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Abstract

Context The current biodiversity crisis has intensi-

fied the need to predict species responses to landscape

modification and has renewed attention on the funda-

mental question of what influences the dynamics of

species distributions. Landscape composition can

affect two main components that dictate distributions:

habitat suitability and habitat connectivity. Elucidat-

ing the relative importance of these factors and

associated landscape features can help prioritize

management action for species conservation.

Objectives Our objective was to use species distri-

bution models and network-based landscape connec-

tivity models to understand which landscape factors

were most predictive of the distribution of an anuran,

Blanchard’s cricket frog (Acris blanchardi), in an

agriculturally-dominated landscape.

Methods We conducted our study in Ohio, USA,

near the edge of the cricket frog’s contracting range.

To obtain a current assessment of cricket frog

distribution, we surveyed 367 pond and stream

locations across three North–South transects. We then

tested seven regression models, combining habitat

suitability and landscape connectivity metrics, to

determine which factors best predicted cricket frog

presence.

Results We detected cricket frogs in 24% of sur-

veyed locations and they were more likely to occupy

pond sites than stream sites. Cricket frog presence was

best predicted by models with habitat suitability and

the number of interconnected habitat patches. We

found that, while there was high variation in habitat

suitability across the study area, landscape connectiv-

ity was relatively uniform where we surveyed.

Conclusions Agricultural landscapes around the

world are often mosaics of land cover types, which

may functionally provide connectivity for some

species. In such areas, conservation management

should focus on preserving and restoring regions of

highly suitable habitat. This focus may be particularly

relevant for species that do not appear to be dispersal

limited and, therefore, able to maintain metapopula-

tion dynamics.
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Introduction

The current biodiversity crisis has intensified the need

to predict species responses to landscape modification

and climate change, and in turn has renewed attention

on the fundamental question of what influences the

dynamics of species distributions and range bound-

aries (Channell and Lomolino 2000; Elith and Leath-

wick 2009). At the most fundamental level, species

distributions are constrained by physiological, biotic,

and abiotic filters such that species persist only where

there are appropriate conditions for survival and

reproduction (Poff 1997). Often, these factors act at

different spatial scales. For example, climatic factors

(e.g., temperature and precipitation) often dictate

large-scale species distributions, land cover may affect

regional distributions, and biotic filters (e.g., preda-

tors, prey, competitors) often act on a smaller spatial

scale (Guisan and Thuiller 2005; Cord 2011; Gonza-

lez-Salazar et al. 2013; Pearson and Dawson 2015).

For species showing signs of range contraction or

declines for reasons that are not clear, landscape-level

assessments of occupancy can offer insights into

potential drivers of changes in distribution.

One mechanism known to play a large role in

dictating species distributions and range limits is

dispersal (Brown et al. 1996; Pulliam 2000; Sexton

et al. 2009). For instance, dispersal limitation in the

context of metapopulation dynamics (Levins 1969)

can explain the phenomenon that the availability of

quality habitat is not always predictive of species

presence; species can be absent from high-quality

habitat patches or present in low quality patches

(Pulliam 2000). Metapopulation dynamics predict that

a patch will change from unoccupied to occupied over

time when colonization rate equals or exceeds extinc-

tion rate (Levins 1969). The likelihood of colonization

depends upon the probability of dispersal as well as the

availability of resources at the new patch to sustain a

population. In the absence of strong environmental or

resource gradients, dispersal becomes a limiting factor

in species distributions and range edges (Holt et al.

2005; Bahn et al. 2006).

There are two main factors that must be considered

to ensure successful dispersal between patches: (1) the

intrinsic dispersal capabilities and motivation of

individuals and (2) the spatial configuration of habitat

patches the landscape matrix [i.e., structural landscape

connectivity (Baguette and Dyck 2007)]. By

combining species-specific movement behavior with

landscape structure, we are able to study biologically

relevant, functional landscape connectivity (Pascual-

Hortal and Saura 2006; Baguette and Dyck 2007).

Despite the importance of the functional landscape in

dictating species distributions, only in the past decade

have investigators begun to incorporate dispersal

dynamics into models predicting range responses to

future environments (Hein et al. 2011; Bateman et al.

2013; Ofori et al. 2017). Similarly, while dispersal

limitation is often referenced as an explanation for

current ranges (e.g., Svenning et al. 2008; Treasure

and Chown 2013) and an important component of

management plans (Rudnick et al. 2012; Allen et al.

2020), explicit tests on the impact of landscape

connectivity on current species distributions are

relatively new (Hartel et al. 2010; Ribeiro et al.

2011; Schivo et al. 2020).

