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Abstract
Context Interpreting spatial autocorrelation is com-

plicated by differences in data type, spatial

conformation, and contiguity definitions. Though

lacking consistent meaning, Moran’s I is commonly

reported, compared, and interpreted based on con-

ceptual ideals. To provide consistent, logical, and

intuitive meaning and enable broader synthetic work,

a new approach to I is needed.
Objectives We sought to standardize I and true it to

conceptual ideals and existing intuition regarding

regular correlations. We also wished to test perfor-

mance of transformed metrics over a diversity of

designed and empirical datasets.

Methods We developed two means to rectify I. Both
fit null distributions from data permutation to a target

frame of [−1, 0, 1], followed by projection of

original I into this conformation. One method used

three-point registration employing the distribution

median and select tail percentiles. The other directly

projected all I based on theory or cumulative

frequencies reflecting the distribution of regular

correlations. Repeatability and sensitivity of results

were examined for varied permutation replication and

framing parameter choices. Empirical and designed

datasets were used to compare rectified to traditional

metrics.

Results Both rectification methods improved distri-

butional characteristics of I. Three-point registration
produced overly broad distributions with discontinu-

ous peaks. Continuous projection fit the distribution

for regular correlations precisely. Diverse case stud-

ies demonstrated failings of I and the clarity gained

by rectification.

Conclusions Rectified I enabled meaningful com-

parisons of spatial patterns for diverse data and

landscape conditions. Preserving the intuitive value

of Moran’s I while providing a theoretically sound

and consistent approach for standardizing its values

should foster sustained use.
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Introduction

Measurements made in proximity to each other tend

to be similar (Moran 1947; Durbin and Watson 1950;

Tobler 1970; Cliff and Ord 1981). A traditional

measure of such spatial autocorrelation is Moran’s

I (Moran 1947, 1950). I is conceptually elegant for its

basic and intuitive nature, although it is often

idealized beyond its actual character. Several authors

have detailed I’s systematic properties, biases, and

limitations (Cliff and Ord 1973; Sen 1976; de Jong

et al. 1984; Waldhör 1996; Fortin and Dale 2005).

Yet presumptions and mistaken perceptions of I’s
character persist.

I is often presented in idealized terms wherein it is

said to range between−1 and 1, with perfect

interspersion at−1, random dispersion at 0, and

perfect clumping or gradient conformation at 1

(Fig. 1). It is often interpreted as analogous or

homologous to a regular (Pearson) correlation coef-

ficient r. Values of I considered small for r are

regularly treated as respectively weak autocorrela-

tion. Analogy with r suggests an oppositive scale (±

I indicate the same magnitude of pattern). These

properties if realized would facilitate interpretation

within and comparisons across studies. The intuitive,

pedagogical, and potential comparative value of this

ideal are important to protect if I can be modified to

achieve its reputed or assumed qualities. A list of

assumed or desirable characteristics for an autocor-

relation metric is given in Table 1.

presumed I  = -1 0 1 1
actual I  = 

1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 1 1 1 1 1
0 1 0 1 0 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1
1 0 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 1 0
0 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 1 1 0 0
1 0 1 0 1 0 1 0 0 1 0 0 0 0 0 1 1 0 0 0

Data gradient key: 
1 0

overdispersed random clumped  gradient  

0.5

0.04-0.13 -0.09 0.21

-1 -0.5 0 0.5 1

eigenvalue ranges

freq(ĨLgrid/uni )

freq(ĨLnorm)
over dispersed

random
clumped
gradient

C

A

B

-1 -0.5 0 0.5 1

PDF(r23)

PDF(χ²23)

Fig. 1 Spatial patterns and assessment metric values expected

and observed. a Spatial data arrays illustrating over-dispersed,

random, or positively autocorrelated (clumped or gradient)

landscape patterns. A common expectation is that I for these
caricatured patterns should be at or near−1, 0, or 1. Actual

values for the four patterns are given above each array. b
Probability density functions (PDFs) for Pearson r and χ2 are

given for comparison. The χ2 PDFs were scaled to the data

breadth observed in simulation using uniform grid spatial

conformation (blue line) versus random normal coordinate

values (red line). c Distributions of ~I realized through 39104

random permutations of binomial data in grid conformation as

in panel A (blue line) and in a random bivariate normal

location matrix (red line). Mathematically derived range limits

(eigenvalue extremes of the n-sum weights matrix, nW1) for

each distribution are given as horizontal bars. Observed ranges

of Ĩ are given as distribution stop points on the abscissa.

I values for the conformations in panel A are given in the

context of their null distribution. Calculations are archived in

Supplementary file ESM_1
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In reality, I is negatively biased and variably so

based on sample size. Its null distribution—the

distribution of values from replicated random data

permutations—is right skewed and excessively nar-

row compared to other statistical metrics such as t or
r. Its extrema are not limited to−1 and 1 and its scale

is not oppositive (de Jong et al. 1984). For example,

I of 0.2 in one neighborhood may represent stronger

or weaker autocorrelation than−0.2 in another

(Anselin 1995). Theory suggests the actual bounds

of I are the minimum and maximum eigenvalues of

the normalized (unit sum) hollow matrix of inverse-

distances (de Jong et al. 1984, Griffith 1996, Chen

2013). Yet these eigenvalues provide little indication

of actual null distribution position or breadth (Fig. 1c).

I varies with the geometric conformation of mea-

surement locations (Tiefelsdorf 1998), the means of

representing sample proximity, and the quantitative

nature of the measured variables (extensively

reviewed in Cliff and Ord 1973). These problems

render I incomparable among or even within studies

for different variables.

Despite the well documented reality that I has no
consistent meaning beyond singular contexts, the

metric is still commonly reported, compared, and

often interpreted based on its conceptual ideals. Even

when reported in context with its theoretical math-

ematical limits, which is rarely done by empiricists,

values of I are still difficult or even misleading to

interpret. To provide consistent, logical, and intuitive

meaning beyond individual contexts, and hence to

enable conceptual and analytical syntheses such as

meta-analyses (Rosenthal and Rubin 1986) or expan-

sion to multi-domain use (Kim et al. 2015; Ritters

Table 1 Qualities expected, assumed, or desireable for an autocorrelation metric

Expected or desired property of an

autocorrelation metric

/ Would be evinced by:

Responsive to dispersion ? Metric is low for overdispersion and high for clumped data conformation

Responsive to gradients ? Metric increases with increasing gradient structure

Distinguishes clumping from gradient effects − Metrical values differ systematically for gradient-free clumping versus gradient

structure

Strictly bounded between − 1 and 1 − Metric is mathematically limited to the range from − 1 to 1

Value for perfect interspersion:

− 1 or commensurate with expectations for

regular correlation

− Perfect interspersion yields a value of − 1 or the maximum statistic constrained

by probability theory

Value for perfect gradient:

1 or commensurate with expectations for

regular correlation

− Perfect gradient patterns yield a metrical value of 1 or the maximum statistic

constrained by probability theory

Value for gradient-free clustering:

1 or commensurate with expectations for

regular correlation

− Clumping without gradient structure yields a value of 1 or the maximum statistic

constrained by probability theory

Central tendency for random patterns:

Mean is 0 − Mean of metrics from unpatterned landscapes or data randomizations is 0

Median is 0 − Median of metrics from unpatterned landscapes or data randomizations is 0

Distribution of random pattern metrics is

symmetric (oppositive)

− Distribution tail percentages at x and 1−x have the same absolute value

Metric has stand-alone interpretability

(contextualized by n)
− Metrical values consistently match existing expectations for effect strengths

Metric can be compared among studies

(contextualized by n)
− Similarity of metric values among studies having similar sample sizes and spatial

pattern effect sizes

Metric itself is a standard effect size − Metric directly indicates effect size (e.g. % variance explained)

Metric itself is a test statistic − Significance of metric value can be looked up in standard tables (e.g. Rohlf and

Sokal 1995)

Key: ?, −, indicate the metric meets or fails the respective criterion
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2019), an improved standard for I and similarly

plagued spatial pattern metrics is needed.

