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Abstract

Context Although many prior efforts have found that

both spatial composition and configuration of green-

spaces significantly affect the urban heat environment

globally, the spatially heterogeneous effects of green-

space spatial patterns on the urban heat environment

remain poorly understood for urban spaces.

Objectives We proposed a spatially explicit

approach to investigate the spatially heterogeneous

cooling effects of greenspaces and map the relative

contributions of the greenspace spatial patterns to the

characterization of the urban heat environment.

Methods The proposed approach integrated the best

subsets regression method, geographically weighted

regression (GWR), and hierarchical partitioning anal-

ysis. Two cities in southeastern China were selected to

test our model. Landsat 5 image obtained in the

summer was used to estimate the land surface

temperature (LST) and greenspace spatial patterns

were extracted from 0.5-m aerial images.

Results The results revealed that LST of Guangzhou

can be well predicted by the percent cover (PER), the

number of patches (NP), the area-weighted mean of

the patch area (AREA_AM), and the area-weighted

mean of the perimeter-area fractal dimension

(FRAC_MN), while that of Shenzhen can be predicted

by PER, NP, AREA_AM and the mean of the related

circumscribing circle (CIRCLE_MN). The inclusion

of additional landscape metrics did not yield signif-

icantly higher accuracies. The dominant landscape

metrics of greenspace that determine the LST varied

spatially across the two cities, with the PER account-

ing for the greatest variation.

Conclusion The results of our work demonstrate that

the location of greenspace is a significant factor

affecting the urban heat environment. The proposed

approach provides a new understanding of the inter-

action between the greenspace spatial patterns and

urban heat environments, providing useful informa-

tion for tailoring greenspace planning policies for

specific local sites.
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Introduction

The area of urban regions is expected to increase by

1.2 million km2 by 2030, which is nearly triple the

global urban area in 2000 (Seto et al. 2012). Although

urbanization has significantly improved the socioeco-

nomic well-being of urban residents, it can potentially

threaten a range of ecosystem services and biodiver-

sity features (Seto et al. 2012; Peng et al. 2017; Pickard

et al. 2017). The urban heat island (UHI) effect, which

describes the atmospheric phenomenon of increased

surface and air temperatures compared with the

surrounding rural areas (Oke 1973; Voogt and Oke

2003), is one of the most recognizable environmental

problems caused by urbanization. Specifically, the

transformation from natural and semi-natural (e.g.,

forest, farmland, water body) ecosystems to the

artificial surface (e.g., impervious surface) primarily

contributed to the hotter environment in core urban

areas. The increased temperatures may result in a

broad range of unintended and negative consequences

(Wang 2009; Gabriel and Endlicher 2011; Skelhorn

et al. 2016; Xu et al. 2016; Wang et al. 2018b). Aware

of these impacts, research communities consisting of

different professional fields have made great efforts to

obtain scientific knowledge of the UHI, seeking

technologies and strategies for urban planners to

create a comfortable thermal environment in urban

regions.

Microclimates within densely populated cities are

unique from regional patterns owing to the various

environmental configurations and functional uses,

resulting in different environmental variables exerting

varying degrees of influence on the UHI (Wong et al.

2016). Although a considerable amount of recent

effort has been applied to explore the UHI mecha-

nisms (Li et al. 2016; Zhou et al. 2017b; Peng et al.

2018; Liu et al. 2018b; Ziter et al. 2019), we still only

have a minimal understanding of how landscape

patterns in urban areas impact the LST at different

sites. Most of the previous efforts utilized global

statistical methods, assuming that the relationships

between the urban heat environment and correspond-

ing driving factors were constant over the entire study

area. Thus, these studies may neglect the issues of

spatial non-stationarity, regarded as the intrinsic

properties of the urban ecosystem (Wu and David

2002; Foody 2003; Li et al. 2010; Su et al. 2012). In the

investigation of this mechanism, spatial non-

stationarity relationships should be considered with a

local regression technique, and site-specific optimized

mitigation strategies should be provided for contrast-

ing environmental configurations. Ivajnšič et al.

(2014) stated that the data related to geographical

patterns and processes in nature are always geo-

referenced, which means that their measurements are

defined as local non-stationary explanatory variables,

rather than by universal physical laws. Additionally,

some recent work has indicated that the constant

internal variation of urban areas has not been consid-

ered (Wang et al. 2018a; Zhou et al. 2019). From this

perspective, an interesting question emerges: how can

we investigate spatially explicit influences of a

regional urban heat environment?