The role of dispersal and functional landscape

connectivity may be particularly important for deter-

mining species distributions within human-dominated

landscapes that have experienced extensive fragmen-

tation and land cover changes. The loss of suit-

able habitat and increased isolation among habitat

patches can reduce dispersal and increase the likeli-

hood of population extinction—especially for declin-

ing populations that need rescue by immigrants. This

is because losing high-quality habitat can reduce the

number of emigrants and losing individuals in an

inhospitable landscape matrix will reducing the num-

ber of immigrants; the overall loss in dispersing

individuals can increase demographic stochasticity

and inbreeding depression (Brown and Kodric-Brown

1977; Fahrig 2003; Keyghobadi 2007). Reduced

connectivity in fragmented landscapes may explain

why a species does not occupy most areas of

suitable habitat. In highly modified landscapes, under-

standing how functional landscape connectivity and

availability of suitable habitat patches interact is

necessary to understand current occupancy trends and

for management planning.

In this study, we used species distribution models

and network-based landscape connectivity models to

understand which landscape factors were most pre-

dictive of the distribution of an anuran in an agricul-

turally-dominated landscape. Species distribution

models infer relationships between environmental

variables and the presence of a species (Elith et al.

2011) and can be used to assess habitat suitability.
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Network-based landscape connectivity models inte-

grate landscape features and species movement abil-

ities to determine areas of high and low functional

connectivity (Rayfield et al. 2011). We focused on

cricket frogs (Acris blanchardi) in Ohio, U.S. as a

model for evaluating the role of both habitat suitability

and functional landscape connectivity in determining

distribution across the landscape. Cricket frogs are a

small (3 cm long) frog that is active throughout the

summer months (Gray et al. 2005). They are consid-

ered a generalist, pond-breeding species, and can be

found in variety of habitats (Trumbo et al. 2012;

Youngquist et al. 2017). Cricket frogs were once one

of the most abundant amphibian species throughout

the midwestern U.S., but have recently experienced

enigmatic declines at the northern, western, and

eastern edges of their range (Gray et al. 2005). Ohio

serves as the eastern edge of their current range.

Cricket frogs may be especially dependent on disper-

sal and landscape connectivity to maintain regional

populations because this species functions as an

annual species (McCallum 2010; Lehtinen and Witter

2014); a single year of reproductive failure may equate

to local extirpation in the absence of immigrants.

Recent studies suggest that cricket frog dispersal is

negatively affected by forest land cover and highways

(Youngquist and Boone 2014; Youngquist et al. 2017).

Because of cricket frogs’ sensitivity to land cover,

combined with their reliance on dispersal to maintain

metapopulation structure, we predicted that incorpo-

ration of landscape connectivity would improve

predictions of cricket frog presence based only on

habitat suitability.

Methods

Current cricket frog distribution

We documented cricket frog presence/absence by

conducting call surveys across western Ohio. The

landscape of this region is heavily agriculture, with a

combination of row-crop (mostly corn and soybean),

hay, wheat, and pasture. Areas with higher topo-

graphic relief and forested areas are in the southern

and southeastern portions of the region. The climate is

humid temperate with a 30-year average precipitation

of 91 mm, minimum winter temperature of - 5 �C,

and maximum summer temperature of 28 �C (NOAA

2021).

We established three transects within the putative

current range of cricket frogs in western Ohio

(Lehtinen and Skinner 2006; Lehtinen and Witter

2014). The transects were oriented north–south and

placed approximately 45 km apart (hereafter W for

‘‘West,’’ C for ‘‘Central,’’ and E for ‘‘East’’ transect;

Fig. 1). Each transect was divided into 31, * 90 km2

quadrats (5’ latitude and 7’ longitude), following

Lehtinen and Skinner (2006). Within each quadrat we

randomly selected two pond and two stream locations

to conduct call surveys, for a total of 372 sites. All sites

were selected from the National Hydrography Dataset

(USGS NHD 2014). Ponds were less than 4 ha in area

and less than 400 m from road; streams sites were also

within 400 m of the road and were frequently

surveyed at bridges.

We surveyed the W and C transects from 26May to

30 June 2014 and the E transect 28 May to 25 June

2015. This period corresponds to peak calling for

cricket frogs in this region. Our methods are based on

the protocol from the North American Amphibian

Monitoring Program (NAAMP; Weir and Mossman

2005). At each site we conducted a road-side, 5-min

call survey. Our surveys began after 18:00 and finished

by 2:00 based on Lehtinen and Skinner (2006). Call

surveys were conducted when air temperatures were

above 15 �C, winds were relatively calm, and there

was no rain; air temperature and wind speed were

recorded for occupancy analyses. We recorded call

intensity using the NAAMP standard 0–3 qualitative

ranking, whereby 0 indicated no individuals heard

calling; 1 indicates calls are individually distinct with

intervals between calls; 2 indicates overlapping calls

but individuals still distinguished; and 3 indicates a

full chorus (Weir and Mossman 2005). However,

because call intensity varies temporally, we summa-

rized these data into presence or absence of calling

males. Furthermore, because of the resolution for our

landscape analyses (see below), we recorded all calls

within 400 m of our roadside stopping point. If frogs

were heard from ponds adjacent to a target stream, or

vice versa, we recategorized the site. For instance, if

we went to a pond that was dry, but frogs were calling

from a stream we recategorized the site to a stream;

this resulted in unequal sample sizes between ponds

and streams. In a few instances, our target location was

dry and we were unable to find an alternative; thus,
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these sites were removed from the study. Overall, we

collected data from 367 locations (pond = 188,

stream = 179; Table 1). To assess how survey

methods affected our ability to detect cricket frogs,

we surveyed 20% of the sites three times (n = 76).

