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Abstract

Context Spatial capture-recapture (SCR) models are

increasingly popular for analyzing wildlife monitoring

data. SCR can account for spatial heterogeneity in

detection that arises from individual space use

(detection kernel), variation in the sampling process,

and the distribution of individuals (density). However,

unexplained and unmodeled spatial heterogeneity in

detectability may remain due to cryptic factors, both

intrinsic and extrinsic to the study system. This is the

case, for example, when covariates coding for variable

effort and detection probability in general are incom-

plete or entirely lacking.

Objectives We identify how the magnitude and

configuration of unmodeled, spatially variable detec-

tion probability influence SCR parameter estimates.

Methods We simulated SCR data with spatially

variable and autocorrelated detection probability. We

then fitted an SCR model ignoring this variation to the

simulated data and assessed the impact of model

misspecification on inferences.

Results Highly-autocorrelated spatial heterogeneity

in detection probability (Moran’s I = 0.85–0.96),

modulated by the magnitude of the unmodeled

heterogeneity, can lead to pronounced negative bias

(up to 65%, or about 44-fold decrease compared to the

reference scenario), reduction in precision (249% or

2.5-fold) and coverage probability of the 95% credible

intervals associated with abundance estimates to 0.

Conversely, at low levels of spatial autocorrelation

(median Moran’s I = 0), even severe unmodeled

heterogeneity in detection probability did not lead to

pronounced bias and only caused slight reductions in

precision and coverage of abundance estimates.

Conclusions Unknown and unmodeled variation in

detection probability is liable to be the norm, rather

than the exception, in SCR studies. We encourage

practitioners to consider the impact that spatial

autocorrelation in detectability has on their inferences

and urge the development of SCR methods that can

take structured, unknown or partially unknown spatial

variability in detection probability into account.
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Introduction

Imperfect detection is one of the primary challenges to

the estimation of the size of wild populations.

Regardless of the data collection method employed,

rarely, if ever, are all individuals in a population

detected. This challenge is amplified with the increas-

ingly widespread application of non-invasive sam-

pling methods for making landscape-level

assessments across time and space, such as camera

trapping and non-invasive DNA sampling (Burton

et al. 2015; Beng and Corlett 2020), which often trade

off local sampling intensity for extent of spatial

coverage (grain vs. extent; Chandler and Hepinstall-

Cymerman 2016; Steenweg et al. 2018). Capture-

recapture and, more recently, spatial capture-recapture

(SCR) models estimate and account for imperfect

detection, thereby producing robust estimates of the

focal ecological parameters (Chao 2001; Efford 2004;

Lukacs and Burnham 2005; Borchers and Efford 2008;

Royle et al. 2014). SCR has become particularly

popular as it exploits the information contained in the

spatial configuration of detections and non-detections

across the study area to produce spatially explicit

estimates of abundance (i.e., density; Borchers and

Efford 2008; Royle and Young 2008; Royle et al.

2018).

In most field studies, detection probability—the

probability of detecting a species or individual when it

is present—is not only imperfect but also variable.

Detection probability can vary across individuals,

time, and space (Gimenez et al. 2008; Kellner and

Swihart 2014; Conn et al. 2017; Guélat and Kéry

2018). The implications and treatment of individual

and temporal variability in detection probability have

been extensively documented in the non-spatial cap-

ture-recapture literature (Chao 2001; Link 2003;

Borchers et al. 2006; Gimenez et al. 2018a). SCR

models are particularly well-suited to account for

spatially variable detectability, as studies are usually

configured into discrete detection locations referred to

as detectors (or traps) that are distributed across the

study area (Efford et al. 2013; Royle et al. 2014).

Spatial variation in detection probability resulting

from individual space use relative to detector loca-

tions, i.e. the declining probability of detection with

increasing distance from an individual’s activity

center (AC), is in fact exploited by SCR models to

estimate the distribution of individual ACs (Borchers

and Efford 2008; Royle and Young 2008). Other

potential sources of spatial heterogeneity in detectabil-

ity include those caused by the study itself, such as

variable search effort, and local intrinsic and extrinsic

factors that influence the detectability of animals.

Known sources of variation in detection probability

can be modeled and accounted for in SCR (Efford

et al. 2013; Efford and Mowat 2014; Royle et al.

2014). This is the case when variable sampling effort

is recorded, for example, during camera trapping or

non-invasive DNA sampling (Royle et al. 2009;

Efford et al. 2013), or when spatial covariates, such

as habitat proxies for vulnerability to detection, are

used (Bischof et al. 2017; Kendall et al. 2019).

In many wildlife monitoring studies, spatial hetero-

geneity in detection probability remains partially

unknown. Unaccounted environmental factors may

impact exposure to detectors; for example, site-

specific characteristics may affect visibility, or local

climate can influence genotyping success rate of non-

invasively collected DNA samples (Efford et al. 2013;

Kendall et al. 2019). Survey effort may also vary

across the study area unbeknownst to the investigator.