Greenspace refers to the landscape that comprises

vegetation and is associated with natural elements

(Taylor and Hochuli 2017), providing a wide range of

benefits for dwellers, including UHI mitigation by

intercepting solar radiation with shading surfaces and

reducing the surrounding temperature through evap-

otranspiration (Arnfield 2003; Greene and Kedron

2018). Hence, the impact of greenspace spatial

patterns on UHI has been intensively studied, espe-

cially with thermal infrared images that are used to

derive the LST (Li et al. 2012; Maimaitiyiming et al.

2014; Sun and Chen 2017; Zhou et al. 2017b; Chun

and Guldmann 2018; Greene and Kedron 2018; Guo

et al. 2019). It is known that increasing the percentage

of greenspace may significantly produce a cooler

environment. However, such spaces in densely pop-

ulated cities are limited, leading to increased interest

in the optimization of the greenspace spatial config-

uration to maximize its ability to mitigate UHI (Zhang

et al. 2017; Zhou et al. 2017b; Guo et al. 2019). Zhou

et al. (2017b) and Guo et al. (2019) found that the

consideration of whether spatial composition or spa-

tial configuration is more important was inconsistent

among the studies, primarily because of the different

urban planning contexts and local climates of the

various study areas. Landscape patterns are charac-

terized by spatial heterogeneity in ecological systems

(Pickett and Cadenasso 1995; Wu and David 2002;

Zhou et al. 2017a), especially in core urban areas.

Consequently, the spatial pattern of the UHI, as well as

its deriving influence, vary with the local site condi-

tions. In this context, other practical questions arise: Is

greenspace composition or configuration more impor-

tant in determining the LST at the local scale? What
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are the dominant landscape metrics for a specific

location in heterogeneous inner cities?

In this study, we developed an approach by

integrating the best subset regression, geographically

weighted regression (GWR), and hierarchical parti-

tioning analysis, to detect the representative landscape

metrics of greenspaces that determine the LST and

map the contributions of greenspace to the urban heat

environment across cities. This idea is based on the

assumption that the LST pattern and its influence in

urban areas are highly heterogeneous. Unlike previous

studies that only treat the UHI mechanism as a single

unit, our method further employs the spatial hetero-

geneity of site-specific information. The success of

this technique is derived from two aspects: (1)

representative landscape metrics of greenspaces may

not be consistent in different cities; thus, we poten-

tially need to determine the specific landscape metrics

according to a given study area. This issue can be

overcome based on a metrics detection algorithm that

integrates stepwise regression and best subsets regres-

sion. (2) The impact of the greenspace spatial pattern

on the LST varies with local site conditions, leading to

dominant landscape metrics that tend to be spatially

explicit. Thus, we proposed a local regression tech-

nique by integrating GWR and hierarchical partition-

ing to solve this problem. We tested the proposition in

two highly urbanized cities, Guangzhou and Shen-

zhen, in southeastern China, and attempted to address

the aforementioned scientific questions.

Methodology

Study area

Guangzhou and Shenzhen in the Pearl River Delta

(PRD) metropolitan region of southeastern China were

chosen as the study area (Fig. 1). These cities are

representative of many highly urbanized cities located

in the subtropics and are characterized by hot and

humid summers (Peng et al. 2018). Guangzhou is the

capital city of Guangdong province, with a total area

of 7434 km2 and a population of approximately 14.49

million in 2018. Its GDP reached CNY ¥ 2.3 trillion in

2018, accounting for 20% of the GDP in Guangdong

province. Shenzhen is a newer city than Guangzhou,

serving as one of the four special economic zones

established in China. The area of Shenzhen is greater

than 1996 km2, with a population of 13.02 million and

a GDP of CNY ¥ 2.4 trillion in 2018. Consequently,

Guangzhou and Shenzhen have experienced extre-

mely rapid urbanization and have become world cities.

In this study, we focused on the highly urbanized areas

of the two cities, as shown in Fig. 1b. The study area of

Guangzhou was the central urban area consisting of

the main highly urbanized districts of Guangzhou with

126 census tracts, covering approximately 1461.66

km2. We selected western Shenzhen because it is the

primary economic development growth engine of the

city rather than including the eastern portion that

serves as an eco-environmental protection area (Peng

et al. 2018). These selected areas are characterized by

greater development than other parts of the respective

cities, and they can sufficiently represent the urban

heat environment of rapidly urbanized cities.