Given the perceptions, potential, and problems

described for Moran’s I, taken with the long history

in spatial analysis, instead of continuing efforts to

reframe its narrative, it may be better to reframe the

metric itself to require fewer or no qualifications.

Two methods of reframing I were developed and

herein are described. The first method used a

dichotomous Procrustes approach, anisometric

three-point registration, to fit the null distribution

based on its median and values at select tail

percentages, to a target frame of [−1, 0, 1], followed
by projection of the original I into this conformation.

The second method projected I in a continuous

manner, using its cumulative percentage in the null

distribution, to the theoretical distribution of regular

(Pearson) correlations. We referred to these projec-

tions as ‘rectification’ because they scaled alternative

regions of the distribution of I differently such that

the collective distribution fit a designated target

frame. Differential scaling to geometric fit is epony-

mously termed ‘Procrustes’ methodology by analogy

with the character in Greek mythology who variously

contorted victims to fit a specific (bed) frame (Hurley

and Cattell 1962). Whereas the first method used two

independent scaling operations, each homogeneous

on a given side of the median, the second used

continuous but inhomogeneous scaling. Our goal in

both cases was to register the original metric in a

frame that obviates many or all the problems of the

original (Table 1), so it has consistent and intuitive

meaning and sustainable impact in the field of spatial

analysis.

Background

Nomenclature in this article was summarized in

Table 2. The original metric, I, was developed by

Moran (1947, 1950). The expected mean, variance,

and z and χ2 test statistics to assess significance of

Table 2 Nomenclature used in this paper

Conventions

~ Tilde in superposition indicates values derived from permutations

. Dot in subposition indicates mean centeringss

∧ Circumflex in subposition indicates median centering

Arrays

v Vector of spatially explicit data

z Standardized (mean-centered, unit-variance) data vector

1 Column vector of n ones

L Location matrix (e.g. latitude and longitude or grid row and column designations)

D Matrix of distances among sample locations D=[diag(LL’)1′—2(LL′)?1diag(LL′)′ ]1/2

C Contiguity matrix. Binary matrix indicating neighboring sites on a grid

P Proximity matrix P=1/(In?D)—In is a hollow (Pii=0) inverse-elements distance matrix

W1 Spatial weights matrix scaled to unit sum as W1=P/∑Pij or C/∑Ci /n

Scalars

I Moran’s index of spatial autocorrelation, I=z′ W1z

n Number of cases in an empirical dataset

CPI Cumulative percentage of values≤I in a null distribution

~ICP ~I at which the cumulative percentage of values is as given in subscript (e.g. ~I50 is the median)

x Bounds for null distribution tail percentages (e.g. Ix and I1−x)

I3P I metric rectified to three points (Ĩx, Ĩ50, Ĩ1−x) in its null distribution

Ir I metric projected to the theoretical distribution of correlations

k Number of permutations of n data rows
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I are well known (e.g., Cliff and Ord 1973; Goodchild
1988; Rogerson 1999; Getis 2010). I is χ2 distributed

commensurate with its derivation from inverse dis-

tances (Thirey and Hickman 2015; e.g., Fig. 1c).

We use Chen’s (2013) formulation of Moran’s I as

I ¼ z0W1z ð1Þ
where z is a standardized data vector for n measure-

ments from known locations and W1 is the spatial

weights matrix scaled to unit sum. In this formula-

tion, local indicators of spatial autocorrelation,

‘LISA’ (sensu Anselin 1995), are diagonal elements

of zz′ W1 (Chen 2013). Because local I are additive,

global I can also be defined as the trace of zz′ W1.

Range limits of I are expected to be the signed

minimum and maximum eigenvalues of n·W1 (de

Jong et al. 1984, Griffith 1996). These limits are

highly sensitive to proximity definitions and their

values give no practical guidance to actual distribu-

tions within them (Fig. 1c). These limits and even

empirical values of I often exceed 1 (de Jong et al.

1984; Tiefelsdorf 1998). The nature of I in practice,

therefore, bears little resemblance to what is widely

presumed and taught regarding the metric.

W can be rendered from variously composed

physical distance or contiguity mappings among

sample sites (well presented in Getis 2010). Distance

matrices, D, may be defined linearly (without expo-

nentiation) or nonlinearly (exponentiated by[1). For

example, squared distances are often used to enhance

down-weighting of increasingly distant neighboring

samples to reduce their influence on the magnitude of

I. Contiguity matrices, C, are generally binary

definitions of sampling plot edge adjacencies in

regular or irregular polygonal grids and may include

or exclude vertex adjacency. C is row-standardized to

compensate differences in neighbor numbers by site

as in cases where edge sites have fewer neighbors. If

appropriate and desired, contiguity and distance

matrices may be combined (Cliff and Ord 1969).

Distance and contiguity elements are converted to

inverses and can be regarded as proximities compos-

ing a matrix P. Perfect proximity, the proximity of a

datum’s location to its own location, Pii, and

distances beyond a selected limit if desired, are set

to zero so those cases drop out of subsequent

calculations. P can be calculated to ensure diagonal

elements are 0 as P=1/(In?D)—In, where In is an n

9n unit (identity) matrix where diagIn=1. W is a

scaled version of P, such as the unit-sum W1=P/∑Pij.

The type of distance and contiguity representations

used to derive W should be based on the logic of the

spatial arrangement and functional logic of the

process being studied (Anselin 1988). Exploratory

investigation of weighting schemes based on model

performance and validation may be a useful compli-

ment to the logical and functional approach.

Expectations and interpretations of I may reflect

those of regular correlations (Fig. 1b) due to similar

nomenclature: ‘index of autocorrelation’ and ‘corre-

lation coefficient’ or the widely repeated notion that

I was developed from Pearson’s r (e.g., Getis 2010)
which implies mathematical homology. Yet Pear-

son’s r is a cross product between two similarly (n9
1) dimensioned, similarly (unit-variance) scaled, and

similarly (normally) distributed variables. In contrast,

I is a cross product between a normally distributed n
91 data vector and and inverse elements of a

variably dimensioned, χ2-distributed n9n matrix

scaled to unit sum. For example, the distance matrix

for the example in Fig. 1 has one dimension but as a

proximity or weights matrix it has six (see eigenvalue

counts in Supplementary file ESM_1). Thus, com-

pared to r, I is dimensionally, volumetrically, and

distributionally convoluted (Tiefelsdorf 1998, in

part).

Expected I under a null hypothesis of no spatial

pattern, E(I), is−1/(n−1) with expected variance and

a z test statistic as given in Cliff and Ord (1973) or a

χ2 statistic as given in Rogerson (1999). Significance

of I metrics is better assessed by permutation analysis

than by inference from a test statistic because the

distribution of I can be unpredictably skewed based

on spatial arrangement of the sample sites, varied

distributional properties of measured variables, and

other characteristics that violate parametric assump-

tions (Upton and Fingleton 1985; Goodchild 1988;

Tiefelsdorf and Boots 1997; Li et al. 2007). ~P values

from Monte Carlo simulations are determined as the

proportion of permutation results more extreme than

the observed I as appropriate to the null hypothesis.

For example, the probability of unbiased processes

underlying an I equal or smaller than that observed is

the cumulative percentage of data up to I. For

extremely patterned data, I will often exceed the

maximum or minimum of values obtained in even

large numbers of permutations. As probability
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estimates are limited by permutation number, the

logical limit must be imposed that it be not less than

1/(k?1) for k permutations (Griffith 1987) or half

that for two-tailed tests. Permutations also produce an

explicit null distribution that can be scaled, as

demonstrated herein, to fit a specific frame or desired

density function.