For example, many large-scale monitoring programs

combine structured sampling with unstructured data

collection methods to increase the spatial extent and

sampling intensity, and involve members of the public

in the process (Thompson et al. 2012; Conn et al. 2017;

Altwegg and Nichols 2019; Bischof et al. 2020a;

Sicacha-Parada et al. 2021). Data from unstructured

sources introduce unknown spatial heterogeneity in

detection probability in SCR studies. In the analysis of

monitoring data, ignoring the variability in detection

can seriously degrade population inferences (Nichols

and Williams 2006; Gimenez et al. 2008; Gerber and

Parmenter 2015). However, it has also been previously

shown that spatially random variation in detection

probability does not seem to be a major source of bias

in parameter estimates from SCR analysis (Bischof

et al. 2017). In such situations, most individuals in the

sampling grid will be detected by at least one detector,

if detectors are spaced closely enough (high grain) and

cover a large enough area (large extent) relative to

home range sizes in the study population (Sollman

et al. 2012; Efford and Fewster 2013).

Spatial autocorrelation in detection probability—

when detectability is more similar among neighboring

than distant detectors—is common in ecological

studies (Guélat and Kéry 2018). Observed and
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unobserved spatially autocorrelated variation in detec-

tion probability could have many causes (Gaspard

et al. 2019), divided into two broad categories. On the

one hand is the nature of the data collection; for

example, regional differences in the mobilization of

volunteers for non-invasive DNA collections, varia-

tion in camera trap efficiency due to inadvertent scent

contamination at a cluster of sites, or reduced physical

capture success in traps installed by a less-experienced

operator in their designated area (Kristensen and

Kovach 2018; Bischof et al. 2020a; Tourani et al.

2020a). On the other hand are characteristics of the

study species and its environment, such as spatial

variation in site attractiveness or individual behaviors

(e.g., shyness) that lead to variable detectability

(Efford et al. 2013; Howe et al. 2013; Stevenson

et al. 2021). Variable detection probability that is

highly autocorrelated may disproportionately affect

the overall detectability of certain individuals in the

population based on the location of their ACs. When

areas with virtually zero probability of detection are

known, for example in clustered sampling designs,

they can be specified as detector-free regions (or

holes) in the sampling grid and be treated like the

unsampled habitat buffer in SCR (Efford and Fewster

2013; Royle et al. 2014). In extreme cases, however,

large swaths of the study area, and the individuals

inhabiting them, may be left unsampled, unbeknownst

to the investigator. This can occur when, for example,

SCR data are obtained opportunistically (e.g., con-

tributed by citizen scientists), where the incomplete

information about the detection process makes it

unclear whether areas without detections were sam-

pled or not (i.e., true vs. false negatives; Thompson

et al. 2012; Bird et al. 2014; Bischof et al. 2020a). We

expect flawed inferences from SCR studies if auto-

correlated heterogeneity in detection probability

remains cryptic, and thus unaccounted for. Specifi-

cally, when detection probability is not correlated with

animal density (Clark 2019; Paterson et al. 2019), we

predict that an SCR model ignoring contiguous areas

with low or zero detection probability would produce

positively biased estimates of average detection prob-

ability as it is inferred from areas with detections, and

therefore negatively biased estimates of density

(Royle et al. 2013; Guélat and Kéry 2018).

Most, if not all, SCR analyses of empirical data that

are collected across large spatial extents, ignore some

sources of spatial variation in detection probability.

The extent to which the misspecification of the

detection process in the presence of variable and

spatially autocorrelated detection probability may

affect the estimates of focal parameters in SCR studies

has not yet been systematically investigated. Using

simulations with an envelope that includes scenarios

encountered during wildlife monitoring, we quantify

how unmodeled, spatially variable detection proba-

bility influences parameter estimates obtained via

SCR. Specifically, our objective in this study is to

identify scenarios where unmodeled heterogeneity in

detection probability can lead to problematic infer-

ences in SCR analysis. We do so with a focus on both

the magnitude of variability in detection probability

and the autocorrelation therein.

Methods

Spatial capture-recapture model

For the purpose of this study, we used a standard,

single-session SCR model in a Bayesian framework

(Royle et al. 2014; see the model code in Online

Appendix 1). Our model is composed of two hierar-

chical levels:

1. The ecological sub-model reflects the underlying

ecological process of interest and describes the

distribution of individuals in space, i.e. density.

Following a homogeneous point process (Royle

et al. 2014), we assume every individual i in the

population has a fixed AC (or home range center;

si) and that these individual ACs are randomly

distributed across the habitat S according to a

uniform distribution:

si �UniformðSÞ ð1Þ

We used a data augmentation approach to account

for those individuals in the population that are not

detected (Royle et al. 2007). Detected and aug-

mented individuals make up the super-population

of size M (see below). A latent state variable zi
describes inclusion of individual i in the popula-

tion, governed by the inclusion probability w:

zi �BernoulliðwÞ ð2Þ
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where zi takes value 1 if individual i is a member

of the true population and 0 otherwise. Population

size N is therefore:

N ¼
XM

i¼1

zi ð3Þ

2. The observation sub-model describes the individ-

ual and detector-specific probability of detection

pij as a function of Euclidean distance dij between

the location of an individual AC and a given

detector j. We used the half-normal detection

function to model pij (Borchers and Efford 2008;

Royle et al. 2014):

pij ¼ p0 exp �d2ij

.
2r2

� �
ð4Þ

where p0 is the baseline detection probability (or

magnitude of the detection function). In the half-

normal model, the detection probability pij
decreases monotonically with distance dij from si
(Borchers and Efford 2008; Royle et al. 2014).

The spatial scale parameter r defines the rate of

decline in pij with distance dij from detector j to the

si. By including the spatial information through an

explicit model for detection, SCR accounts for one

important source of spatial variation in detection

probability: the location of an individual’s AC

relative to the detectors (Borchers and Efford

2008; Royle et al. 2014).