Potential cricket frog habitat in Ohio

We created an independent habitat suitability map for

cricket frogs across the entire state of Ohio; this map

allowed us to assess the relationship between suitabil-

ity and presence/absence (described above) as well as

assess the potential availability of habitat across the

historic range of cricket frogs and the entire state. We

used MaxEnt 3.3.3k (Phillips et al. 2006) to develop a

model of habitat suitability that was independent of the

surveys conducted in 2014 and 2015. MaxEnt applies

machine learning to presence-only data, randomly

selected ‘‘background’’ points, and a set of environ-

mental layers (e.g., climate, land cover) to obtain an

Fig. 1 Map of sampling location in Ohio, USA. North–South

transects are W (western), C (central), and E (eastern) from left

to right. Points indicate sampled sites of ponds (black circle) and

streams (gray triangle). Dotted line indicates the estimated

current range of cricket frogs in Ohio based on presence

locations 2004–2011. Larger insert shows an enlargement of

three sampled quadrats from the E transect, with pond and

stream locations within. Small inset show location of Ohio (dark

grey) within the United States

Table 1 Number of sites with cricket frog present by habitat

type and transect

Transect Pond Stream Total

W 20 (59) 15 (60) 35 (119)

C 20 (64) 9 (60) 29 (124)

E 18 (65) 5 (59) 23 (124)

Total 58 (188) 29 (179) 87 (367)

Number in parentheses is the total number of sites surveyed.

There were significantly more pond sites with cricket frogs

present than streams (p = 0.0004); there was no statistical

difference between Western (W), Central (C), and Eastern

(E) transects
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output of predicted environmental suitability for a

species. We obtained 204 presence locations from

road-side call surveys conducted between 2004 and

2011 from Lehtinen and Skinner (2006), Lehtinen and

Witter (2014), and the Ohio Frog and Toad Calling

Survey (Pfingsten et al. 2013, J Davis personal

communication). To correct for sample bias and

spatial autocorrelation in presence locations, we

selected points that were 10 km apart; this resulted

in 62 presence points. We also created a background

bias file (polygon) that approximated the historic

putative range in Ohio, which encompasses the

western 2/3 of the state (Lehtinen and Skinner 2006).

We tested four categories of environmental vari-

ables in our habitat suitability model: climate, land

use, hydrologic features, and elevation. Initially, this

included 19 bioclimatic variables reflecting average

climate from 1970 to 2000 (WorldClim; 30 s resolu-

tion); 6 land cover variables—agriculture (row crop

plus pasture), urban, forest, canopy cover, impervious

surface (2011 National Landcover Dataset [NLCD],

Homer et al. 2015) and road density (USGS NTD

2014); three hydrological variables—pond density,

stream density, and distance to nearest stream (USGS

NHD 2014); and two elevation variables—elevation

and slope (OGRIP). We grouped pasture with row

crop because behavior and occurrence studies showed

cricket frogs respond similarly to these land cover

types; further, pasture is a minor component of the

landscape and little information is lost by combining

these categories. After testing for correlations among

variables (r\ 0.7) and preliminary optimization of the

MaxEnt model (testing variable importance using

jackknife tests and overall model performance), we

included nine environmental variables in our final

model: annual mean temperature, annual temperature

range, annual precipitation, mean daily temperature

range, percent agriculture (row crop plus pasture),

percent forest, percent urban, road density, and slope.

Hydrological variables did not contribute to model fit

and, in some cases, reduced model performance.

Percent land covers were calculated using the National

Land Cover Database (Homer et al. 2015; 30 9 30 m

cell size) within a 500 9 500 m area; road density was

calculated within a 10 km search distance for each

raster cell; and slope was initially calculated from a 1

arc-second digital elevation map at 100 m resolution.

All layers were resampled to a 500 m cell size and

projected to UTM 16 N with the North American

Datum of 1983. We chose 500 m as our spatial

resolution because this matched the auditory range of

our surveys and allowed us to balance resolution with

computational processing time.

We ran MaxEnt using most of the default settings

with the following exceptions: we set prevalence to

0.3 based on Lehtinen and Witter (2014); we checked

the generality of the model using 15-fold cross-

validation, whereby occurrence points are split into

unique training (57 points) and test datasets (5 points)

for each run; and we used jackknife to assess the

importance of each environmental variable. We eval-

uated model fit using the area under the curve (AUC)

of the receiver operating characteristic (ROC) curve.