Methods

3-point registration

This method to rectify I used dichotomous scaling of

null distributions of Ĩ obtained by Monte Carlo

simulation using replicated random data permuta-

tions. Based on the ideology described in the Sect.

“Introduction” and Table 1, null distributions were

median centered, and each half of the distributions

was separately scaled, homogeneously on a given

side, so that the bounds of chosen distribution tail

percentages occurred at−1 and 1. Use of the median

to center null distributions guaranteed that half of the

values obtained by randomly permuting the data were

positive and half were negative. This criterion for

centrality did not rely on specific expectations for the

geometry of central tendency. Obvious choices for

extremes to serve as the±1 limits for the null

distribution were the minimum and maximum values,

Ĩ0 and Ĩ 100. If all possible n! permutations or an

infinite number of random permutations were con-

ducted, this choice of distributional limits would

ensure that no conformation of data could yield |I3P|[
1, making an absolutely bounded distribution frame.

In practice, we attempted to approach the absolute

frame with stringent definitions of tail percentages

and high permutation effort. In theory, this could also

be achieved by using the nW1 eigenvalue limits. But

in practice these extrema are far and variably

removed from the bulk of the realizable distribution,

so that frame would result in greatly contorted

transformed distributions. Because the repeatability

and proximity to a reasonable frame could have

depended on permutation number, choice of tail

percentages for the reference frame, and possibly

their interaction, as well as unique system-specific

properties, sensitivity analyses as described below

Sect. (“Survey of published datasets”) were per-

formed. Our methods were intended to identify

combinations of frame definitions and number of

permutations that balanced accuracy and effort to

provide an acceptably repeatable standard for diverse

datasets.

We calculated I following Chen (2013; Eq. 1).

Then, either the standardized data vector z or the

location matrix L was permuted (shuffled case wise)

k times and Ĩ was recalculated each time to yield a

‘null’ distribution of frequencies. Null distributions

were therefore those for values of Ĩ calculated from

datasets with no covariation, on average, between

z and D, which is the matrix of pairwise distances

calculated from L. Ĩ values at designated cumulative

percentages of the null distribution were then used to

enact median centering and the separate scaling of the

positive and negative sides of the centered distribu-

tion. I values obtained by permutation were denoted

with a tilde in super-position, Ĩ, median-centered

values with a circumflex in sub-position, , and fully

rectified (centered and scaled) values were denoted

for the 3-point registration method with subscript, as

in Ĩ3P. These conventions apply hereafter for any

parameter obtained through permutation. The cumu-

lative percentage of values ≤ Ĩ was designated with

numerical subscript. For example, the null distribu-

tion minimum was denoted Ĩ0, the maximum as Ĩ100,
and the median as Ĩ50. Tail percentages defining

frame boundaries were mirrored as in Ĩx and Ĩ1-x
(Table 2).

After median-centering, each half of the null

distributions was scaled by the distance from the

median to each respective frame boundary:

~I3P ~I
� � ¼

~I� ~I50
~I50� ~Ix
0

~I� ~I50
~I1�x� ~I50

if ~I\~I50
if ~I ¼ ~I50
if ~I[ ~I50:

8><
>: ð2Þ

Scaling was applied similarly for the observed I. This
scaling method set all values on a given side of the

centered null distribution to their proportional posi-

tion between the median and the respective tail

boundary. For example, I of?0.2 in a null distribu-

tion having median 0 and Ĩ1-x of 0.4, yields an I3P of?
0.5 (=0.2/0.4). In this manner, any original null

distribution frame [Ĩx, Ĩ50, Ĩ1-x] was anisometrically

scaled about the median to [−1, 0, 1].
Values of |Ĩ3P|[1 were expected to occur at

frequency 2xn (frequency xn on each side of the null

distribution). As well, empirical datasets with strong
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autocorrelation would often yield |I3P|≫1. Values of |

I3P| and |Ĩ3P| in excess of 1 were set based on their

signs to±1:

jI3Pj[ 1 ¼ �1 if ~I3P\� 1

1 if ~I3P [ 1:

�
ð3Þ

P-values for hypothesis tests and analysis were

obtained directly from cumulative proportions at I
or I3P in their respective null distributions. For

example, a directional hypothesis of overdispersion

is supported when the cumulative proportion of I3P in
its null distribution is less than or equal to α, where α
is the established minimum probability of making a

statistical type-I inferential error. A hypothesis of any

systematic spatial structure is supported if the cumu-

lative proportion of negative I≤α/2 or that for

positive I≥1-α/2. Calculation of ~P values for null

hypothesis tests by frequencies are:

~P H0ð Þ ¼
A ¼

PI

�1
freq: ~Ið Þ
k H0 : no over dispersion

B ¼
P1

I
freq: ~Ið Þ
k H0 : no clumping or gradients

2�min A;Bð Þ
k H0 : no autocorrelation:

8>>><
>>>:

ð4Þ
Parametric P values for some specific demonstrations

were also calculated using z statistics per Cliff and

Ord (1973).

Fit to Pearson’s r

Our second method of rectification also made use of

permutations as described above. However, since our

goal was to register the null distribution to a

theoretically known distribution, there was no need

to define target frame boundaries. I values were fit to
r using inverse distribution functions based on their

cumulative proportions in null distributions. The

probability distribution of correlation coefficients

from random bivariate normal or uniform data is

prob: rð Þ ¼ 1� r2ð Þn�4
2ffiffiffi

p
p � C

n�1
2

� �
C n�2

2

� � ð5Þ

(Hotelling 1953). This function can be integrated

from−1 to that r having the same cumulative

proportion as I in its null distribution, which r is

then deemed Ir.

Ir :¼ r

Zr

�1

prob: rð Þdr ¼ CPI

������ ð6Þ

In practice it was simpler to invoke the inverse t
distribution as it is widely available in software

packages such as R, MATLAB, Stata, and Excel. The

expected t-distribution of Pearson correlations for

bivariate normal or uniform random variables is

given by

t rð Þ ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 2ð Þ=ð1� r2

p
Þ ð7Þ

(Rahman 1968), where n−2 is the degrees of freedom.

To map I values to this distribution, their cumulative

proportion in the null distribution was used to

calculate a tn−2 statistic using the inverse t distribu-
tion as

t CPIð Þ ¼
t:inv 1

kþ1
=2; n� 2

� �
CPI ¼ 0

t:invðIR; n� 2Þ 0\CPI\1

t:inv ð1� 1
kþ1

Þ=2; n� 2
� �

CPI ¼ 1

8>><
>>:

ð8Þ
then t was converted to r as

r tð Þ ¼ t=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 2þ t2

p
:¼ Ir ð9Þ

with Ir given to equal r. Where t was undefined at the

distribution limits, CP=0 and 1, Ir was set to the

respective limits of r given the constraint of P≥±1/

(k?1) (Griffith 1987). Thus Eqs. 5, 8 and 9

functioned to prevent Ir from being set to a value

with greater significance than the limit imposed by

permutation number.

Mapping from cumulative proportions to r was

used both to rectify empirical I values but also to

convert permutation results to Ir. Ir was graphically

illustrated by denoting its position within either the

theoretical distribution function (Eqs. 5, 9) or the

empirical histogram of all Ĩ obtained through permu-

tation. The latter was used for intuitive value and

contrast with the original null distribution histogram.

Both rectification methods are available as options

in the R package Irescale (Fuentes et al. 2020).
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Focal case: autocorrelation of major Chinese city

population sizes

Both rectification procedures were applied to data

from Chen (2013; Fig. 2a) on population sizes of and

rail distances among 29 major Chinese cities. This

dataset is referred to hereafter as Cities. I was

calculated following Chen (2013; Eq. 1), whose

result we wished to replicate. The rail distance

matrix, D, was non-positive definite due to rail paths

being variously indirect (Dokmanic et al. 2015).