We considered the observations of individuals at

detectors as the outcome of a Bernoulli process

(detections [yij ¼ 1] and non-detections [yij ¼ 0])

with probability pij and conditional on the state zi
of individual i:

yij �Bernoulli pij zi
� �

ð5Þ

Importantly, this observation model assumes

constant baseline detection probability among

detectors, and thus does not account for additional

detector-specific variation in detectability.

Simulation

General approach

To evaluate the consequences of unmodeled spatial

heterogeneity in detectability, we generated SCR data

sets with varying patterns of spatial heterogeneity in

the baseline detection probability (i.e., detector-speci-

fic p0 ¼ p0j ), before fitting SCR models assuming

constant baseline detection probability across detec-

tors. We considered two types of scenarios: continu-

ous and categorical spatial variation in detectability.

For each scenario, we varied both the level of spatial

autocorrelation and the magnitude of the spatial

variation to resemble sampling configurations and

intensities that may occur in real-life studies (Fig. 1).

We also included a reference scenario without spatial

heterogeneity in detection probability; thus, the

observation sub-model was not misspecified.

Set up

For all simulations, we used a 20� 20-distance unit

(du) square grid of 400 detectors with 1 du inter-

detector spacing. The habitat S included the region

covered by detectors and a 4.5-du wide buffer around

it (i.e., three times the simulated value for r; Efford
2011) for a total area of 29� 29 du2 (Fig. 1). The

buffer allows individuals with ACs located outside but

near the detector area to be detected within. We fixed

the values for the true population size to N ¼ 250 and

the spatial scale parameter of the half-normal detec-

tion function to r ¼ 1:5 du across all simulation

scenarios for simplicity. We set the size of the

augmented population size to be 2.5 times the

simulated number of ACs (M ¼ 625). With this set

up, we detected, on average, about 40% (range =

15–60%) of the true population size N under any given

scenario (Table S2.1, Online Appendix 2).

Detector-level covariates

We generated spatially autocorrelated covariates of

the baseline detection probability encompassing the

extent of the 20� 20 du2 detector grid with the same

spatial resolution (1 du) using a function developed by

Guélat (2013), with minor modifications (Online

Appendix 1). The detector-specific, spatial covariate

X was generated using a multivariate normal

distribution:

X�MVN 0; Rð Þ ð6Þ

where the covariance matrix R determines the spatial

association between detectors. R is calculated using a
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function D representing the decay in correlation

between pairs of detectors with distance. We followed

Guélat (2013) and modeled the covariance of X at two

detectors j and j0 as an exponential decay with

distance:

D djj0
� �

¼ exp �/djj0
� �

ð7Þ

where djj0 is the distance between detectors j and j0, and
/ is the rate determining how rapidly correlation

declines with distance. We varied / to simulate

covariates with low (/ ¼ 1000), intermediate

(/ ¼ 1), or high (/ ¼ 0:001) spatial autocorrelation

(Fig. 1). We randomly generated 100 covariate

Fig. 1 Examples of spatially variable and autocorrelated

baseline detection probability (higher = darker blue shading)

in grid of detectors (gray dots) centered in a habitat (entire area

surrounded by the blue line with rounded corners). Shown in

rows, spatial variation may be continuous or categorical (with

different proportion of area in the lower detectability category).

Shown in columns, spatial autocorration may vary from high

(Moran’s I � 1) to low (Moran’s I � 0). For a detailed

description of each scenario, see the main text.
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surfaces for each simulation scenario and scaled the

resulting values. We then extracted the spatial covari-

ate values for each detector grid cell Xj (but see below

the extra step for simulating continuous spatial

variation in detectability). We quantified the realized

spatial autocorrelation using the Moran’s index of

global spatial autocorrelation, Moran’s I (Moran 1950;

Sokal and Oden 1978; Lichstein et al. 2002) for each

simulated spatial covariate with the R package ‘raster’

(Hijmans 2019). I ranges from �1 (perfectly nega-

tively correlated) to 0 (no correlation) and 1 (perfectly

positively correlated).

Simulation scenarios

1. Continuous, detector-level variation in detectabil-

ity—Continuous spatial variation in detection

probability may arise in situations where an

underlying habitat covariate, such as elevation,

forest cover, or distance from a feature (e.g., roads

or human settlements) linearly affects baseline

detection probability at detectors (Fig. 1) but

remains unmodeled. We modeled the detector-

specific baseline detection probability p0j as a

linear function of the simulated spatial covariate

X:

logit p0j
� �

¼ b0 þ bXXj ð8Þ

where b0 is the intercept value of the simulated

baseline detection probability p0 on the logit scale

and bX is the regression coefficient of the covari-

ate effect. We kept b0 constant across simulations,

which corresponds to an intercept value of 0.15 for

p0. We used two values of bX to generate low

(bX ¼ �0:5) or high (bX ¼ �2:0) amounts of

spatial variation in detection probability. Gener-

ating spatial covariates directly as spatially auto-

correlated rasters as described above, leads to less

tractable outcomes as the level of spatial autocor-

relation / influences not only the spatial distribu-

tion, but also the density distribution of the

covariate. To ensure that the density distribution

of spatial covariates on detection probability

remained comparable across simulations, regard-

less of the level of autocorrelation, we mapped a

uniformly-distributed spatial covariate with val-

ues in the range between �1:96 and 1.96 onto the

spatially autocorrelated similarity raster created as

described above (see the code in Online Appendix

1). As a result, the mean covariate value and

variance were constant across simulations, regard-

less of the level of spatial autocorrelation. In other

words, we sought stationarity when all simulations

of a given scenario are considered jointly, but not

within a given simulated detector grid. Following

Eq. 8, the detector-specific baseline detection

probability p0j was between 0.06 and 0.32 (median

= 0.15) when the variation in detectability was low

(bX ¼ �0:5). By increasing bX to �2:0, p0j was

between 0.003 and 0.9 (median = 0.15; Table S2.1,

Online Appendix 2). pij was then calculated by

reformulating Eq. 4:

pij ¼ p0j exp �d2ij

.
2r2

� �
ð9Þ

Finally, the SCR data yij was generated by

realizing the detection process following Eq. 5.

Note that such large differences in p0j do not

translate into a correspondingly large differences

in overall detectability. The probability of detect-

ing any given individual at least once, depends not

only on p0j , but also on the scale parameter of the

detection function r, and the position of its AC

relative to the entire detector grid. Comparatively

extensive spatial differences in baseline detection

probabilities have been reported for three large

carnivore species in Scandinavia (Bischof et al.

2020a). For example, p0 estimates (after conver-

sion from binomial to Bernoulli) for wolves Canis

lupus ranged from near 0 to 0.8, depending on

administrative region.

2. Categorical, detector-level variation in

detectability—In real-world monitoring studies,

this situation arises when there are at least two

regions with different sampling intensity across

the study area; for example, two regions with

varying sampling effort (or different sampling

protocols that lead to varying sampling intensity),

or two contrasting landscapes (e.g., forest vs.

grassland) or detector types (e.g., camera traps on

and off trails) across the study area that influence

the detection probability (Fig. 1). To represent this

situation, we transformed the underlying contin-

uous spatial covariate into a binary one (Xj ¼ 0 or

1) before simulating scenarios with two classes of

123

2884 Landscape Ecol (2021) 36:2879–2895



detector-specific baseline detection probability p0j
using Eq. 8. The R code in Online Appendix 1

shows the method used to define the cut-off value

to discretize the spatial covariates. We used the

same values of bX to generate low or high amount

of spatial variation in detectability between the

discrete classes of detectors. With this set-up, the

baseline detection probability at a group of

detectors (Xj ¼ 0) was equal to the intercept value

(p0j ¼ b0 ¼ 0:15), and p0j for the remaining

detectors with lower detectability (Xj ¼ 1) was

either 0.1 (when bX ¼ �0:5) or 0.02 (bX ¼ �2:0)

depending on the simulated amount of spatial

variation in detectability (Table S2.1, Online

Appendix 2). In addition, we considered an

extreme case, where a portion of the study area

remained entirely unsampled unbeknownst to the

investigator, and therefore unaccounted for in the

model. This situation could be encountered in, for

example, volunteer-based monitoring programs,

where SCR data are collected opportunistically

but no or only limited spatial information exists

about the spatial configuration of sampling.

Logistic issues, such as systematic equipment

failure (e.g., trap malfunction or damage) or

human error, if unreported, may also result in

clusters of detectors that remain inactive without

the investigator’s knowledge. We set bX to

�10000, so that p0j � 0 for detectors with a

covariate value of Xj ¼ 1, and therefore no

detection could occur at these inactive detectors.

To evaluate the potential effect of the proportion

of detectors with a different baseline detection

probability, we varied the proportion of detectors

assigned to each class of the discrete covariate

simulated (Fig. 1). We simulated SCR data sets

with 25% (n = 100 detectors), 50% (n = 200), or

75% (n = 300) of the detectors assigned to the

lower detectability class (Xj ¼ 1).

Simulation realization—In total, we generated six

simulation scenarios of continuous spatial variation in

baseline detection probability with the combinations

of two values of bX and three levels of spatial

autocorrelation /. For the discrete categorical varia-

tion in baseline detection probability, we simulated 27

scenarios from all possible combinations of the three

values of bX, three different proportions of detectors

with lower detectability, and three levels of spatial

autocorrelation. Finally, we included a scenario of

constant detection probability across detectors for

reference, i.e. the observation sub-model was correctly

specified. We repeated the data simulation procedure

100 times for each combination of parameters, result-

ing in a total of 3400 simulated SCR data sets

(Table S2.1, Online Appendix 2).

Additional simulations—Another common formu-

lation of the detection process in SCR is the Poisson

distribution. This models count-based data arising

from sampling methods in which individuals can be

detected multiple times at a detector during a single

occasion, such as in camera trapping studies (Royle

et al. 2014). To evaluate the consequences of similar

model misspecification in SCR models with a Poisson

detection process, we simulated additional count-

based SCR data sets and repeated the analysis. We

simulated SCR data with counts as observations and

fitted a standard, single-session, Poisson-distributed

SCR model assuming homogeneous baseline detec-

tion rate. A description of the data simulation proce-

dure and fitting of the misspecified Poisson SCR

model is provided in Online Appendix 3.