A value of 0.5 indicates random accuracy and value of

1 indicates perfect discrimination (Hosmer and

Lemeshow 2000). We projected the final model to

the entire state of Ohio plus a 25 km buffer around the

W, C, and E transects (see below). We manipulated

data and environmental layers using ArcGIS 10.3 and

SDMtoolbox 2.0 (Brown 2014).

Landscape connectivity modeling

To quantify landscape connectivity, we used a land-

scape graph-based approach (Urban and Keitt 2001).

In this approach, habitat patches (nodes, which

included pond and lakes plus 100 m buffer) and a

landscape resistance layer are input to create a graph—

a set of nodes that are connected via links or edges. By

using a resistance layer to calculate least cost paths

between nodes, the graph edges reflect a biologically

relevant landscape for the species. The characteristics

of edges, nodes, and their connections are then used to

calculate landscape connectivity indices (Pascual-

Hortal and Saura 2006). All steps of the landscape

analyses were computed with the program Graphab

v2.0 (Foltête et al. 2012a). Because of the high

computational power needed, we restricted our land-

scape connectivity modeling to a 25 km buffer around

the surveyed transects. This distance prevented any

artificial boundary constraints that could affect calcu-

lating connectivity metrics at our focal locations.

Constructing our landscape graph required three

steps (Fig. 2; Foltête et al. 2012a). The first step was to

define our nodes (hereafter ‘‘habitat patch’’). Because

cricket frogs preferentially occupy permanent and

semi-permanent ponds and lakes, we defined habitat

patches as all permanent wetlands (ponds and lakes;
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USGS NHD 2014) plus a 100 m buffer. The second

step was to define a set of edges. We used three land

cover layers—2011 NLCD (Homer et al. 2015),

streams and rivers (USGS NHD 2014), and roads

(USGS NTD 2014)—to create a resistance surface,

from which least-cost distance edges were calculated

(using cumulative cost along least cost paths; Clauzel

et al 2016). We used previous studies of cricket frog

movement behavior (Youngquist and Boone 2014)

and population structure (Youngquist et al. 2017) to

parameterize our resistance surface; these studies

demonstrated that cricket frogs avoid traveling

through forested land cover and that highways (State,

US, and Interstate) limit gene flow. We gave habitat

patches and rivers/streams the lowest resistance

(value = 1); forest was given an intermediate resis-

tance value (value = 20); State, US, and Interstate

highways were given the highest resistance values

according to their road class (local = 50; sec-

ondary = 75; primary = 100); all other terrestrial land

cover types were given a low resistance (value = 5).

We used a range of resistances 1–100 because a

previous study indicated that analyses are robust to the

initial resistance landscape parameterization (Young-

quist et al. 2017). The third step was to build our

landscape graph based on the previously defined

habitat patches and edges. We built a planar threshold

graph. ‘Planar’ means no links cross and threshold

means maximum link distance is limited by cricket

frog dispersal ability. Maximum cricket frog dispersal

is estimated at 1.3 km (Gray et al. 2005), which

equated to 48.8 cumulative cost distance in the

resistance map; this value was obtained using the

equation: Cumulative Cost Distance = e^(inter-

cept ? b*log(Euclidean Distance)) (Clauzel et al.

Fig. 2 Landscape connectivity modeling close up views.A The

resistance-landscape used to calculate connectivity metrics.

Road classes apply to state, US, and interstate highways and

indicate road width and traffic speed; local road-class is not

shown in the figure. B Graph components showing

interconnected habitats used to calculated component order.

Blue pond-habitats are connected with least-cost paths (graph-

edges), constrained by cricket frog dispersal distance of 48.8

cost units (* 1.3 km)
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2016). Our resistance layer and associated landscape

graph had a 100 m cell size.

We calculated three landscape connectivity indices

that represent different ecological meanings at differ-

ent spatial scales (Pascual-Hortal and Saura 2006;

Rayfield et al. 2011; Foltête et al. 2012b). We

calculated one landscape-scale metric, component

order (CO; Rayfield et al. 2011; Fig. 2), which is the

number of interconnected habitat patches within each

component (a set of connected patches). Higher

component orders indicate a greater number of

connected habitats and more potential movement

within the landscape. We also calculated two patch

level metrics, betweenness centrality and dispersal

flux. Betweenness centrality (BC) is a measure of

route-specific flux; it examines the role of any given

habitat patch to serve as a stepping stone between two

other patches (Rayfield et al. 2011).We configured our

calculation of BC to approximate long-distance rescue

effect (Foltête et al. 2012a, b). Dispersal flux (F) quan-

tifies the potential to move to or from a patch and

indicates the amount of movement between any given

pair of habitat patches (Rayfield et al. 2011). For BC

and F, probability of movement was calculated based

on a maximum movement distance of 48.8 cost units

(approximately 1.3 km) at a probability p = 0.05.

