a CSA. The

information at the subfield scale (Fig. 5a) and field

scale (Fig. 5b), which is relevant for farmers and

catchment managers, was generated for the entire

study area (https://antoine-csqn.github.io/YV1.html).

Homogenisation of the LCI-TP with increasing

catchment size

We delineated 500 subcatchments within the study

area based on 500 points randomly generated over the

hydrographic network. For each subcatchment, we

calculated the LCI-TP (i.e. the LCI for a = 1.4 and

Fig. 4 Comparison of landscape composition and optimised

LCI as predictors of TP concentrations, for all sampling dates.

a Spearman’s rank correlation (q), b associated -log10-

transformed p values, dashed line indicates p = 0.05, points

above indicates significant correlation, and cfor optimised LCI,

parameters a and b applied to flow accumulation and inverse

distance to the stream/ditch d. relative weight of the top 5 % of

weighted pixels. Grey areas represent low-flow periods, when

two or more sampled streams were dry
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b = 2.2), the landscape composition index (i.e. the

LCI for a = b = 0), and their ratio, which we exam-

ined as a function of subcatchment area (Fig. 6).

This ratio varied greatly (0.02–3.37) for subcatch-

ments smaller than 10 km2, the typical size of 1st or

2nd order stream catchments but varied less

(0.55–1.53) for subcatchments of 10–50 km2. The

high variability in this ratio, even for heavily farmed

subcatchments, indicates that the landscape configu-

ration can be re-organised to limit TP exports. For

catchments larger than 50 km2, which corresponds to

4th order rivers in the study area, the ratio converged

to 1. The main implication is that for headwater

catchments (\ 50 km2) the correlation between land-

scape composition and configuration (as defined by the

LCI-TP) was weak and non-significant (Fig. S1),

Fig. 5 a Excerpt of the study area, (refer to black rectangle in

e for localisation) ca. 6 km 9 2 km: top 5% (yellow) and 1%

(red) of weighted pixels according to LCI-TP, b LCI-TP

aggregated at the field scale (LCI-TP field), and c histogram of

LCI-TPfield values for the whole study area (note the log scale on

the x-axis). d LCI-TP for 1 km2 subcatchments (LCI-TP1km2)

and e 25 km2 subcatchments (LCI-TP25km2) and associated

histograms (f and g), respectively
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while for larger catchments the correlation was strong

(R2 near 1) (Fig. S1).

Discussion

Spatial configuration of nutrient sources influences

P but not N exports

In agricultural intensive landscapes, median NO3
-

concentrations are a proxy of N exports as spatial

patterns of concentration are persistent through time

(Gu et al. 2021) and NO3
- represents most of the total

N in streams (Dupas et al. 2015). Similarly, median TP

concentrations are a proxy of P exports (Gu et al.

2021). Landscape composition is a strong predictor of

N exports, while landscape configuration as defined

here, appears to have no influence (Fig. 2a). This

result agrees with previous research that indicates a

strong correlation between metrics of agricultural N

pressure, such as land use or the N surplus, and N

concentrations in streams (Kronvang et al. 2005;

Dupas et al. 2015), leaving little space for other

controlling factors, such as the landscape configura-

tion. However, distributed process-based modelling of

N fate in agricultural catchments has shown that

landscape configuration can have a small influence on

N concentrations (Beaujouan et al. 2002; McDowell

et al. 2014; Casal et al. 2019), which may not have

been captured in our study. P concentrations are not

related to landscape composition (Bol et al. 2018) or

even P inputs (Dupas et al. 2015; Frei et al. 2020) in

headwater catchments. Multiple factors influence P

transfers to streams: soil type and P content (Djodjic

et al. 2004), tile-drainage (King et al. 2015a; King

et al. 2015b), small ponds and hillside storage

reservoirs (Schmadel et al. 2019), in-hillslope depres-

sions (Smith and Livingston 2013), leaks from septic

tanks (Withers et al. 2011) and livestock buildings,

bank erosion (Kronvang et al. 2012), and ditch-

dredging management (Smith and Pappas 2007).

Without considering any of these factors, our opti-

mised LCI ranked the headwater catchments reason-

ably well according to their P exports (Fig. 3b),

although the residuals may be explained by these other

factors. We demonstrate that the spatial configuration

of P sources in the landscape is critical to understand P

transfer from land to streams in headwater catchments.

This influence of landscape configuration for TP but

not NO3
- is consistent with knowledge on their

transfer pathways: TP is mainly transferred by surface

flowpaths and can therefore be intercepted by land-

scape buffer zones, while NO3
- is mainly transferred

by deeper flowpaths and can therefore by-pass shallow

retention hotspots (Strohmenger et al. 2020). The

influence of the spatial configuration of nutrient

sources on P but not N concentrations in agricultural

headwater streams results in high variability in N:P

ratios in these ecosystems. This variability affects

stream algae communities, particularly their bio-

masses and the relative abundances of different taxa

(Pringle 1990; Stelzer and Lamberti 2001).