SCR model fitting and evaluation of model

performance

We fitted the SCRmodel described earlier, which does

not account for spatial variability in baseline detection

probability, to the simulated data sets using NIMBLE

(version 0.8.0; de Valpine et al. 2017), nimbleSCR

(Bischof et al. 2020b), and R 3.6.1 (R Core Team

2019). We chose vague priors for all primary param-

eters (w, r, p0, and k0 as the baseline detection rate in

the Poisson SCR model; Table S1.1, Online Appendix

1). We used a local evaluation approach to reduce

computation time (Turek et al. 2021). We drew from 3

chains, 15000 Markov chain Monte Carlo (MCMC)

samples each, and discarded the initial 5000 samples

as burn-in. We visually inspected the mixing of the

chains using trace-plots and considered models as

converged when all parameters had a potential scale

reduction value (Rhat) \1:10 (Brooks and Gelman

1998). We removed from further analysis simulation

runs that had failed to reach convergence. R code

exemplifying the SCR data simulation for each

scenario and model fitting are provided in Online

Appendix 1.
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To quantify the consequences of unaccounted

spatial heterogeneity in detection probability for

SCR models, we calculated the relative bias (RB),

coefficient of variation (CV), and coverage probability

of the 95% credible intervals (hereafter, coverage;

Walther and Moore 2005) of the estimates of popu-

lation size (N̂) and spatial scale parameter (r̂). RB was

calculated as:

cRB hð Þ ¼ ĥ� h0
� �.

h0 ð10Þ

where ĥ is the posterior mean estimate for the

parameter of interest and h0 is the true (simulated)

value of that parameter. CV was calculated to assess

the precision of each parameter estimate as:

dCV hð Þ ¼ cSD hð Þ
.
ĥ ð11Þ

where cSDðhÞ is the standard deviation of the MCMC

posterior samples of that parameter. Further, we

calculated the coverage as a metric of model fit,

which was computed as the proportion of simulation

runs in which the 95% credible interval of the

parameter estimate included the simulated value of

that parameter (Walther and Moore 2005).

Results

Overview

Of the 3400 simulation runs, 3384 (99.5%) reached

convergence and were retained: 599 (99.8%) and 2685

(99.4%) for the continuous and categorical scenarios

of spatial variation in detectability, respectively

(Table S2.2, Online Appendix 2). Our results indicate

that the misspecified SCR model was robust to

unmodelled spatial heterogeneity in detection proba-

bility for most of the scenarios explored. Population

size (N̂) and spatial scale parameter (r̂) estimators

exhibited pronounced bias only in the presence of high

spatial autocorrelation and high amount of variation in

detectability among detectors (Fig. 2). Precision

(Fig. 3) and coverage (Fig. 4) were also affected in

our extreme scenarios when the detector-specific

variation in detection probability remained unmod-

eled. The consequences of spatial autocorrelation were

amplified with increasing proportions of detectors

with lower detectability in the categorical scenarios

and, in certain situations, when the amount of variation

in detection probability was high (Table S2.2, Online

Appendix 2). Qualitatively, misspecification of the

observation sub-model for Bernoulli- and Poisson-

distributed data had comparable consequences.

Results for the simulations with the Poisson SCR

model are provided in Online Appendix 3.

Continuous, detector-level variation

in detectability

We observed increasingly negative bias in N̂ with

increasing spatial autocorrelation (Fig. 2; Table S2.2,

Online Appendix 2). The magnitude of RB in N̂

obtained with high spatial autocorrelation (simulation

scenarios 1 and 4: median Moran’s I = 0.96; median

RB(N̂) = 16%) was substantially greater than that for

scenarios with low spatial autocorrelation (scenarios 3

and 6: median Moran’s I = 0; median RB(N̂) = 0:2%).

This pattern was amplified when the amount of

variation in detectability was high (scenario 4: median

RB(N̂) = 30%). In contrast, we detected no noticeable

bias in r̂ (Fig. 2), even when the amount of variation in

detectability was high and spatial autocorrelation was

high or intermediate (scenarios 4 and 5: median RB(r̂)
= 4% and 7%, respectively).

The pattern in precision of N̂ and r̂ were almost

identical across the scenarios considered (Fig. 3).

cFig. 2 Relative bias (RB) for population size (N̂) and the spatial
scale parameter of the half-normal detection function (r̂)
estimated by a spatial capture-recapture model fitted to

simulated data sets. Spatial variation in detection was simulated

but not accounted for in the estimation model. Numbers

provided on the x-axes refer to the unique ID of the simulation

scenario and link with the more detailed information provided

for each simulation in Online Appendix 2. Violins show the

biasing effects of spatial autocorrelation at the detector-level

covariates simulated (decreasing from dark [High] to light

colors [Low]) in different scenarios of continuous (top row) and

discrete categorical (bottom three rows) variation in baseline

detection probability. For the categorical scenarios, the propor-

tions of detectors that belong to a group of detectors with lower

detectability increases from top (25%) to bottom (75%).

Background colors correspond to three different sets of

simulation scenarios with similar values of the magnitude of

the covariate effect: Low (bX ¼ �0:5; light gray), High

(bX ¼ �2:0; white), and Extreme (bX ¼ �10000; dark gray).

Yellow violins labeled as Reference in the top row show the

results for a baseline scenario without heterogeneity in detection

probability
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When the amount of variation in detectability was low

(scenarios 1–3), precision of the parameter estimates

were comparable to those of the reference scenario

without spatial heterogeneity in detection probability

(scenario 7: median CV(N̂) = 7% and median CV(r̂) =

5%). Precision of N̂ and r̂ were inflated when the

magnitude of variation in detectability was high

(scenarios 4–6: median CV(N̂) = 5% and median

CV(r̂) = 3%), where increasing the spatial
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autocorrelation slightly decreased the precision of N̂

(scenario 4; Table S2.2, Online Appendix 2).