Development of a new method

Step 1: LST and greenspace extraction

A cloud-free Landsat-5 image (path 122, row 44)

acquired on June 1, 2011 was used to characterize the

LST spatial distribution. The Landsat-5 image is a

Level A product downloaded from the United States

Geological Survey (https://glovis.usgs.gov/). The LST

retrieval was accomplished in two steps (Qin et al.

2001; Peng et al. 2018; Guo et al. 2019): (1) the digital

number (DN) of the thermal infrared band in the

Landsat-5 image was converted to the radiation

brightness temperature; (2) the actual LST was cal-

culated from the radiation brightness temperature with

the use of a mono-window algorithm. Finally, the LST

data with 120 m spatial resolution was obtained.

The greenspace was mapped based on the aerial

images with 0.5 m spatial resolution acquired in 2010.

For classification, four classes were considered:

greenspace, impervious surfaces, water bodies, and

bare soil, with the use of an object-oriented classifi-

cation approach using the eCognition Developer

software (Definiens Imaging, Inc., Germany). The

classification accuracy was examined based on a

confusion matrix with more than 90 randomly selected

points for each city. Finally, the overall classification

accuracies of the greenspace were 93.23% and

92.16%, and the kappa coefficients were 0.89 and

0.86 for Guangzhou and Shenzhen, respectively

(Fig. 1c, d).
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A 500 m 9 500 m fishnet layer was created to

present the size of neighborhoods of the two cities and

systematized the LST and greenspace spatially,

thereby allowing the examination of the complex

mechanism of the LST (Guo et al. 2016; Zhou et al.

2017b). For each block, the mean LST values were

calculated based on zonal statistics as the response

variable, and the landscape metrics of greenspaces

were the predictor variables. We focused on the

terrestrial parts of the cities; the blocks containing

water bodies were excluded from the statistical

analyses. The total number of blocks was 4,336 and

4,430 for Guangzhou and Shenzhen, respectively

(Fig. 2, step 1).

Fig. 1 a Location of the Pearl River Delta (PRD) metropolitan area in southeastern China, and b study areas in the cities of Guangzhou

and Shenzhen. c, d show the spatial patterns of greenspace of the two cities
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Step 2: identification of representative landscape

metrics

Landscape metrics can effectively display the spatial

composition and configuration of the land cover

(Turner 2005; Zhou et al. 2011). They have been

widely used to investigate greenspace landscape

patterns and their impacts on the UHI (Li et al.

2013; Zhou et al. 2017b; Guo et al. 2019; Li and Zhou

2019). In previous studies, the selection of landscape

metrics was based on principles such as interpretabil-

ity, redundancy, and theoretical importance, but

without an objective examination. Landscape metrics

are often correlated (Liu et al. 2018a), causing

multicollinearity when various metrics are included

in the LST models. Moreover, different study areas

were characterized by their distinct ecological con-

texts (Wu et al. 2015; Zhou et al. 2017b). Conse-

quently, applying an objective method to determine

the representative landscape metrics for a specific

study area is an essential part of the investigation of

the complex relationships between greenspace land-

scape patterns and the LST.

In this study, a total of 27 landscape metrics at the

class level were considered, including the commonly

used metrics of patch density (PD), landscape shape

index (LSI), and edge density (ED) and uncommonly

used metrics, such as mean-related circumscribing

circle distribution (CIRCLE_MN) and contiguity

index (CONTIG_AM). These landscape metrics in

each block were calculated using Fragstats 4.2 soft-

ware (McGarigal et al. 2012). Their definition and

calculated equation can be found in the user manual of

the software. The ‘‘8-cell’’ rule was used to define the

patch neighbors during the landscape metrics

calculation.

The objective method for detecting representative

landscape metrics includes two steps: stepwise regres-

sion followed by best subsets regression (Fig. 2, step

2). First, we employed the stepwise regression model

to eliminate the non-significant landscape metrics of

greenspaces, whereas those influencing landscape

Fig. 2 Flowchart of the

proposed approach
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metrics with no multicollinearity were found with a

significance test at the 0.01 level. Second, we applied

best subsets regression to consider all the possible

combinations of influencing landscape metrics (Wang

2009; Peng et al. 2018). Considering all the influenc-

ing landscape metrics, the best subsets regression

calculates and compares all possible models using a

specified set of landscapemetrics and then assesses the

best-fitting models that contain only one landscape

metric, two landscape metrics, and so on. The adjusted

R2 value was used as an indicator to define the

goodness of fit for the model.