These indices are patch-weighted; weighted indices

incorporated habitat patch properties [‘patch capacity’

sensu Foltête et al. (2012a)], such as patch quality or

resource potential, that indicate potential immigration

and emigration. We used habitat suitability scores

from the MaxEnt model as our weight (patch capac-

ity = suitability*100). Patch-level metrics were inter-

polated across the landscape so we could estimate

connectivity at the pond and stream sites surveyed in

2014 and 2015; we assumed that streams locations

near highly connected ponds would also be well

connected to those ponds. Connectivity indices were

interpolated at a 500 m cell size for statistical

analyses.

Statistical analyses

To test whether detection probability was affected by

our survey methods, we used a single season site

occupancy model (MacKenzie et al. 2002). Sites used

for these analyses were sampled three times in a single

year; no sites were sampled in multiple years. The

observation covariates we tested were time of day

(minutes after 18:00), sampling day (May 26 = day 1),

air temperature, and wind speed; all variables were

scaled around the mean. We initially parameterized

the models by determining whether linear or quadratic

formulations best fit the data using Akaike Informa-

tion Criteria (AIC). For the final models we used linear

formulation of time, day, and wind and quadratic

formulation for temperature. We compared eight

models: null, each covariate separately, a temporal

model, an environmental model, and a full model

(Table 2). We used Akaike Information Criteria

corrected for small sample size (AICc) to compare

and select the best models. We then calculated

detection probability for the top model. Using the full

dataset (n = 367), we tested whether there were

differences in the number of sites with cricket frogs

between habitat types (pond vs. stream) and among

transects using Chi-square goodness of fit tests.

Table 2 Model comparison for occupancy modeling to test for effects of survey methods on probability of detection

Model name Parameterization K DAIC AICwt Cum.Wt

Time psi(.)p(time) 3 0 0.5394 0.54

Temporal psi(.)p(date 1 time) 4 1.03 0.3221 0.86

Temperature psi(.)p(temp ? temp2) 4 4.10 0.0694 0.93

Environment psi(.)p(wind ? temp ? temp2) 5 6.10 0.0256 0.96

Full psi(.)p(date ? time ? wind ? temp ? temp2) 7 6.61 0.0198 0.98

Null psi(.)p(.) 2 7.60 0.0121 0.99

Wind psi(.)p(wind) 3 9.04 0.0059 0.99

Date psi(.)p(date) 3 9.06 0.0058 1.00

Psi is probability of occupancy and p is probability of detection. K is number of parameters. Top models (DAICc\ 2) are bolded
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We modeled cricket frog presence using general-

ized linear models with a binomial distribution.

Cricket frog presence/absence was our response

variable. For the 76 sites that were sampled three

times, we combined samples such that cricket frogs

were recorded as ‘‘present’’ if they were heard calling

on at least one date. We built seven different models

using our four predictor variables—habitat suitability

score, CO, BC, and F (Table 4). We also included

transect and habitat type (pond or stream) as covari-

ates. Our seven models included a null model (transect

and habitat type), each predictor separately (four

univariate models), additive habitat suitability ? CO,

and a full connectivity model (F ? BC ? CO). We

did not include suitability score in the connectivity

models that included BC or F because suitability was

incorporated in the calculation of these indices as

‘patch capacity’. To more easily evaluate the relative

effect of each variable, we scaled each predictor by

centering around the mean and dividing by standard

deviation. We compared models using AICc. We also

ran the above analyses on pond-only and stream-only

locations. We used conditional model averaging to

estimate parameters and calculate Wald’s z-statistics.

All statistics were conducted in the R statistical

environment (R Core Team 2017) using the packages

unmarked (Fiske and Chandler 2011) and AICcmo-

davg (Mazerolle 2019).

Results

Cricket frog surveys

Overall, cricket frogs were detected at 87 locations

(24%) and were heard calling more often from pond

sites than stream sites (Chi-square = 8.3, df = 1,

p = 0.004; Table 1). The number of ponds occupied

did not differ among transects (Chi-square = 3.03,

df = 2, p = 0.220; Table 1). The probability of

detection was affected by the time of day when

surveys were conducted; survey day also had a weak

effect on detection (Table 2). Average probability of

detection was 64 ± 6% (SE); detection probability

increased later in the night and decreased over the

duration of the survey period (Supplemental Fig. 1).

Habitat suitability and landscape connectivity

mapping

The average test AUC for the replicate runs was 0.773,

indicating an adequate model of habitat suitability.