Coverage of both N̂ and, to a lesser extent, r̂ were

drastically impacted by spatial autocorrelation (Fig. 4;

Table S2.2, Online Appendix 2). In situations of high

spatial autocorrelation and low variability in detection

probability, we observed a 14% reduction in coverage

of N̂, compared to low spatial autocorrelation (from

Coverage(N̂) = 93% in scenario 3 to Coverage(N̂) =

80% in scenario 1). The combination of high spatial
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autocorrelation and high variation in detectability led

to coverage of N̂ as low as 3% (scenario 4; Fig. 4). The

pattern was less pronounced for r̂ (scenario 4:

Coverage(r̂) = 70%). However, we detected a drastic

decrease in the coverage of r̂ for the scenario of

intermediate spatial autocorrelation and high amount

of variation in detectability (scenario 5: median

Moran’s I ¼ 0:63, Coverage(r̂) = 26%; Fig. 4).

Categorical, detector-level variation

in detectability

We observed increasing negative bias in N̂ with

increasing spatial autocorrelation and increasing pro-

portion of detectors with lower detectability (Fig. 2;

Table S2.2, Online Appendix 2). The bias was

particularly pronounced in scenarios of extreme,

spatially autocorrelated variation in detectability

(median Moran’s I = 0.86), where 50% or more of

detectors were inactive, ultimately leading to an entire

region with little or no sampling (scenarios 23 and 32:

median RB(N̂) = 49%). However, when the variation

in detectability was low (scenarios 8–10, 17–19, and

26–28), N̂ was minimally affected in terms of bias

regardless of the spatial autocorrelation and propor-

tions of detectors with lower detectability (Table S2.2,

Online Appendix 2). Similarly, when spatial

autocorrelation in detectability was low, N̂ remained

relatively unbiased even in the extreme scenarios of a

portion of detectors being inactive. We observed no

systematic bias in r̂ under any of the scenarios tested

(Fig. 2; Table S2.2, Online Appendix 2).

Precision of N̂ and r̂ decreased with increasing

proportions of detectors with lower detectability and

increasing variation in detectability (Fig. 3;

Table S2.2, Online Appendix 2). However, precision

increased with spatial autocorrelation. For the extreme

scenario of a partially-sampled area, when 75% of the

detectors were inactive and spatial autocorrelation was

low (scenario 34; Fig. 3), median CV(N̂) and median

CV(r̂) increased by 249% and 242%, respectively,

compared to the reference scenario. In contrast, the

increase in median CV(N̂) and median CV(r̂) was

129% and 145%, respectively, for the scenario of high

spatial autocorrelation (scenario 32; Table S2.2,

Online Appendix 2).

The coverage of N̂ drastically decreased with

increasing spatial autocorrelation (Fig. 4). With high

spatial autocorrelation, the coverage of N̂ dropped to

between 39% and 44% in the presence of high

variation in detectability and higher proportions of

detectors with lower detectability (scenarios 29 and

20). When more than 50% of the detectors were

inactive, coverage of N̂ was near 0 (scenarios 23 and

32; Fig. 4). Coverage was nominal for r̂ under low and

high levels of spatial autocorrelation, and only

decreased to between 79% and 87% when spatial

autocorrelation was intermediate (scenarios 15, 24,

and 33: median Moran’s I = 0.42; Table S2.2, Online

Appendix 2).

Discussion

Our study revealed that unmodeled spatial variation in

detection probability, which is ubiquitous in wildlife

monitoring studies, can have pronounced conse-

quences for inferences from SCR analyses. The

critical factor is spatial autocorrelation in detection

probability: highly autocorrelated and highly variable

detectability leads to pronounced bias and reduction in

precision and coverage of SCR estimates of popula-

tion size, the main parameter of interest in such studies

(Royle et al. 2014, 2018). Conversely, at low levels of

spatial autocorrelation, SCR model estimates

bFig. 3 Coefficient of variation (CV) for population size (N̂) and
the spatial scale parameter of the half-normal detection function

(r̂) estimated by a spatial capture-recapture model fitted to

simulated data sets. Spatial variation in detection was simulated

but not accounted for in the estimation model. Numbers

provided on the x-axes refer to the unique ID of the simulation

scenario and link with the more detailed information provided

for each simulation in Online Appendix 2. Violins show the

effects of spatial autocorrelation in the detector-level covariates

simulated (decreasing from dark [High] to light colors [Low]) in

different scenarios of continuous (top row) and discrete

categorical (bottom three rows) variation in baseline detection

probability. For the categorical scenarios, the proportions of

detectors that belong to a group of detectors with lower

detectability increases from top (25%) to bottom (75%).

Background colors correspond to three different sets of

simulation scenarios with similar values of the magnitude of

the covariate effect: Low (bX ¼ �0:5; light gray), High

(bX ¼ �2:0; white), and Extreme (bX ¼ �10000; dark gray).

Yellow violins labaled as Reference in the top row show the

results for a baseline scenario without heterogeneity in detection

probability, which was included for reference. The dashed lines

show median CV for the parameter estimates achieved in the

reference scenario
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remained robust even to extremely high levels of

unmodeled spatial heterogeneity in detection proba-

bility. Estimates of the spatial scale parameter of the

half-normal detection function were, however,

unbiased and coverage remained comparatively high

for most scenarios of spatially autocorrelated detec-

tion probability. Nonetheless, the pattern of reduction
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in precision of the estimates of the scale parameter was

similar to those in the estimates of population size.