Step 3: detecting dominant landscape metrics spatially

using an integrated method

After confirming the representative landscape metrics

of greenspaces in determining the LST in step 2, we

constructed an integrated method incorporating the

GWR and hierarchical partitioning analysis to further

map the relative contributions of the landscape metrics

spatially (Fig. 3, step 3). First, we proposed a GWR

model to perform the complex derivation of the

influence on the LST by greenspace spatial patterns.

GWR is a local regression technique with the ability to

examine the effects of local spatial heterogeneity on

complex relationships, which is a significant improve-

ment over commonly used global regression analyses,

such as the ordinary least squares (OLS) model

(Brunsdon et al. 1996; Wang et al. 2008; Li et al.

2010; Van Donkelaar et al. 2015). The GWR model

for the LST calculation can be expressed as

LSTi ¼ b0 ui þ við Þ þ b1 ui þ við Þxi1 þ b2 ui þ við Þxi2
þ � � � þ bn ui þ við Þxin þ ei;

ð1Þ

where LSTi is the actual LST values in the i-th block, ui
and vi refer to the spatial location of the i-th block;

xi1,xi2, xin refer to the representative landscape metrics

in the i-th block; b0 denotes the intercept of the model;

b1, b2, and bn are the slopes of the representative

landscape metrics; and ei is the random error term at

the i-th block. The GWR model created a spatial

pattern of intercepts (b0 ui þ við Þ), variable coeffi-

cients (e.g.,b1 ui þ við Þ), and a local R2 to characterize

the spatial non-stationarity, indicating that the impacts

of the greenspace spatial patterns on the LST will vary

with the local site conditions. Specifically, the band-

widths generalizing the optimal GWR were deter-

mined by a cross-validation method that produced the

lowest root-mean-square prediction error.

Second, 2n (n is the number of representative

landscape metrics) possible GWRmodels were imple-

mented to derive the local R2 representing the effects

causing the change in the LST by the landscape

metrics of greenspaces across the study sites. Hierar-

chical partitioning, an excellent multidimensional

environmental data analysis method (Mac Nally

2000; Peng et al. 2018; Guo et al. 2019), was utilized

to identify the relative contribution of each selected

landscapemetric contained in the GWRmodels. These

representative landscape metrics were sorted by their

independent contributions in descending order to

Fig. 3 Spatial pattern of LST in a Guangzhou, b Shenzhen, and c the statistical distribution of their values
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detect the dominant landscape metrics (i.e., most

powerful metrics) in determining the LST.

We also proposed an intensity dominance gap

(IDG) term to quantify the dominance difference of

the independent contribution between the most pow-

erful landscape metric and the second most powerful

landscape metric in each block:

IDGi ¼ IDGfi � IDGsi; ð2Þ

where, IDGi, in %, is the dominance difference of the

most powerful landscape metric in the i-th block,

IDGfi and IDGsi are the independent contribution of

the most powerful and second most powerful land-

scape metric in the i-th block, respectively.

Results

Spatial patterns of greenspace and LST

As shown in Table 1, greenspaces in Guangzhou and

Shenzhen exhibited similar percent cover (PER)

values but a significantly diverse spatial configuration.

Approximately 52.86% of the land in Guangzhou and

approximately 53.85% in Shenzhen were covered by

greenspace. The PER of greenspace varied greatly

across the urban regions for both cities (Fig. 1b).

Taking Guangzhou as an example, the greenspace is

more clustered with larger patch sizes in the northeast

region. However, the greenspace is more scattered

with fewer and smaller patches in the middle area.

This is largely because these places are the most highly

urbanized regions, covered by high-density buildings

and institutions with absent vegetated landscapes.

Regarding the spatial configuration, the patch density

(PD) of the greenspace in Shenzhen was greater than

that in Guangzhou with lower edge density (ED),

suggesting that the greenspace in Shenzhen exhibited

a greater number of patches with less complexity in

shape. The largest patch index (LPI) was greater in

Shenzhen, suggesting the existence of a larger green-

space patch.