Therefore, D could not have been used to derive an L
matrix to be permuted and still replicate Chen’s

results. Therefore, we permuted only the standardized

data vector z. The Cities example was examined

using the original data, a natural logarithm (loge)

transformed version, and a designed dataset com-

posed to have extremely high autocorrelation

(Fig. 2b). The latter two data vectors were included

to assess the responsiveness of I and its rectified

metrics to variable transformation and inform on the

positive metric limit. Each of the three data vectors

were used to calculate I for each of 104 permutations.

From these results we calculated (i.e., ~I− ~I50), I3P
using x=0 and 0.1 tail percentages as frame bound-

aries, and Ir. As a control measure to test for

permutation bias, a Pearson correlation was calcu-

lated between the original data vector and each

permuted version. The null distribution of these

correlations was examined to ensure r 27 ≈ 0. Calcu-

lations for this case analysis are provided in an Excel

file (Supplementary file ESM_2). All calculations

cited, except the random r, can be performed with the

R package Irescale (Fuentes et al. 2020).

Sensitivity analysis

Sensitivity and repeatability of null distribution

parameters were explored for both rectification

methods using replicated sets of permutations. All

datasets were used for this purpose. We focused on

the Cities dataset for presentation of detailed dynam-

ics (“Sensitivity analysis” sect.). Summary statistics

and exceptional behaviors noted for the broader

survey described in “Survey of published datasets”

sect. were also assessed and reported in “Survey of

published datasets” sect. For the Cities analysis, we

used the rail D matrix where possible to align with

the analysis by Chen (2013) but could not do so for

spatial regressions, in which case we used geographic

D. The geographic and rail distance matrices were

highly correlated (matrix r404=0.93). Simulations

were carried out for 10 replicates of each combina-

tion of six permutation numbers (k=101, 102, … 106).

From simulation results, average and standard error,

which in this paper is considered to be the obverse of

repeatability, were calculated for all I, , rectified

metrics, and 3-point registration frame boundaries (Ix,

Fig. 2 Focal data to illustrate rectification methods. a Original

data on populations of major Chinese cities (from Chen 2013).

b Designed data created to have high spatial autocorrelation

due to data gradients and clumping. Marker diameter

corresponds to population size
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I1-x) defined by tail percentiles x=0, 10–3, 10–2, 10–1,
and 100.

To resolve how I tracked with other autocorrela-

tion metrics, we calculated the matrix correlation

between D and the matrix of Euclidian distances

among elements of z. This ‘matrix’ correlation is a

Pearson correlation of the corresponding elements

taken in pairs from the two distance matrices (Mantel

1967). We also calculated a multiple correlation from

a spatial multiple regression of the form

ẑ ¼ b0 þ b1 � latitude þ b2 � longitude
þ b3 � latitude � longitude

ð10Þ

The square of multiple r is the proportion of variance

in z explained by gradient effects (Sokal and Rohlf

1995). This measure of gradient effect size was used

with Ir
2, a dimensionally comparable metric of non-

dispersion, to create complementary indices that

differentially capture aspects of spatial pattern due

to clumping versus gradient effects as

I2C ¼ I2r = ðI2r þ multiple r2Þ ¼ 1� I2G ð11Þ
To enable the last three calculations (Eqs. 9, 10 and

11) for Cities, we used an L matrix composed of GPS

coordinates obtained from Google Earth. We also

applied the gradient and clumping metrics to the

‘number fledged’ data vector of Marrot et al. (2015),

three designed versions of that vector, and an array of

patterns from the 25-plot grid illustrated in Fig. 1.

Designed data vectors from Cities, Marrot et al.

(2015), and targeted simulations of gradient, random,

clumped, and ‘clumpy-gradient’ data were used to

assess sensitivity of IC
2 and IG

2 to cases with known

magnitude patterns.

Sensitivity results were compared within and

between studies with emphasis on repeatability and

magnitude of Ir metrics and correlations between I, I3P,
Ir, matrix r, and multiple r from regression. The

sensitivity analysis for Cities as implemented in Excel

is available in Supplemental file ESM_3. Irescale (v.

2.3.0; Fuentes et al. 2020) was used to confirm the

Cities result and calculate sensitivity analyses for the

case studies described in the following section.

Survey of published datasets

To achieve a broad view of how rectified I compared

to traditional I and related metrics, we identified and

examined four published datasets in addition to

Cities. The additional data were identified by search-

ing the phrase “Moran’s I” in Google Scholar (in

mid-2019) and examining recent publications

returned to find a subset of 12 in which the authors

openly archived data. The 12 datasets were further

examined and four were selected by qualitative

review for having diverse variable types within

studies and diverse sample size and spatial structures

among studies. The four datasets identified were

Cozzarolo et al. (2018), Goldsmith et al. (2019),

L’Herpiniere et al. (2019), and Marrot et al. (2015).

These datasets collectively included 24 variables as

accounted in detail in the “Results” sect. For each

dataset, we conducted rectification and companion

procedures, including the sensitivity analysis

described above (“Sensitivity analysis” sect.). Results

for sensitivity dynamics and correlations of spatial

pattern metrics within and among studies were

reported.

Summation regarding metric ideals

Results of the varied methods described above were

scrutinized for congruence or dissonance with the

characteristics given in Table 1 as regards I and

comparator metrics. These inferences were drawn

primarily from mathematical definitions and null

distribution shapes as presented below and confirmed

with broader explorations archived in the supple-

mentary files.

Results

Three-point registration

General results are recounted here and specific case

study detail and procedural assessments are reported

in sections that follow. Null distributions rectified by

3-point registration resulted in the frame [Ĩx, Ĩ50, Ĩ1-x]
=[−1, 0, 1]. The mean of 3P-rectified distributions

was generally mismatched with the median, most

often in a direction opposite that for the unrectified

null distribution. Empirical I from strongly patterned

datasets when projected into their rectified null

distributions in several cases exceeded 1 and were

subjected to capping (Eq. 3). Selecting smaller

distribution tails for target frame references reduced
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I3P and the frequency of times limits were necessary

to invoke. Even when using maximum and minimum

values of ~I as the target frame, the caps were still

necessary because some empirical patterns repre-

sented a degree of patterning not discovered with

limited permutation. For I observed to be significant

by permutation, rectification by 3-point registration

generally resulted in |I3P|≫|I| and .

Rectification by 3-point registration greatly

increased similarity of null distribution tail shapes

relative to the unrectified distribution (Fig. 3a, b).

However, separate scaling of the upper and lower

distribution halves resulted in strong leverage in the

skewed side of distributions, such that the long tail

contracted toward the bound at the median. Tail

contraction resulted in pushing up the area (distribu-

tion density) near the median in that half of the

distribution. In opposite manner, the short-tailed half

of the distribution drew out the tail and density near

the median decreased, producing a slumping effect.

The result of the opposing shifts in density created a

shape discontinuity at the median (Fig. 3b). Despite

creating an odd distribution shape around the median,

skewness was most often considerably reduced and

sometimes was reversed (changed in sign). ~P values

for I, I3P, and Ir were equivalent when calculated from
frequencies. P values calculated from z tests per Cliff
and Ord (1973) differed among the metrics and

frequently fell below the practical limit of ~P from

frequencies.

Fit to distribution of Pearson’s r

The distribution-fitting method produced null distri-

butions fully contained in the interval [−1, 1] without
applying caps (Fig. 3c), although distributional

extrema [I 0, I100] where t is undefined had to be

limited to that having ~P=1/(k?1) per Eq. 8. The

mean and median were coincident at 0. By definition,

the rectified null distribution, being fit to a t-
distribution, was neither appreciably skewed nor

asymmetric about the median, although it was subject

to moderate platykurtism for sample sizes below 10.