SCR is a powerful analytical tool for spatially

explicit inference on the ecology of wild populations

while accounting for imperfect detection (Royle et al.

2018). One of the advantages of SCR models over

non-spatial capture-recapture models is the ability to

address the effects of known spatial variation in

detectability as a result of the spatial configuration of

ACs relative to detectors and detector-specific char-

acteristics; thus, providing a more realistic model of

the detection process (Efford et al. 2013; Royle et al.

2014). Yet, despite the spatially explicit nature of SCR

data collection and analysis, it is liable to be afflicted

by unknown or undocumented variation in detection

probability; for example, due to inadvertent (e.g.,

equipment failure, within-individual variations) or

design-induced factors (e.g., non-random or preferen-

tial sampling), or as the result of pooling or integrating

data across multiple survey methods or detectors

(Efford et al. 2013; Howe et al. 2013; Efford and

Mowat 2014; Royle et al. 2013, 2014; Gerber and

Parmenter 2015). Consistent with our predictions,

failure to adequately account for variable and spatially

autocorrelated detection probability may bias SCR

parameter estimates, impact estimates of precision,

and generally lead to erroneous inferences. In extreme

cases among the ones we considered, this led to up to

65% bias and to virtually zero probability that the

credible interval contains the true value of population

size (Table S2.2, Online Appendix 2). Comparable

results are reported when individual heterogeneity

remains unaccounted for in both spatial and non-

spatial capture-recapture (Royle et al. 2013; Gimenez

et al. 2018a, Stevenson et al. 2021). Thus, a misspec-

ified detection model may not only impact inferences,

but also reduce the chance of meeting the management

and conservation objectives that often motivate these

studies.

We observed the strongest systematic bias in cases

where a substantial and distinct region of the detector

space was unsampled, essentially leaving a hole in the

detector grid that remained unaccounted for in the

model. The pronounced negative bias in N̂ that arises

in these situations can be explained if we consider that

individuals with ACs within such a hole have a high

chance of being missed entirely during sampling,

essentially creating a latent class of individuals with

very low or zero detectability. This is the case when a

portion of detectors are assumed to be active or

searched when they are not. As a consequence,

detection probability estimates are biased high as they

are based primarily on recaptures of individuals

detected in active regions of the detector grid, and

estimates of abundance and density are consequently

biased low. This pattern is amplified by the magnitude

of variation in detection probability between regions

of lower and higher detectability, and by the size of the

region with lower detection probability (Table S2.2,

Online Appendix 2).

Situations where entire regions of the study area

remain unsampled are fairly common in monitoring

studies, where the data are gathered opportunistically,

either in part or as a whole (Conn et al. 2017; Altwegg

and Nichols 2019; Sicacha-Parada et al. 2021).

Unstructured sampling can augment information,

and thus improve population inferences about rare or

elusive species (Thompson et al. 2012; Tenan et al.

2017; Sun et al. 2019; Bischof et al. 2020a). Oppor-

tunistically-collected data obtained as part of public

surveys (e.g., citizen-science data) are sometimes

integrated into monitoring programs as this allows

investigators to sample areas at unprecedented scales

with lower costs and the added benefit of public

involvement in management and conservation prac-

tices (Altwegg and Nichols 2019; Bischof et al. 2020a;

Sicacha-Parada et al. 2021). To minimize and account

for variation in detection probability in such sampling

bFig. 4 Coverage probability of the 95% credible intervals of

population size (N̂) and the spatial scale parameter of the half-

normal detection function (r̂) estimated by a spatial capture-

recapture model fitted to simulated data sets. Spatial variation in

detection was simulated but not accounted for in the estimation

model. Numbers provided on the x-axes refer to the unique ID of

the simulation scenario and link with the more detailed

information provided for each simulation in Online Appendix

2. Points show the effects of spatial autocorrelation of

continuous (top row) or discrete categorical (bottom three rows)

baseline detection probabilities (decreasing from dark [High] to

light colors [Low]). For the categorical scenarios, the propor-

tions of detectors that belong to a group of detectors with lower

detectability increases from top (25%) to bottom (75%).

Background colors correspond to three different levels of

variation in the baseline detection probability: Low

(bX ¼ �0:5; light gray), High (bX ¼ �2:0; white), and Extreme

(bX ¼ �10000; dark gray). Yellow points labeled as Reference

in the top row show results for a baseline scenario without

heterogeneity in detection probability
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schemes, volunteers should be encouraged to visit all

habitats within the study area, reduce variability in

observer proficiency by providing standardized train-

ing, and collect data on potentially relevant covariates

(Altwegg and Nichols 2019).

We considered a wide range of scenarios in terms of

the magnitude and spatial configuration of variability

in detection probability. Our extreme scenarios of

unknown and unmodeled, high spatial variation and

high autocorrelation in p0 are probably less common,

but plausible, in real-life SCR monitoring studies.

These scenarios were specifically motivated by our

previous work on landscape-scale monitoring of large

carnivores, where spatial variation in effort can be

challenging to quantify because the data are collected

in a structured fashion by field personnel associated

with multiple jurisdictions and opportunistically by

volunteer members of the public (Bischof et al.