The LST varied greatly across the urban areas for

both cities, as shown in Fig. 3. Guangzhou produced a

higher LST, ranging from 294 to 321 K, with a mean

LST of 304.61 K. The LST in Shenzhen ranged from

296 to 317 K, with a mean of 303.57 K. It is evident

from Fig. 3a and b that a thermal gradient progressed

from the city center to the countryside. Many LST hot

spots can be visually identified. The most extensive

hot spots were distributed in the Guangming district of

Shenzhen (the northwest region), which is dominated

economically by the manufacturing industry. Substan-

tial amounts of land in Guangming were newly

developed areas in 2011, resulting in intensive urban

heat. The highest LST occurred in the cargo terminal

and bonded areas of Qianhai Bay in southwestern

Shenzhen. Additionally, although higher LSTs existed

in Guangzhou, the number of pixels with higher LSTs

was larger in Shenzhen, as displayed in the violin plots

of the LST in Fig. 3c.

Representative landscape metrics detection

Note that we defined the maximum number of

landscape metrics in the subsets to be 10. The number

of influencing landscape metrics actually extracted by

the stepwise regression was greater than 10 for both

cities. The results indicated that the achieved accura-

cies of the LST prediction increased as the number of

landscape metrics included in the models increased

(Fig. 4). The results demonstrated that the explanation

rates increased greatly with the increase in the number

of landscape metrics from one to four (Fig. 4). The

explanation rate with only one landscape metric (PER)

exhibited the lowest explanation rates of 70.72% and

77.18%, and then increased greatly to 73.82% and

78.32% with two landscape metrics (PER and NP) for

Guangzhou and Shenzhen, respectively (Table 2).

However, these upward tendencies became less steep

after the selection of the two landscape metrics.

Especially when the number was greater than four, the

inclusion of more landscape metrics in the models did

not yield significantly higher accuracies. Taking

Shenzhen as an example, the explanation rate

increased only by 0.07% with an increase in the

number of landscape metrics from four to five, with

SHAPE_MN (mean of shape index) included as an

Table 1 Greenspace spatial patterns in the two cities

Cities PER (%) PD (/100 ha) LPI (%) ED (m/ha)

Guangzhou 52.86 71.12 7.71 546.08

Shenzhen 53.85 87.24 10.55 507.17

PER percent cover with unit of %, PD patch of density with

unit of number per 100 hectares, LPI largest patch index with

unit of %, ED edge density with unit of m/ha
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added predictor variable with PER, NP, AREA_AM

(area-weighted mean of patch area), and CIR-

CLE_MN (mean of related circumscribing circle) in

the model. Similar results could also be found in

Guangzhou; hence, we determined that the optimal

number of representative landscape metrics is four.

As shown in Table 2, Guangzhou and Shenzhen

shared the same representative landscape metrics

when we required only one or two landscape metrics

of greenspaces in the LST predicted models, with PER

for the first landscape metric selection and an added

NP as the second landscape metric. However, these

selections for the other numbers of required metrics

were different between Guangzhou and Shenzhen. For

instance, FRAC_AM (area-weighted mean of fractal

dimension index) was the third selection for Guangz-

hou, whereas AREA_AM was for Shenzhen. In

contrast, AREA_AM was the fourth selection of

Fig. 4 Adjusted R2 changes among different numbers of landscape metrics in the LST prediction models

Table 2 The representative landscape metrics corresponding to the required number of metrics to predict the LST in Guangzhou and

Shenzhen

Number of metrics Representative landscape metrics selection

1 PER

2 PER NP

3 PER NP FRAC_AM

AREA_AM

4 PER NP FRAC_AM

AREA_AM

AREA_AM

CIRCLE_MN

5 PER NP FRAC_AM

AREA_AM

AREA_AM

CIRCLE_MN

TE

SHAPE_MN

6 PER NP FRAC_AM

AREA_AM

AREA_AM

CIRCLE_MN

TE

SHAPE_MN

SHAPE_AM

GYRATE_MN

7 PER NP FRAC_AM

AREA_AM

AREA_AM

CIRCLE_MN

TE

SHAPE_MN

SHAPE_AM

GYRATE_MN

GYRATE_AM

COHESION

PER percent cover, NP number of patches, AREA_AM area-weighted mean of the patch area, FRAC_AM area-weighted mean of the

perimeter-area fractal dimension, CIRCLE_MN mean of the related circumscribing circle, TE total edge, SHAPE_MN mean of the

shape index, SHAPE_AM area-weighted mean of the shape index, GYRATE_AM area-weighted mean of the radius of gyration,

GYRATE_MN mean of the radius of gyration, and COHESION patch cohesion index. Detailed definitions and equations can be found

in the user manual of the Fragstats 4.2 software (McGarigal et al. 2012)

PER and NP with an underline are the same representative landscape metric selections according to the required number for both

cities. The landscape metrics with normal font and bold are the selections for Guangzhou and Shenzhen, respectively
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Guangzhou, but CIRCLE_MN was for Shenzhen.