The observation that landscape spatial organisation

influences N and P transfers is not new. Nonetheless,

Fig. 6 Ratio of the LCI-TP (LCI for a = 1.4 and b = 2.2) to

landscape composition index (LCI for a = b = 0) as a function

of area (square-root-transformed x-axis) for 500 random

subcatchments in the study area (points). The colour indicates

the percentage of agricultural land-use in each subcatchment

123

Landscape Ecol (2021) 36:3383–3399 3393



our approach differs from previous studies that used

single or multiple regression of several landscape

metrics, for example compiled in the FRAGSTATS

software (McGarigal and Marks 1995), to predict

nutrient exports at the catchment scale. Despite the

large body of studies that use these landscape metrics

(Lee et al. 2009; Bu et al. 2014; Ouyang et al. 2014;

Zhang et al. 2019), several of the relationships do not

have clear physical meaning, and the significant

relationships differ among studies (Wang et al.

2020). We consider that these studies, taken together,

are not conclusive for three reasons: (i) the large

number of pairwise or multiple regressions between

water quality parameters and landscape metrics

increases the risk of generating spurious correlations

(potential ecology fallacies), (ii) landscape metrics

depend greatly on the resolution of GIS input data, and

(iii) the studies do not consider the topological

dimension, which is fundamental for explaining

hillslope-to-stream transfers and landscape configura-

tion (Thomas et al. 2016b). Several approaches have

integrated this topological control with the hypothesis

that nutrient sources near streams (Sliva and Dudley

Williams 2001; Yates et al. 2014) and/or that overlap

flow accumulation areas (Peterson et al. 2011;

Staponites et al. 2019) have a disproportionally higher

influence on nutrient exports than other areas. While

these approaches still depend on the spatial resolution

of GIS data, they are ‘‘hypothesis-driven’’ rather than

purely ‘‘data-driven’’, which decreases the risk of

spurious correlations. A longstanding weakness of

these approaches, however, is their rigidity due to the

lack of calibrated parameters. For example, the

HAiFLS index (Peterson et al. 2011) and Flow-A

index (Staponites et al. 2019) included both the

distance to streams and flow accumulation, but the

latter dominates the index value by construction,

because it varies more than the former, and neither

index allows both factors to be weighted by calibrated

coefficients. The stochastic approach in the LCI

developed here is more flexible, and we show that

both hydrological distance and flow accumulation

influence P transfer.

Spatial variability and temporal stability of critical

source areas

One of the strongest correlation between median NO3
-

concentrations and LCI was for (a, b) = (0, 0), which

shows that each source (agricultural area) contributed

the same, regardless of its distance to streams or

overlap with flow accumulation areas. This confirms

the need to consider the entire catchment to reduce N

loads in agricultural catchments. For median TP

concentrations, the optimal was found for (a, b) =

(1.4, 2.2), a value for which 5% of the agricultural area

contributed 95 % of the weight assigned by our index

at the 10 m-pixel resolution. These values are similar

to those found by Thomas et al. (2016a), who

classified 1.6–3.4% of the catchment area (during

median storm events) and 2.9–8.5% (during upper-

quartile events) as prone to P transfer, based on a CSA

model that also considered land use and topography as

input variables. Summing the LCI-TP at the field scale

indicates that the 20% of fields at highest risk represent

85% of the total weights, which are the fields on which

mitigation measures should be prioritised. The distri-

bution is asymmetrical, with 69% of fields having a

mean LCI-TPfield less than 1. This information at

multiple scales can be a tool to maximise ecosystem

services at the catchment scale, by reorganising

landscapes to decrease P transfer without increasing

the percentage of set-aside areas (Doody et al. 2016).

The shape and location of the sub-field CSAs

overlap both the mandatory riparian buffer strips [5 m

according to local application of the European Union

Nitrate Directive (DREAL 2018)] and in-hillslope

CSAs based on the Topographical Wetness Index (e.g.

Page et al. 2005). Because most buffer strips in the

study area were installed recently, we included them in

P sources as they were enriched in P before conversion

(Roberts et al. 2012; Dodd and Sharpley 2016; Jarvie

et al. 2017; Gu et al. 2017; 2018). The location and

shape of the CSAs indicate the need for new shapes of

buffer zones, with variable widths and locations along

ditches as well. Because buffer strips are critical

sources of nutrients at the headwater catchment scale,

they require new management practices. Potential

solutions include sowing species that can capture more

P (Roberts et al. 2020), mowing and exporting the

residues each year (Fiorellino et al. 2017), and

applying amendments that have high P-sorbing ability

(Borno et al. 2018).

The temporal stability of the optimal parameters (a,

b) for TP during the flow period is consistent with the

spatial stability concept (Abbott et al. 2018), but is

contrary to the concept of variable source areas

(Collick et al. 2015; Dahlke et al. 2012). Our
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interpretation of this temporal stability is that even

though the soil-to-stream connectivity varied tempo-

rally during the sampling period, the TP concentra-

tions observed may reflect the remobilisation of

sediments transferred during rare erosion events.