Left and right tail percentiles were oppositive; that is,

tail areas were of the same magnitude at± ~Ir. ~P-

values were functionally equivalent when calculated

from simulation frequencies (Eq. 4) or by t statistics
derived from Ir (Eq. 7).

Focal case: autocorrelation of major Chinese city

population sizes

The Cities population and rail distance data yielded I
of−0.031 in concurrence with Chen (2013; z27=0.11,

one tailed P=0.46; ~P=0.42). Null distributions for the

original, log and designed data from simulations with

104 permutations yielded mean I within a few ten-

thousandths of the expected mean. Medians were

approximately 9% more negatively biased than the

means for all three data vectors and all were right

skewed (Table 3). Null distributions from untrans-

formed data were most skewed and log-transformed

data were least skewed. Simulation results in this

analysis never produced median-centered I in excess

(B) freq. Ĩ
3P

(C) freq. Ĩ
r

-0.5 0 0.5-0.5 0 0.5-0.5 0 0.5

skew = -0.12
I 3PR = 0.05
0.1 = -1
50 = 0
99.9 = 1

skew = 0.00
I r = 0.04
0.1 = -0.55
50 = 0
99.9 = 0.55

skew = 0.75
I = -0.03
0.1 = -0.14
50 = -0.04
99.9 = 0.15

(A) freq. Ĩ

Fig. 3 Null distribution of I from 104 permutations of the

Cities data. a Moran’s ~I. b ~I rectified using 3-point registration.

c ~I fit to the distribution of Pearson’s r. The position of

unrectified and rectified I on the abscissa are indicated in red

with the respective medians in blue. Distribution tail bound-

aries for x=0.1 and skewness is given in each panel.

Calculations were archived in Supplementary file ESM_4
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of 0.27, suggesting a limit. However, based on I for
the designed dataset (=0.28) and sensitivity analyses,

the limit appeared to be ≈ 0.33 (“Survey of published

datasets” sect.). This limit from simulation contra-

dicts the theoretical limit of the maximum eigenvalue

of nW1 which was 1.09. ~P was similar to that from

parametric z-tests except where P\1/(k?1). The

limit imposed by Eq. 4 prevents assigning Ir any

higher value than that which can be resolved as

significant given any fixed k. (Table 3). These

calculations are archived in Supplementary file

ESM_2.

I statistics differed markedly in this analysis, most

strongly among data vectors but also among modes of

rectification (Table 3). For the original data vector

and its log version, was 0.01 and 0.06. The latter

value was marginally significant by one-tailed test

against a null hypothesis of no positive autocorrela-

tion ( ~P=0.09). The rectified metrics produced

similarly low values for the untransformed data

(0.03–0.04) but rose for the log data to values that

would be moderate as regular correlations (0.26–

0.39). Finally, the designed positive autocorrelative

dataset yielded I=0.28, though the values for the

rectified metric were much greater (Ir=0.64, both I3P
=1). Both I3P in this case were constrained by the cap

set at 1 (Eq. 3). Ir was limited due to permutation

replication because tn-2, part of the conversion

procedure from I to Ir, was limited to that having

probability 1/(k?1)—in this case t27=4.3, which

translates to r27=Ir=0.64.
Overall pattern strength was much greater for the

designed dataset at Ir = 0.64 compared to 0.26 for the

log data. However, the autocorrelation partitioning

Table 3 SpaSpatial autocorrelation metrics and right tailed P-values for the Cities dataset

Parameter
Metrics per data series

n ln(n) Designed

Skewness 0.72 0.33 0.49

λmin nW₁ −0.35

λmax nW₁ 1.09

Moran's I − 0.031 0.024 0.28

I - I50 0.008 0.063 0.31

I3P,0.1 0.043 0.388 1

I3P,0 0.030 0.316 1

Ir 0.041 0.257 0.64

P̃ 0.42 0.088 10−4

Mul�ple r 0.34 0.38 0.92

P̃ 0.36 0.26 <10−12

Matrix r − 0.085 −0.021 0.43

P̃ 0.74 0.54 <0.01

IC
2 – 0.31 0.32

IG
2 – 0.69 0.68
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indices IG
2 and IC

2 demonstrated similar patterns

between the log data and the designed dataset. For

both datasets, the cluster metrics I2C were approxi-

mately 0.3; thus the gradient metrics I2G were

approximately 0.7. The joint presence of clumping

per se and gradient effects for the designed data was

visually apparent from Fig. 2b as datum magnitudes

were clumped at one scale but the clumps were

arrayed as a north–south gradient. The pattern

partitioning indices were not calculated for untrans-

formed data due to lack of evidence for any spatial

pattern to be characterized ( ~P[0.4 for both I and

multiple r, Table 3).

Figure 3a illustrates a focal null distribution of ~I

from 104 random permutations of the Cities data. The
distribution was negatively biased to the expected

level and in this case was particularly right skewed.

Over 83% of ~I values from permutation were

negative and the skew was highly significant based

on D’agostino et al.’s (1990) test for excess skewness

(z27=27.6, P\10–20). The range of median-centered

values extended 1.3-fold as far to the right as they did

on the left, but this range was still far less than was

suggested given the 3.2-fold difference in theoretical

limits imposed by eigenvalues of nW1. The null

distribution mean of Pearson correlations between the

original data vector and its permuted version was

near 0 (r  27=0.002) with no noteworthy skewness (=

0.01). Matrix correlations of geographical distance

and Euclidean distance among permuted measure-

ments were not notably biased for any Cities datasets
(matrix r  =≤|0.002|), but these distributions were

strongly skewed (=0.97, 0.46, and 0.80 for actual,

log transformed, and designed datasets). Null distri-

butions of multiple r from the spatial regressions

averaged 0.30–0.31 and were moderately skewed (=

0.55, 0.27, 0.25).

Figure 4 gives the null distributions of I, its

transforms, matrix r, and Pearson’s r for the

untransformed Cities data vector. The only null

distribution that was oppositive (symmetric about

the mean/median) was that for Ir, which was fitted to

and therefore represented the theoretical function for

Pearson’s r. Null distributions of I3P at some frame

definitions were found to have similar properties to

those of Pearson’s r but presented the characteristi-

cally strong shape discontinuity about the median

(Fig. 4b). Plotting null distributions in log space

enhanced the apparency of null distribution tail

shapes (Fig. 4c). Extremal probability decays for I3P
were similar in nature to, but broader than the

theoretical expectation for Pearson’s r.

Sensitivity analysis

Permutation with different numbers of iterations

demonstrated the repeatability of rectified metrics

and in the case of I3P in particular the ultimate values

obtained. Since the natures of the two rectification

methods were different, they were considered

separately.

3-point registration

Regardless of the tail percentiles selected as a frame

of reference to scale I, increased permutation repli-

cation increased the range of extreme values

discovered. This was especially so in the skewed

end of the distribution. The greater extrema revealed

through higher permutation replication had the effect

of widening reference frames (Fig. 5a). Wider frames

entailed frame boundaries more distant from the

median. Since I was scaled by these distances (Eq. 2),

greater permutation replication resulted in smaller |

I3P|. This relationship between more permutation and

reduced |I3P| was asymptotic at accessible levels of

permutation (Fig. 5b). For example, the maximum

Fig. 4 Null distribution shapes for 39104 permutations of the

untransformed Cities data. a Moran’s I, Ir, and matrix and

multiple r. b I3P for two frame definitions. c I metric null

distributions in log space to emphasize tail conformations

relevant for hypothesis testing (Supplementary file ESM_5)
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frame width using 1% tails as frame boundaries was

evident and highly repeatable with a total of 104

permutations (10 replicates of 103 permutations). In

general, as asymptotes became evident with sufficient

replication, error became trivial. Thus, asymptotic

values being so identified by sensitivity analysis

demonstrated the levels of sufficient replication

needed to attain I3P nearly invariant to increased

permutation effort.