Areas of suitable habitat were clumped and concen-

trated within the current cricket frog range. Areas with

the highest habitat suitability were southern and

western Ohio. Based on the jackknife test of variable

importance, the most important variables were annual

mean temperature, percent agriculture (crop and

pasture), percent forest, and slope. In general, suit-

able habitats were warmer, had lower percent cover-

age of agriculture, and intermediate percent cover of

forest (heterogeneous landscape), and were relatively

flat (Supplemental Figs. 2, 3).

Landscape connectivity metrics had a large range

across the landscape and among our study sites

(Table 3). However, the overall study area had

relatively uniform connectivity—especially where

the transects were located and where the sites were

sampled (Fig. 3). Histograms of CO, BC, and F were

strongly right skewed (Supplemental Fig. 4).

Table 3 Median and range values for metrics included in presence/absence models, separated by site type (pond and stream) and

cricket frog presence or absence

Type Cricket frog N Suitability CO BC F

Pond Present 58 0.24 (0.10–0.70) 7.5 (1–281) 211 (0–17,082,868) 7.7 (0–347.4)

Absent 130 0.16 (0.02–0.62) 8 (1–665) 14 (0–11,577,434) 4.3 (0–393.3)

Stream Present 29 0.19 (0.04–0.47) 5 (1–281) 56 (0–3,686,725) 2.7 (0–464.6)

Absent 150 0.18 (0.02–0.72) 8 (1–281) 262 (0–26,053,819) 5.4 (0–264.8)

N sample size, Suitability habitat suitability from Maxent model, CO component order, BC betweenness centrality, F dispersal flux
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Cricket frog distribution

For the full dataset (pond and stream sites combined),

the model that best explained cricket frog presence

was the model that included habitat suitability and CO

(Table 4). Cricket frog presence was positively

influenced by habitat suitability (Wald’s z = 2.72,

p = 0.006); CO was not significantly predictive of

presence (Wald’s z = 1.88, p = 0.060; Fig. 3), which

suggests the influence of CO on cricket frog presence

was small relative to other factors. When evaluating

only pond sites, we found a similar outcome: the

combined model of habitat suitability and CO was the

best model and the habitat suitability-only model was

a competing model (Table 4). As with the full dataset,

the estimated coefficient for suitability was signifi-

cantly different from zero (Wald’s z = 3.5,

p = 0.0004), but CO (Wald’s z = 1.5, p = 0.12) was

not. In contrast, when we examined only streams, there

were four competing models: CO, Null, BC, and

habitat suitability. Habitat suitability, BC, and CO

were all negatively associated with cricket frog

presence at stream locations, but their estimate was

not significantly different from zero (Table 4; Wald’s

z\ 0.57, p[ 0.57).

Discussion

Understanding how species distributions can be pre-

dicted from landscape features is an important step in

developing effective management plans and it is

particularly valuable in light of continued land-use

and climate changes. Two basic landscape compo-

nents affecting where species might be found are the

availability of suitable habitat and the ability to

disperse between these areas. Elucidating the relative

importance and contribution of habitat availability and

landscape connectivity to species occurrences may be

key to understanding occupancy in human dominated

landscapes. In these predictive models, researchers

must consider the landscape at ecologically relevant

scales and in an ecologically meaningful context. To

this end, we used species-specific parameters to

understand the landscape features affecting the distri-

bution of an at-risk amphibian, Blanchard’s cricket

frog. We found that areas with higher habitat suitabil-

ity were more likely to have cricket frogs present, but

surprisingly landscape connectivity was not as impor-

tant as expected.

Isolated populations of species that have a rela-

tively high turnover rate like the cricket frog, which

averages * 7% extinction rate across habitat types

(Lehtinen and Witter 2014), are at high risk for local

extirpation. Connectivity between populations is vital

to maintain and rescue these populations on the

landscape. We predicted that a model including

landscape connectivity would be more important than

a model with only habitat suitability—a result that was

partially supported; our top model included habitat

suitability and component order (CO), which is the

number of interconnected habitat patches. However,

unlike other studies that found a positive relationship

between connectivity and occupancy (e.g., Foltête

et al. 2012b; Jeliazkov et al. 2019), our results revealed

a non-significant but slightly negative relationship

between the number of interconnected pond-habitat

patches (component order) and cricket frog presence.

Betweenness centrality and dispersal flux were not

included in top models, despite incorporating habitat

suitability in the calculation of these metrics. This

lends further support to habitat suitability alone being

the best predictor of cricket frog presence.

One possibility for the absence of strong relation-

ship between functional landscape connectivity met-

rics and cricket frog presence may be a result of

relatively uniform connectivity in our sampling areas

throughout this agricultural landscape (Fig. 3). In

landscapes with more pronounced gradients in land-

scape connectivity (relative to other predictors), these

metrics may better predict presence (e.g., Foltête et al.