Finally, four specific landscape metrics could be

confirmed, as denoted by the gray region in Table 2:

PER, NP, FRAC_AM, and AREA_AM for Guangz-

hou and PER, NP, AREA_AM, and CIRCLE_MN for

Shenzhen.

Figure 5 reveals that the Pearson correlation coef-

ficients were considerably high for all four represen-

tative landscape metrics, suggesting the existence of

significant relationships between the LST and the

selected landscape metrics. In detail, the PER and

AREA_AM have a slight linear relationship with the

LST. The NP was logarithmically related to the LST,

with 20 patches of greenspace approximately equaling

the threshold value of this relationship. The LST

significantly increased as the NP increased before 20

patches in the 500 m 9 500 m block, whereas the

increase in the greenspace NP did not significantly

increase the LST after the threshold for the two cities.

The relationship between the FRAC_AM and LST in

Guangzhou formed a ‘‘crying’’ concentric curve with

the lowest correlation coefficient of 0.40 among all

selected landscape metrics.

The CIRCLE_MN serves as a shape metric that

measures the circularity and elongation of the patches,

it approaches 0 for circular greenspace patches and

approaches 1 for elongation. Results showed CIR-

CLE_MN strongly nonlinearly and positively related

to the LST in Shenzhen. A highly convoluted but

narrow patch of greenspace may indicate increasing

total edges and higher edge density, which would

potentially lead to an increase of shade provided by

greenspace to surrounding areas(Zhou et al. 2011). To

our knowledge, the CIRCLE has been ignored in

previous UHI research. However, we found that the

CIRCLE is also a valuable metric of greenspace for

Shenzhen based on the representative landscape

metrics detection procedure.

Dominant landscape metrics assessment

across the urban landscape

The results indicated that the LST was spatially

controlled by the PER, NP, FRAC_AM, and

AREA_AM of the greenspace in Guangzhou (Fig. 6a)

and by the PER, NP, AREA_AM, and CIRCLE_MN

of the greenspace in Shenzhen (Fig. 7a). This suggests

that the effect of the greenspace spatial pattern on the

LST was dependent on the specific location of the

greenspace. The results revealed that the LST in both

cities was dominated by the PER of the greenspace,

which accounted for the majority of the blocks

compared with the other three landscape metrics—

66.93% (or 2902 blocks) for Guangzhou and 64.04%

(or 2837 blocks) for Shenzhen. The NP of the

greenspace was the next metric, accounting for

13.81% (or 599 blocks) for Guangzhou and 15.62%

(or 692 blocks) for Shenzhen. The AREA_AM for

Guangzhou and Shenzhen, FRAC_AM for Guangz-

hou, and CIRCLE_MN for Shenzhen covered rela-

tively fewer blocks.

In addition to confirming that each dominant

landscape metric varied across the urban regions, the

independent contribution of each block across the

study areas was also significantly and spatially

heterogeneous (Figs. 6b, 7b). Guangzhou produced

higher independent contributions by the dominant

landscape metrics, ranging from 7.30 to 66.06%, with

a mean of 28.60%, and Shenzhen produced indepen-

dent contributions ranging from 3.67 to 61.26%, with a

mean of 26.96%. It is significant that there were very

few blocks that exhibited independent contributions

higher than 50%, suggesting that joint contributions

interacting with various landscape metrics of green-

spaces may be the predominant influencing factor for

LST variations.