Despite the repeatability and stable limit for frame

boundaries, and hence stability of I3P for a given

frame definition, alternative frame definitions had

different asymptotes and different errors. For exam-

ple, while the right frame boundary using 1% tails to

define the frame resolved an average frame bound of

0.12 in 104 permutations (red symbol, Fig. 5c), the

0.01% tail at that replication averaged twice that

(0.24; green symbol, Fig. 5c), with tenfold increased

error. Error was mitigable with more permutation, yet

higher permutation widened the reference frame

further and reduced I3P. Therefore, a basic finding

of this sensitivity analysis involves complex tradeoffs

mitigable only by joint optimization of frame defini-

tions and replication, the dynamics and appreciable

balance of which could only be discerned through

explicit analysis.

Fit to Pearson’s r

This method of rectification was highly repeat-

able even at modest permutation replication

(Fig. 6). For example, Ir calculated from the Cities
data using 10 replicate null distributions of 104–106

permutations, all reached the asymptotic value (0.04)

with no noteworthy error. Thus, the original I of −
0.03 would be solidly?0.04 on the expected scale for

regular correlation. Even with lower replication by an

order of magnitude, the asymptotic value was met but

with concern-worthy (11.7% of the mean) error. The

two lowest replication levels resulted in

Fig. 5 Sensitivity analysis for 3-point rectification of ~I from

the Cities dataset. Values are from 10 replicate simulations at

various permutation numbers and target frame percentiles.

a Frame boundaries expanded with increased permutation

replication and reduced target frame percentiles. Repeatability

(~SE
−1) of frame boundaries increased with permutation

replication and more stringent tail percentiles. b Dependency

of I3P on permutation replication and frame criteria. I3P

decreased with increasing permutation replication to asymp-

totes unique for each frame designation. Asymptotic values for

alternative frames were reached at different permutation

replications. c Summary of tradeoffs among illustrated

parameters. Increasingly diminished tail area (arrow train from

red to purple symbols) led to a stable limit for the frame

definition (0.29 on the abscissa) but also increased error

(ordinate; Supplementary file ESM_3)
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exponentially greater error and inflation of Ir. This
sensitivity analysis and that for the 3-point registra-

tion method are archived in Supplementary file

ESM_3.

Table 4 gives correlations of the three spatial

pattern metrics ( ~Ir, matrix ~r, and multiple ~r) over 29

104 permutations both with each other (for a given

data vector) and across data vectors (for a given

metric). These correlations reflect the co-sensitive

nature of the metrics to spatial data patterns in the

Monte Carlo simulation. In general, there were strong

relationships for values of a given metric calculated

for the untransformed and log data vectors (0.79≤ ~r≤
0.85; blue shading in Table 4). The strongest

relationships among metrics for a given data vector

were between matrix ~r and multiple ~r (0.54≤ ~r\0.66;

yellow shading in Table 3). Of the two ~r metrics,

multiple ~r was more closely correlated with ~I (0.42≤
~r\0.43; green shading in Table 3) than matrix r
(0.24≤ ~r≤0.29; orange shading in Table 4). There

was no reason to expect correlation between the

designed dataset and the empirical data vectors so

metric correlations for these are not given in the

table. These calculations are archived in Supplemen-

tary file ESM_2.

0.
01

0.
1

l r

101     102     103     104     105     106        

permutations

Fig. 6 Ir average and standard error of 10 replicate simulations

plotted in log space (ordinate) as a function of 6 magnitudes of

permutation (abscissa) of the Cities data

Table 4 Correlations among spatial pattern metrics from permutations of Cities data vectors
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Survey of published datasets

I varied considerably among variables and studies

(Table 5). Few (4 of 29) empirical I in the survey

were below the null distribution median and none

were less than−0.03. Of the 25 I values above the

median, 13 were significant. The range of median-

centered values was 0.034–1.17. Rectified values

ranged from−0.36 to 1. The positive cap (Eq. 3) was

invoked in five cases exclusive of designed data

vectors. Summary metrics for the 29 variables from

five studies plus three designed and one log trans-

formed data vector were collected in Table 5. Both

rectified metrics were highly correlated with original

I scores. In general, Ir was a more conservative metric

than I3P; larger magnitude values occurred especially

Table 5 Spatial pattern metrics from five published studies

Source Variable n I I3P
a,b Ir

a p
�

Skew

Chen Pop 29 − 0.031 0.030 0.041 0.83 0.73

ln(pop) 29 0.024 0.316 0.257 0.18 0.34

Designed 29 0.275 1 0.771 10–6 0.56

Cozzarolo et al. (2018)c Sex 617 0.032 0.23 0.053 0.19 0.79

wt 575 0.023 0.05 0.053 0.20 3.53

tars.len 609 0.066 0.52 0.091 0.03 0.11

hyb.ind 576 0.510 1 0.202 10–6 0.16

inf.plas 617 0.182 1 0.195 10–6 0.11

inf.leuc 617 0.084 0.78 0.116 0.004 0.10

mixed.p 273 − 0.046 − 0.19 − 0.033 0.58 1.48

mixed.l 311 − 0.004 0.04 0.011 0.85 0.43

ct.host.a 151 0.013 0.02 0.045 0.59 1.88

ct.host.b 146 0.037 0.03 0.078 0.35 1.22

ct.para.a 144 0.015 0.04 0.040 0.64 0.96

ct.para.b 140 0.054 0.08 0.080 0.35 0.92

Goldsmith et al. (2019) br.wtr.ox 81 − 0.043 − 0.36 − 0.133 0.24 0.35

br.wtr.h 81 0.019 0.5597 0.270 0.0149 0.34

tree.dbh 74 − 0.003 0.28 0.168 0.15 0.41

leaf.watr.ox 81 − 0.016 0.13 0.076 0.50 0.38

leaf.watr.h 81 0.026 0.60 0.300 0.007 0.39

L’Herpiniere et al. (2019) Parasite 270 1.17 1 0.293 10–6 0.20

tmax 270 0.452 0.70 0.216 <10–3 0.13

LAI 270 0.656 1 0.293 10–6 0.04

calc 270 0.399 0.61 0.195 10–3 0.26

Humid 270 0.834 1 0.293 10–6 0.05

Vision.pc1 270 − 0.001 0.01 0.008 0.90 0.05

Marrot et al. (2015) lay.date 229 − 0.004 0.1099 0.053 0.42 0.53

clutch.size 229 0.009 0.40 0.150 0.02 0.52

incub.duration 229 − 0.008 0.03 0.017 0.80 0.58

num.fledged 229 0.027 0.51 0.231 <10–3 0.55

perf.grad 229 0.315 1 0.317 10–6 1.43

perf.clump 229 0.298 1 0.317 10–6 1.29

a k=106; bx=0.01; cData subset (2005–2007 only)

Italics indicates values limited by capping (for I3P per Eq. 3) or logical maximum based on k (for Ir). Bold—P values indicated

significant autocorrelation using α=0.05
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less frequently for Ir. relative to I3P. Scaling of both

rectified metrics attenuated for larger uncentered I;
however, centered I and the rectified metrics exibited

a strongly linear relationship. The average within-

study correlation between I and the rectified metrics

was ≈ 0.9. Example correlations are illustrated in

Fig. 7.

The pattern partitioning metrics, IC
2 and IG

2 , for the

data vector based on the replication and spatial

structure of Marrot et al. (2015), but designed for

strong gradient, clumping, or mixed patterns, acted in

accord with our intent (Fig. 8). The gradient, clumped

data, and clumpy gradient had equivalent Ir of 0.29,
which is the maximum correlation that can be

Fig. 7 Relationship

between I values. a I3P
calculated with null

distribution extrema and b Ir
plotted relative to raw

I. c I3P,0 and d Ir plotted
with median-centered

I. Shown are the data for six

variables from the 2006

data series of Cozzarolo

et al. (2018)

Fig. 8 a–c Designed data vectors (ordinate) as a function of transect position (abscissa). d Autocorrelation metrics for the designed

data including the pattern-partitioning metrics IG
2 and IC

2 (Supplementary file ESM 6)
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achieved with 229 cases and 105 permutations with

this spatial array. That is, ~I from none of 105

permutations exceeded the observed I for any of the

designed arrays (all ~P=10–5). Median-centered ,

however, suggested a weaker signal for clumping

(Fig. 8d, row 1). Spatial regression demonstrated

strong signal for the two cases with gradient patterns

with no appreciable signal for the clumped-only data

conformations.