2012b). It is also possible that we underestimated

long-distance cricket frog dispersal ability (and thus

underestimated landscape connectivity), which may

frequently be the case with amphibians (Smith and

Green 2005). However, Foltête et al. (2012b) showed

model stability while changing dispersal distances,

indicating that analyses with connectivity metrics are

not sensitive to dispersal distance. Furthermore, our

preliminary analyses using longer dispersal distances

did not change the results; this is likely because

increasing the number of interconnected ponds will

only make the landscape have more uniform connec-

tivity. Our data suggest the region may be sufficiently

connected and allow migration to rescue extinct

populations, and other studies have demonstrated that

connectivity can be less important than habitat
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suitability for some species (Gould et al. 2012;

Poniatowski et al. 2018). Certainly, our results indi-

cate that cricket frogs are not dispersal limited in this

landscape; our models of landscape connectivity that

explicitly include dispersal limitation were rejected as

predictors of presence. Finally, it is also possible that a

negative relationship between connectivity and occu-

pancy could stem from other biotic factors. For

example, greater connectivity could increase the

probability of exposure to the amphibian chytrid

fungus pathogen (Batrachochytrium dendrobatidis;

Scheele et al. 2015), which has recently been shown to

increase overwinter mortality in cricket frogs (Wetsch

et al. unpublished data); in this scenario, more isolated

populations would be protected from immigrants

carrying and transferring the pathogen.

Overall, habitat suitability was the best predictor of

cricket frog presence and was included in top models.

For pond-breeding amphibians, habitat suitability can

be defined using within-pond characteristics and

larger-scale landscape features (e.g., Băncilă et al.

2017; Holtmann et al. 2017). The spatial scale in

question can influence the relative importance of

suitability and connectivity in predicting species

presence. For instance, Gould et al. (2012) found

habitat suitability was the best predictor for amphibian

presence at larger spatial scales (catchment); while at

the wetland scale, landscape connectivity in addition

to habitat characteristics were predictive of site

occupancy for two of three amphibian species. Inter-

estingly, site occupancy by boreal chorus frogs

(Pseudacris maculata), who have life history traits

akin to cricket frogs, was only predicted by site

characteristics and not landscape connectivity (Gould

et al. 2012). In this study, we took a larger-spatial scale

approach to model habitat suitability and predict

cricket frog presence at a given site. This approach

provides a broad brush to identify areas where cricket

Table 4 Model comparison for logistic regression of cricket frog presence

Dataset Model K DAICc AICcWt Cum.Wt b(SE)

Complete Suit 1 CO 6 0 0.72 0.7 0.40(0.15)a; 2 0.36(0.19)b

Suit 5 3.10 0.15 0.88

CO ? F ? BC 7 6.08 0.03 0.91

CO 4 6.29 0.03 0.94

Null 5 6.44 0.03 0.97

F 5 7.68 0.02 0.99

BC 5 8.39 0.01 1.00

Pond-only Suit 1 CO 5 0 0.64 0.64 0.72(0.21)a; 2 0.28(0.31)b

Suit 4 1.2 0.35 1.00 0.72(0.21)

Stream-only CO 4 0 0.27 0.27 2 0.38(0.31)

Null 3 0.13 0.25 0.52 NA

Suit 4 1.64 0.12 0.67 2 0.11(0.25)

BC 4 1.65 0.12 0.76 2 0.14(0.41)

Suit is habitat suitability, CO is component order, F is dispersal flux, and BC is betweenness centrality. Top models (DAICc\ 2) are

bolded; only top models for the pond-only and stream-only analyses are shown. Conditional model-averaged parameter estimates,

based on scaled variables, are given for top models only
aSuitability parameter estimate
bCO parameter estimate. Only the estimate for suitability was significantly different from zero

bFig. 3 Map of landscape factors within the focal landscape that

predict cricket frog presence (black) and absence (white).

A Connectivity landscape depicting the land cover categories

used for connectivity modeling. B Habitat suitability and

C component order were included in top models for the full

data set and ponds-only; D betweenness centrality was a

competing model for streams-only. Black circles indicate

occupied ponds and black triangles indicate occupied stream

sites; open circles or triangles indicate unoccupied sites
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frogs are most likely to be found and should have

priority for conservation. We show that areas of high

suitability are clumped into a few general areas in

Ohio, with the largest area in the southwest part of the

state; southwest Ohio has high habitat heterogeneity

and a warmer mean temperature. Highly suitable habi-

tats tend to be around riparian areas, indicating the

importance of a riparian habitat for pond-breeding

amphibians during the non-breeding season in agri-

cultural landscapes.

Another interesting finding from our habitat suit-

ability model was a relatively high frequency of

cricket frogs in sites with lower habitat suitability. One

explanation could stem from the model itself, which

was an ‘‘adequate’’ model (AUC = 0.773) rather than

an ‘‘excellent’’ model (AUC[ 0.8). As with all

models, our output is only as good as our input.