The IDG that determines the magnitude of the

dominance difference of each selected landscape

metric is shown in Fig. 8. In particular, we classified

the blocks with a IDG less than 10% as weak

magnitude, blocks with a IDG greater than 10% and

less than 20% as strong magnitude, and blocks with a

IDG greater than 20% as very strong magnitude. The

results suggested that a larger number of blocks in the

two cities were covered by weak and strong magni-

tudes. In detail, 2026 (or 47.80%) and 2048 (or

47.23%) blocks in Guangzhou were weak and strong,

respectively. These numbers were 2623 (59.21%) and

1708 (38.55%) blocks for Shenzhen. The PER

accounted for the greatest number of blocks, espe-

cially those of strong magnitude in Guangzhou (1568

blocks) and weak magnitude in Shenzhen (1469

blocks), which is reasonable because the PER of

greenspace covered most of the blocks in the two

cities. It is interesting to note that the AREA_AM,

rather than the NP, covered the secondmost number of

blocks, following the PER with weak magnitudes,

indicating that most of the AREA_AM blocks
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exhibited a weaker dominant ability in determining the

LST compared with the other landscape metrics. Only

a small number of blocks exhibited a very strong

magnitude. In these cases, the PER accounted for 244

blocks for Guangzhou and 66 blocks for Shenzhen.

The NP followed, accounting for 11 and 22 for

Guangzhou and Shenzhen, respectively. The other

landscape metrics exhibited fewer than 10 blocks.

Discussion

Representative landscape metrics selection

Numerous landscape metrics have been used to derive

the LST in various studies (Zhou et al. 2011, 2017b;

Peng et al. 2018; Liu et al. 2018b; Guo et al. 2019; Li

and Zhou 2019; Yue et al. 2019). However, most of

these studies tended to subjectively select several

Fig. 6 a Spatial distribution of each dominant landscape metric and b their independent contributions in Guangzhou

Fig. 7 a Spatial distribution of each dominant landscape metric and b their independent contributions in Shenzhen

bFig. 5 Scatterplots showing the relationships between the LST

and the selected landscape metrics of Guangzhou (a–d) and

Shenzhen (e–h). All the correlation coefficients were significant
at the 0.01 level. The trend lines fitting the scatterplots were

based on a loess smoother
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commonly used metrics according to previous efforts.

In this study, we found it vital to reduce the number of

landscape metrics and select the most representative

and significant landscape metrics of greenspaces

because the LST was found to vary dramatically

across the study areas, and its value is strongly

dependent on the background climate and urban

planning (Zhou et al. 2017b, 2018; Guo et al. 2019).

Focusing on the different behaviors of the various

landscape metrics of greenspaces to explain the LST,

we took Guangzhou and Shenzhen as the study areas

to test the proposed method and conduct comparative

work. We found the PER, NP, and AREA_AM to be

representative landscape metrics for both cities when

three landscape metrics were required to predict the

LST (Table 2), even though these two cities were

characterized by significantly different LST patterns

and socio-economic development backgrounds. Three

landscape metrics accounted for more than 75% of the

explanation rate in predicting the LST variations. This

may be due to the similarity in urban climate or, at

least partially, the similarities in the phenological

characteristics of greenspaces. These results may help

us to confirm that a smaller difference between the

study areas means that the representative landscape

metrics in deriving the LST are more stable. Addi-

tionally, the FRAC_MN and CIRCLE_MN of the

greenspace were the other representative landscape

metrics. However, these added landscape metrics only

yielded a slight improvement in predicting the LST

(Fig. 4), which was consistent with the results of Chen

et al. (2014) and Peng et al. (2018).

The representative landscape metrics found in this

study can also be seen clearly through comparisons

with previous efforts. For example, Zhou et al. (2017b)

chose five landscape metrics of urban trees based on

various criteria, including theory, practice, easy inter-

pretability, and minimal redundancy (Peng et al. 2010;

Zhou et al. 2011; Li et al. 2013), to examine the

impacts of spatial patterns of trees on urban heat

mitigation in Maryland and California in the USA.

Their landscapemetrics selection consisted of the PER

representing the spatial composition metric and the

AREA_MN, ED, SHAPE_MN, and LPI representing

the spatial configuration metrics. Li and Zhou (2019)

chose similar landscape metrics as stated by Zhou

et al. (2017b), replacing the AREA_MN with the PD

to investigate the relationship between the urban heat

island and greenspace spatial pattern in the Illinois–

Indiana–Ohio urban agglomeration in the USA. Guo

et al. (2019) selected the PER, MPS, ED, and LPI

based on previous work (Cushman et al. 2008) to

examine the complex mechanisms linking the LST to

the greenspace spatial pattern in four highly urbanized

cities in China. It is clear that these efforts improved

our understanding of the mechanisms of the LST.