2016, 2017, 2020a; Milleret et al. 2020). These SCR

studies revealed significant differences in baseline

detection probability across administrative units (i.e.,

counties in Sweden and large carnivore management

regions in Norway). Even after controlling for spatio-

temporal variations in sampling effort by including

detector-level and individual covariates on the base-

line detection probability, spatial variation in

detectability remained substantial, presumably linked

with unmeasured regional differences in search effort

by volunteers and sampling configuration imple-

mented by the authorities (Bischof et al. 2020a).

Nevertheless, we expect the consequences of such an

unmodeled spatial heterogeneity to be relaxed when

detection probability is relatively high. In such

situations, unknown and unmodeled variation in

detectability is likely to be less problematic as

individuals from the population are more likely to be

detected at multiple detectors (i.e., increase in both the

proportion of detected individuals from the population

and spatial recaptures). The effects of spatial hetero-

geneity in detectability may also be mediated by

species space-use characteristics. Here, we simulated

a target population with intermediate home-range

overlap (k ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Density

p
¼ 0:83; Efford et al. 2016)

with a density of 0.3 AC/du2, which was constant

across simulation scenarios. For species with small

home-range sizes, where the spatial scale parameter is

small relative to the distance between detectors,

unmodeled spatially autocorrelated detection

probability may lead to more problematic inferences

due to the increased risk of individuals going

completely undetected in the resulting ‘‘holes’’ in the

detector grid. In addition, we assumed homogeneous

population density across the study area, which is

rarely, if ever, the case in wild populations. Previous

studies have suggested that the consequences of

unmodeled heterogeneity in detection probability

could be amplified when detectability is correlated

with density (e.g., Clark 2019; Paterson et al. 2019).

As a positive correlation between animal density and

detection probability results in a positive bias in

estimates of population size, we expect that the biasing

effects we detected would be comparatively less

pronounced when the unmodeled detection probability

is spatially autocorrelated but the effects of unmodeled

spatial heterogeneity would not be mitigated. The

misspecification of the observation sub-model may

also lead to confounding effects between variation in

detection probability and animal density that must be

accounted for in order to avoid flawed inferences

(Efford et al. 2013).

When the drivers of spatial variation in detection

probability are known or suspected, the variation can

be accounted for by, for example, including relevant

covariates (e.g., transect length, camera trap nights,

habitat or line-of-sight visibility) in the observation

sub-model of SCR models (Royle et al. 2009, 2014;

Efford et al. 2013; Efford and Mowat 2014; Bischof

et al. 2017, 2020a). In the absence of proxies that can

serve as fixed or random effects, how should inves-

tigators deal with unknown spatial heterogeneity in

detectability in SCR analyses? One solution would be

to discard affected data, such as observations con-

tributed by members of the public without corre-

sponding measures of search effort. This, however,

would lead to a loss of potentially valuable informa-

tion, both in terms of number of individuals detected

and spatial recaptures (Marques et al. 2011; Sollmann

et al. 2012; Tourani et al. 2020b). Explicitly modeling

spatially autocorrelated detectability, for example

using mixture methods (e.g., by drawing baseline

detection probability at each detector from a finite

mixture of distributions; Royle 2006) or conditional

autoregressive (CAR) models, may offer a solution.

CAR models have been implemented in other hierar-

chical modeling frameworks, such as non-spatial

capture-recapture and spatial distribution modeling

(e.g., Johnson et al. 2013; Chen and Ficetola 2019;

123

2892 Landscape Ecol (2021) 36:2879–2895



Nicolau et al. 2020), but we are not aware of similar

extensions in SCR studies. The added complexity

resulting from the inclusion of an autoregressive

component on a latent variable like detection proba-

bility could pose a significant computation barrier to

implementation in Bayesian SCR at large spatial

scales. However, recent advances in both software (de

Valpine et al. 2017; Bischof et al. 2020b) and Bayesian

SCR model formulations (Milleret et al. 2018; Turek

et al. 2021) have improved model fitting efficiency,

allowing fitting SCR models of unprecedented com-

plexity and spatial scales (Bischof et al. 2020a); thus,

opening new possibilities.

Goodness-of-fit tests could help practitioners diag-

nose potential violations of model assumptions,

including unmodeled spatial variation in detection

probability, and determine whether there is a need to

account for it in the model in the first place. Such

diagnostics should be an integral part of any ecological

modeling exercise (Conn et al. 2018), and Bayesian

p-values (Gelman et al. 1996) have been proposed as a

general framework for goodness-of-fit testing of

Bayesian SCR models (Royle et al. 2014). However,

goodness-of-fit diagnostics for SCR is a developing

field of research and specific tests and recommenda-

tions, such as those that were developed for non-

spatial capture-recapture models (e.g., Gimenez et al.

2018b) are still lacking. Thus, testing and accounting

for possible violations, as well as correcting model

estimates, is still challenging in SCR.

Conclusions

Unmodeled spatially autocorrelated variation in detec-

tion probability can noticeably impact the reliability of

inferences derived using SCR, when variability in

detection and spatial autocorrelation is high. This

specifically affects estimates of abundance and den-

sity, primary parameters in wildlife monitoring stud-

ies, and can therefore have severe consequences for

wildlife management and conservation. Unobserved

spatial variability in detection probability is likely

ubiquitous in real-life SCR studies, and we encourage

research to develop approaches that help practitioners

diagnose and account for it.
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