Because presence points were collected from call

surveys, there may be a road bias that was not

accounted for in our background data points (pseudo

absences). However, the high density of roads

throughout the study area means this bias likely had

a limited effect on the model output. Additionally,

there may be other unknown landscape factors that

were not included in the model. However, we infer that

our habitat model accurately reflected cricket frogs

themselves. Previous studies have found no or only

very weak relationships between cricket frog presence

and land cover (Lehtinen and Skinner 2006; Trumbo

et al. 2012; Youngquist et al. 2017). It is, therefore,

unsurprising that a land cover-based model might not

have as good a fit for a wide-ranging generalist

species, like cricket frogs, than with species that have a

narrower range of habitat requirements (e.g., Hernan-

dez et al 2006; Evangelista et al. 2008). Furthermore,

as a species with relatively high turnover (extinction

rates as high as 0.14 and colonization rate of 0.7;

Lehtinen and Witter 2014), finding cricket frogs in

unsuitable habitat is perhaps expected. Ultimately, our

model of habitat suitability has good predictive power

to indicate the general regions where cricket frogs

should be encountered with higher frequency.

In addition to serving as breeding habitat when

water is slow-moving, or in the backwaters, streams

may serve as critical habitat corridors to facilitate

dispersal and connect populations (Bull 2009; Scherer

et al. 2012; Lehtinen and Witter 2014). In our current

study, cricket frog presence was highly dependent on

the waterbody type surveyed and were more likely to

be heard calling from ponds than streams, likely

reflecting a preference to breed in and call from lentic

habitats (Gray et al. 2005; Lehtinen and Witter 2014);

most stream sites in this survey were not still

backwaters. However, not detecting calling males

does not mean cricket frogs avoid stream habitat.

Cricket frogs are frequently found along small rivers

and streams (Gray et al. 2005), especially outside the

breeding season (MBY personal observations). When

looking at model comparisons to predict presence in

ponds versus streams, we were surprised that there was

no strong support for any metric to predict cricket frog

presence in streams. If cricket frogs primarily use

streams to travel through the landscape, then their

presence on any given night may not be related to

large-scale landscape metrics used in this study.

However, the low number of stream-occupied sites

(low sample size) could obscure our ability to discern

associations. Additionally, we note that streams sites

were not considered habitat nodes in the landscape

connectivity models, but were rather coded as disper-

sal corridors; we made this decision to simplify the

landscape model. We interpolated betweenness cen-

trality and flux across the landscape and made the

assumption that stream points near highly connected

ponds were also highly connected; streams were not

counted as habitat nodes when computing component

order and a similar assumption was made. It is unclear

how this modeling approach—defining nodes based

only on ponds and lakes—may have impacted site-

specific connectivity values for stream locations. Our

approach could have made our stream sites appear less

connected than they really are. If this is the case, then

by treating all streams as habitat we would expect to

see an even stronger negative relationship between

landscape connectivity and occupancy, owing to the

overwhelming absence of cricket frogs from ‘‘highly

connected’’ stream sites; overall, our conclusions

would be unchanged. Alternatively, treating all

streams as habitat could create a relatively uniform

landscape of high connectivity; under this scenario,

there would still be little variation in connectively

between occupied and un-occupies sites and our

conclusions would remain much the same with habitat

suitability as the main predictor.

Anthropogenic land-use change results in increased

edge and open-canopy habitats (Haddad et al. 2015) to

which some species will benefit; yet, the extent to

which species profit will depend on their ability to
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disperse to those habitats. Species like the Blanchard’s

cricket frog should, at least theoretically, gain habitat

from conversion of forest into open-canopy agricul-

ture and pastoral lands dotted with human-made

ponds. Certainly, cricket frogs are found in many

human-made ponds throughout the area in agricultural

lands (Youngquist and Boone 2014; Youngquist et al.

2017), golf courses (Puglis and Boone 2012), and

exurban areas (Boone et al. unpublished data). Our

results do not negate the importance of landscape

connectivity in species conservation and habitat

management (Albert et al. 2017; Joly 2019), especially

when considering metapopulation dynamics and

changing landscapes (Zamberletti et al. 2018; Matos

et al. 2019; Allen et al. 2020). Multi-year studies show

that site occupancy and colonization can be related to

pond isolation (Brooks et al. 2019;Wright et al. 2020).

Instead, we show that landscape connectivity does not

predict current species distributions better than habitat

suitability. In landscapes where pond connectivity is

relatively uniform and dispersal does not limit species

distributions, management priority should focus on

land cover types to define and preserve areas of high

suitability. Out of an abundance of caution, focus

should also be on regions where clusters of ponds are

occupied until we have a better understanding of

cricket frog dispersal, biotic and abiotic interactions,

and the role of the landscape matrix. Our habitat

suitability analysis also shows areas of high suitability

outside the current range, indicating a potential for

recolonization in the future; a potential that may have

already begun to witness (Lehtinen and Witter 2014).
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