The partitioning metric IG
2 strongly signaled both

pure and ‘clumpy gradient’ effects (Fig. 8a, c). IC
2

strongly signaled only the pure clumping effect

(Fig. 8b) with weak to modest indications of pattern

in the other two conformations (Fig. 8d, row 6). A

broader view of the behavior of IC
2 emerged from

permutations of the data illustrated in Fig. 1a. Figure 9

demonstrates the response of IC
2 over the range of

dispersion observed in random permutations and

selected designed data in 595 grid conformations

(Supplementary file ESM 7). For negative Ir, greater
magnitude (neglecting sign) indicated greater disper-

sion. The negative extreme represented perfect

interspersion. Conversely, the positive extreme of Ir
indicated pure gradient conformation which by

definition entails clumping of data with progressive

but collective monotonic increase in data values over

a spatial vector. However, the metric IC
2 for increas-

ingly positive Ir was particularly sensitive to non-

gradient clumping (Fig. 9). IC
2 ’s complement, IG

2 , was

concomitantly more sensitive to gradients.

Recalling that IC
2 =Ir

2 / (Ir
2?multiple r2), increasing

multiple r as it increases with gradient conformation

could only increase the denominator and constrain IC
2

to smaller values. These effects were evident in Fig. 9

as positive autocorrelation due to pure clumping

drove IC
2 upward to the limit of 1 while wholly graded

conformations constrained IC
2 to its lower limit. These

effects were visually fit with an inverted χ2 function

of appropriate dimensionality for the clumping effect

and with linear demarcation of the covariance limit fit

to its apparency in the plot (Fig. 9; Supplementary file

ESM_7).

Sensitivity analyses for the 29 empirical data

vectors most often demonstrated the same pattern

Fig. 9 Covariation of the spatial pattern partitioning metric IC
2

with the nondispersion metric Ir. Overdispersion was gaged in

this space by increasingly negative Ir which also compelled

concomitant increase in IC
2 . The gradient term (multiple r) in

the denominator for IC
2 attenuated the rise of IC

2 . Nondispersion

(clumping and gradients) was indexed by increasingly positive

Ir and either an accelerated or attenuated increase in IC
2 for

patterning that was due to gradients. Thus, IC
2 rose faster as a

function of nongradient clumping over the space of Ir. The
differential response of IC

2 to the two data structures therefore

created a means to partition influences of the two structuring

mechanisms on overall pattern
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found for the Cities data (Fig. 5). Wider frames,

hence lesser I3P, generally arose from increasing

replication which resulted in differential increase in

absolute values of frame boundaries, especially for

more stringent tail frame designations (Fig. 10a).

However, in several instances in the broader survey,

increased replication resulted in a decrease in frame

boundaries for more liberal tail frame designations

(Fig. 10b).

Summation regarding metric ideals

Table 6 summarizes performance of each metric of

autocorrelation with respect to ideals framed in the

Introduction and Background. The cardinal results of

these evaluations were: (1) Moran’s I met only 2 of

14 ideal (desired) criteria, failing even those it is

reputed to fit. (2) No metric alone met the ability to

distinguish pure clumping and gradient data confor-

mations. (3) The ratio IC
2 =Ir

2 / (Ir
2?multiple r2) was

differentially sensitive to nongradient clumping and

gradient effects.

Discussion

Through diverse case studies and simulations, we

found that Moran’s I varied with spatial pattern but

also with several aspects of data structure that distort

metrical representations of pattern. I, its transforms,

and the other spatial pattern metrics examined,

including matrix correlation and spatial regression,

demonstrated a diverse mixture of qualities populat-

ing the ‘ideals’ table (Table 1). A reprise of these

qualities and performance of the metrics for each is

given in Table 6.

The original metric, I, failed to provide a consis-

tent standard for comparing autocorrelation within or

among studies (see also Sen 1976; de Jong et al.

1984; Waldhör 1996; Tiefelsdorf and Boots 1997).

Our goal was to ‘unwarp’ I—to morph it into an

intuitive metric that fit conceptual expectations for

both I and for correlations in general. We believe that

both rectification methods presented, 3-point regis-

tration and fitting to the distribution of r, did this.

However, analysis revealed that the 3-point method

had a diversity of caveats that made it advisable to

conduct sensitivity analyses in each application.

Although we provided software for doing the anal-

yses (Fuentes et al. 2020), the sensitivities we felt

made 3-point rectification, though preferable to no

rectification, less desirable than fitting to the distri-

bution for r. The latter method appeared apt for all

the goals described in the “Introduction” sect. and

Table 1, except for distinguishing non-gradient

clumping from gradient effects. No single metric

would be able to distinguish three unique states

(overdispersion and two types of exception) which is

a two-dimensional issue. But a ratio of Ir and multiple

r provided a measure of distinction by indexing

contributions of the two non-exclusive patterns

(Figs. 8d, 9).

CP of tails

0
0.01
0.1
1

99
99.9
99.99
100

(A) avian vision PC1 (B) parasite presence

101                  102                  103                   104                    105                101                   102                    103                   104                  105         

permutations

0.5

0

-0.5

Fig. 10 Sensitivity of frame boundary definitions by permu-

tation number for two data vectors from L’Herpiniere et al.

(2019). Three point rectification demonstrated two patterns in

which greater permutation replication resulted in either wider

(a) or constricted (b) reference frames. Widening of frame

boundaries with greater permutation effort was more com-

monly observed within and across studies
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All of the I metrics rendered identical ~P-values
from Monte Carlo simulation, evincing preservation

of type I error despite centering and the two scaling

methods. Scaling I was not intended to change

inferential outcomes regarding autocorrelation. Our

intention was to project the well-recognized tradi-

tional metric to a quantitative and conceptual space

concordant with the inertia of existing ideals and

intuition. Such inertias have been termed ‘appercep-

tion’, meaning mental anticipation based on the sum

of prior experience (Greenwood 2015). Apperception

regarding I mirrors that for regular correlation per

Pearson (1924). Correlations are expected to be t-
distributed and to span the oppositive frame [−1,0,1]

with 0 indicating absence of pattern (Sokal and Rohlf

1995). A given value of correlation implies the same

effect strength for variable relationships from simi-

larly replicated studies, though qualitative

interpretation of the effect strength varies by disci-

pline (e.g., Möller and Jennions 2002; Mukaka 2012).

Rectification by 3-point registration eliminated bias

(i.e. the median null value was 0), greatly reduced

skewness, and generally expanded the scale of the

null distribution of I to a semblance of that for

correlation (Fig. 4). However, the scale and null

distribution of Ir was fit by definition to that for

regular correlation. Thus, Ir registered precisely with

apperception for correlation.