Observing storm events that result in surface transfers

requires frequent observations (Cassidy and Jordan

2011). During the low-flow dates, the correlations with

LCI-TP were not significant: different sources and

sinks likely dominate the influence of agricultural

areas and their configuration, which predominates

during the flow period. Leaks from septic tanks or

animal buildings and desorption from sediments are

the most likely sources of P during this ecologically

sensitive period, while hydrological disconnection,

uptake, and sedimentation can be sinks of P (Lan-

nergård et al. 2020; Sandstrom et al. 2020).

Landscape homogenisation with increasing

catchment size: consequences for management,

monitoring, and modelling

When LCI were aggregated into 1 km2 subcatchments,

which is the typical size of a 1st order catchment in the

study area, the LCI-TP showed high spatial variability

(Fig. 5d, f). This spatial variability decreased as the

aggregation size increased (Fig. 5e, g), and landscape

composition was weakly correlated with landscape

configuration for catchments smaller than 50 km2 but

strongly correlated for those larger than 50 km2

(Figs. S1, 6). These results explain, at least partially,

why relationships between water quality parameters

and landscape composition metrics break down below

a certain catchment size (Bol et al. 2018). They also

shed light on the long-standing difficulty in upscaling

from nutrient export models at the field scale to those

at the catchment scale: the spatial configuration of the

nutrient sources can be critical.

The variability in the LCI-TP in small subcatch-

ments and its homogenisation in larger catchments is

the expression of a degree of unstructured hetero-

geneity (i.e. randomness) of the spatial configuration

of agricultural areas (Musolff et al. 2017). Some

almost entirely agricultural subcatchments have a

LCI-TP less than 1, while some mixed-land-use

catchments have a LCI-TP greater than 1. The latter

provides the opportunity to introduce structured

heterogeneity, i.e. to reorganise agricultural activities

spatially to reduce P transfers to streams (Musolff

et al. 2017).

These results have implications for both modelling

and monitoring. Semi-distributed models that simulate

P exports from an entire catchment with simulation

units smaller than 50 km2 should include a coefficient

to represent the spatial configuration of the agricul-

tural areas. A distributed model should also consider

ditches (as they are the entry point of P into the

hydrographic network) and, especially, the spatial

variability in P sources. When monitoring subcatch-

ments that are smaller than the homogenisation

threshold and have similar agricultural land-use com-

position, the observed differences in P loads cannot be

related directly to the agricultural practices or soil

properties. The spatial configuration of agricultural

areas appears to exert a major control on median P

concentrations. This is particularly important for

targeting measures to the most cost-effective fields

(Doody et al. 2016) and could increase in importance

due to the recent development of innovative financial

tools to improve water quality, such as payment for

ecosystem services schemes, whose obligation to

achieve results is increasing (Hejnowicz et al. 2014).

Our research provides a data-driven method to identify

CSAs and thus the most cost-effective fields on which

to implement mitigation measures.

The 50 km2 landscape homogenisation threshold

found in this study is similar to the 18–68 km2 stream-

concentration thresholds found by Abbott et al. (2018)

for the Rance and Haut-Couesnon catchments, also

located in western France. We assume that the

optimised coefficients and homogenisation threshold

would vary with the topo-climatic conditions and

agricultural landscape characteristics. More research

is needed to confirm this connection between land-

scape configuration and P loads in different environ-

mental settings. Given the high heterogeneity of

landscape configuration below the 50 km2 threshold,

this research calls for a spatially dense monitoring

network of headwater catchments. Monitoring catch-

ments smaller than this homogenisation threshold

allow the identification of critical source headwaters,

where targeted action could be implemented. We also

recommend using the LCI to investigate the influence

of landscape configuration on other water contami-

nants that are transferred mainly by surface flow paths,

such as some pesticides and faecal bacteria.
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Petitjean P (2020) Multitemporal relationships between the

hydroclimate and exports of carbon, nitrogen, and phos-

phorus in a small agricultural watershed. Water Resour

Res. https://doi.org/10.1029/2019wr026323

Temnerud J, Bishop K (2005) Spatial variation of streamwater

chemistry in two Swedish boreal catchments: implications

for environmental assessment. Environ Sci Technol

39:1463–1469

Thomas IA, Mellander PE, Murphy PN, Fenton O, Shine O,

Djodjic F, Dunlop P, Jordan P (2016) A sub-field scale

critical source area index for legacy phosphorus manage-

ment using high resolution data. Agric Ecosyst Environ

233:238–252

Thomas Z, Abbott BW (2018) Hedgerows reduce nitrate flux at

hillslope and catchment scales via root uptake and sec-

ondary effects. J Contam Hydrol 215:51–61

Thomas Z, Abbott BW, Troccaz O, Baudry J, Pinay G (2016)

Proximate and ultimate controls on carbon and nutrient

dynamics of small agricultural catchments. Biogeo-

sciences 13:1863–1875

Uuemaa E, Roosaare J, Mander Ü (2007) Landscape metrics as
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