Table 6 Qualities expected, assumed, or desireable for autocorrelation metrics

Expected or desired property of autocorrelation metrics / Matrix

r

Multiple

r
/3P /r /C

2 Evidence regarding /r

Responsive to dispersion ? ∼ ∼ ? ? ? Figures 1, 9, ESM_6, 7

Responsive to gradients ? ? ? ? ? ? Figures 1, 8, 9, ESM_6, 7

Distinguishes clumping from gradient effects − − − − − ∼ Figures 1,9, ESM_6, 7

Strictly bounded between − 1 and 1 − ? − ?1 ? ? Equations 5, 6, 7, 8 and 9

Value for perfect interspersion:

− 1 or commensurate with expectations for regular

correlation

− − − ? ? ? Figure 9, ESM_7

Value for perfect gradient:

1 or commensurate with expectations for regular

correlation

− ∼ ? ? ? − Figures 9, ESM_7

Value for gradient-free clustering:

1 or commensurate with expectations for regular

correlation

− − − ∼ ∼ − Figures 8,9, ESM_6, 7

Central tendency for random patterns:

Mean is 0 − ? − − ? − Figures 3,4, 11

Median is 0 − − − ? ? − Figures 3,4,11

Distribution of random pattern metrics is symmetric

(opositive)

− − − − ? − Figures 3,4, ESM_7

Metric has stand-alone interpretability (contextualized by n) − ∼ ? ∼ ? − /r distributed as r; Eq. 9, Figs. 4, 11

Metric can be compared among studies (contextualized by

n)
− ? ? ?3 ? − /r distributed as r; Eq. 9, Figs. 4, 11

Metric itself is a standard effect size − − ? − ? − Equations 6, 9

Metric itself is a test statistic − − ? − ? − Equations 6,9 Rohlf and Sokal

(1995)

Derived null distributions retain original type I error rate ? ? − ESM_4, 6

Key:? , −, and ∼ indicate that the metric meets, fails, or approximately (or weakly) fits the criterion

I3P may be capped such that values in excess of |1| are redefined based on their sign to±1 (Eq. 3)
2 The median is a preferable measure of central tendency for asymmetric distributions where 0 is intended to indicate lack of pattern
3 Comparability among studies requires the same frame definitions and contexualization by n
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Moran’s I is often cited as derivative of Pearson’s

correlation coefficient, implying a homology and

hence theoretical basis for I that is entirely false. An

I metric that is dimensionally, volumetrically, and

distributionally homologous to r may not be possible

to derive theoretically given the multifarious dispar-

ities that emerge due to factors such as alternative

data types and patterns of site proximities. Suspend-

ing doubt, if such a direct, mathematically

homologous version of I were possible, with dimen-

sionality, scale, and variable distributions

homologous to r, then it follows that the distribution

of said metric would match that for r. In substitution

for that derivation, we can be true to the Pearson-

esque theoretical basis for a new I derived directly

from probability theory.

The approach of converting other statistics to r is
increasingly used in meta-analysis to enable the sorts

of comparisons we have described (Rosenthal and

Rubin 1986; Möller and Jennions 2002). Although

the conversion to r in the approach illustrated herein

is conceptually related, it is free from parametric

assumptions. Instead of calculating r from test

statistics, effect sizes, or P-values based on them,

fitting uses null distributions created directly from

empirical data. Therefore, this fitting method makes

no assumptions about the specific geometry of

residual or null distribution shapes, or the scale of

data matrices. While not being wedded to assump-

tions of parametric test statistics, Ir relied on

permutation and its improbable null extrema were

limited by replication effort. Minimum ~P depended

on permutation number and hence maximum Ir was
limited through Eqs. 8 and 9. For example, maximum

Ir from 20-case datasets with a true Ir of 0.9, assuming

that is known, by using 104, 105, or 106 replicates

yields Ir estimates of 0.76, 0.82, and 0.86 respec-

tively. In our frequentist approach, ~P did not change

if Ir exceeded the null distribution maximum by 1 unit

or 100. In parametric statistics, it is common for P to

short ~P by many orders of magnitude where ~P is

limited by permutation replication. This limit to Ir
only occurred when an observed dataset was

extremely (very improbably if randomly) patterned.

So for most empirical cases the issue may not be

relevant, but at least two solutions may obviate the

limit. First, for cases in which ~P equals the lower

limit of 1/(n?1), one could increase replication effort

until a threshold number of Ĩ in excess of I are

returned. If replication had to be incremented enough

to overtax computing resources, Ir from the simula-

tions conducted to that point could be plotted as in

our sensitivity analyses and an asymptotic value

would likely be evident. Second, rather than the try-

and-try-again procedure just outlined, one could use a

parametric test to get an initial estimate for k (=1/P
−1) sufficient to yield an unconstrained Ir or the next

order of magnitude higher to ensure adequacy. This

assures that Ir is not capped and therefore is

comparable to an empirical parametric r.
Although the ‘exact distribution of I’ has been

derived with assumptions standard for parametric

statistical inference (Tiefelsdorf 1998), the multifar-

ious nature of real-world applications may limit its

utility. For example, dimensionality of null distribu-

tions varies based on geometry of sample locations,

measurement distributions, and procedural aspects of

calculating I such as contiguity definitions. Although

positive definite distance matrices have singular

dimensionality, inversion of its values produces

proximities with unpredictable dimensionality. The

595 uniform grid pattern of Fig. 1 had 6 dimensions

(positive eigenvalues) yet that for 25 sampling sites

in unconstrained (normally distributed) conformation

had 7–9 dimensions for alternative permutations

(Supplementary file ESM_1). Similarly problematic

is the z parameter frequently used as a test statistic for

I (Cliff and Ord 1969). Its values are χ2-distributed

with various dimensionality, so it should perhaps

always be paired with significance tests by simula-

tions. Rectifying I to an alternative distribution would
seem suspect for subverting ‘the exact distribution’

and its probability architecture. Though the values of

I are rescaled in our correlation-fitting method, the

probability structure among values (differences in CP
among any pair of I) is unaltered by rectification.

Projecting I based on its null distribution to the

theoretical distribution for r also eliminates the need

to scale data inputs. Calculation of Ir requires neither
scaling the proximity matrix to unit sum nor scaling

of the centered data vector to unit variance per Moran

(1950). It is only necessary to create a cross product

by pre- and post-multiplying the unscaled proximity

matrix by the centered data vector, v� ′Pv� and then

converting this to Ir using its cumulative probability

within its null distribution. Supplementary file

ESM_8 demonstrates the equivalence of using scaled

or unscaled data arrays.
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The only caveats we conceived for rectifying I to
the ideals frequently assumed or desired relate to the

ease it grants to pass over consideration of the

potentially informative if messy reality of raw null

distributions. The tidied view offered by Ir may

prevent insights that could flow from observing the

original null distribution shape, such as the utility of

data transformation. Worse, a ‘normalized’ frame of

view may prevent recognition of functional infer-

ences regarding the system or discovery of higher

order phenomena (see DeWitt 2016, for ‘bell curve’

biases in evolutionary biology). To prevent such a

disconnect between the original and rectified distri-

butions, it is advised to visualize both and perhaps the

geometric mapping between them as in Fig. 11

(Supplementary file ESM_9).

The ability to compare I among variables and

studies is essential if the metric is to be useful beyond

solitary instances and to facilitate its expansion to

multiple domains (Kim et al. 2015). Presently,

empirical values and null distributions typical of I
appear as varied contortions that fit neither each other

nor a theoretical or idealized standard. Examples of

such contortions can be readily observed among our

empirical survey results (Table 5). Two data vectors

from Goldsmith et al. (2019) yield I=0.02 and − 0.04,

yet the former is highly significant and the latter is

not ( ~P=0.007 and 0.12) in dissonance with the

expectation of oppositivity. In terms of scale, an

I from L’Herpiniere et al. (2019) was inordinate at

1.2 while an I from Marrot et al. (2015) was

miniscule at 0.01 and both were significant. Results

so misfit to each other and to the scale of regular

correlations are difficult to reconcile with intuition.

The inscrutible nature of I thereby also precludes

comparisons among studies. Rectification trues I to a

standard that meets the apperceptive mass of ideals

thought, taught, and wrought in the statistical and

geospatial literature. We can continue to qualify

every I statistic for each of its idiosyncrasies or we

can present it in a manner that does not require those

labors.
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