However, regarding the significantly different loca-

tions of the corresponding study areas worldwide, the

potential driving factors and underlying mechanisms

of the LST might differ.

Fig. 8 Intensity dominance gap (IDG) of each landscape metric

for aGuangzhou and b Shenzhen. Note that a IDG less than 10%

was defined as weak magnitude, IDG greater than 10% and less

than 20%was defined as strongmagnitude, and IDG greater than

20% was defined as very strong magnitude
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Although the selected metrics predicting the LST

exhibit significant variances, the subjective landscape

metrics selection probably leads to multi-collinearity

among the predictors or over-fitting of the model

(Asgarian et al. 2015; Peng et al. 2018; Rocha et al.

2019). These problems can be overcome by reducing

the number of independent variables prior to investi-

gating the associations with the independent and

dependent variables using appropriate statistical tech-

niques (Riitters et al. 1995; Dohoo et al. 1997; Chen

et al. 2014). Consequently, the representative land-

scape metrics selection approach proposed in this

study is more reasonable. Our results demonstrate

explicitly that the landscape metrics selection was a

site-specific task, stressing the importance of quanti-

tatively identifying the best independent variables

during the research on the relevant physical mecha-

nisms. Moreover, the idea of a representative land-

scape metrics selection approach can also be broadly

applied to research on other environmental and

ecological mechanisms.

Site-specific mechanism for UHI management

implication

In this study, we developed a spatially explicit

approach, joining the GWR and hierarchical parti-

tioning analysis, to characterize and map the dominant

landscape metrics locally across Guangzhou and

Shenzhen. Beyond the non-stationary mechanism of

the LST with the use of the GWR, as revealed in

previous studies (Li et al. 2010; Ivajnšič et al. 2014;

Zhang et al. 2019), we further detected the dominant

landscape metric of the greenspace spatially and

locally based on the local R2 results derived from the

GWR model (Figs. 6, 7). Based on this approach, we

could effectively detail the spatial distribution of the

dominant landscape metric of the greenspace in a

study area with block scale and, thus, improve our

understanding of the specific metric that determines

the LST locally. This method also allows us to

spatially detail the magnitude of the dominant ability

of each dominant landscape metric (Fig. 8). This issue

is vital because if the dominant intensity of the most

powerful landscape metric of greenspace was weak,

we would have to consider the second most powerful

landscape metric when managing and planning a

greenspace to implement UHI mitigation strategies.

Unlike global statistical methods, which only

provide an average description of the LST mechanism

over all sites, our proposed method can provide more

detailed local information regarding how the spatial

variations of the LST were affected by the greenspace

spatial patterns in blocks. The information from these

local sites is helpful in implementing more target-

specific and effective greenspace planting strategies to

decrease the LST and mitigate the UHI. For example,

we found that the greenspace composition was not

always the most significant landscape metric influ-

encing the LST variations, as found in previous studies

based on global statistical methods. Our study con-

firmed that the greenspace composition is the domi-

nant influencing metric, but not across all sites of the

cities. The greenspace configuration (e.g.,

AREA_AM) tended to have a much stronger impact

on the LST than the greenspace composition in some

local sites (Fig. 8), where we can focus on optimizing

the greenspace configuration with a limited green-

space area.

Many cities in China have recently begun imple-

menting the ‘‘Urban Green Space System Planning’’

policy to improve the ecosystem services of green-

spaces. The results of our study are beneficial for these

implementations because when cities have limited

land available for greening, urban planners can

consider opportunities for optimizing greenspace

configurations for fixed areas to further alleviate the

UHI in these areas, rather than only seeking suffi-

ciently large areas for planting new greenspaces. The

regional differentiation of the dominant landscape

metrics will serve to provide specific UHI mitigation

strategies toward practical implementations, rather

than a ‘‘one-size-fits-all’’ policy (Platt 2004), allowing

urban planners and designers to lead the way in UHI

mitigation, urban resilience, and sustainable

development.

Limitations and future work

The method proposed in this study provides a poten-

tially valuable idea for investigating the complex

relationship between the LST and greenspace patterns;

however, all the results should be interpreted in the

context of several limitations. First, a single statistical

scale (500 m 9 500 m) was used in this study,

regardless of the spatial dependence of the LST-

deriving influence relationship (Zhou et al. 2017b; Liu
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et al. 2018b; Guo et al. 2019). The greenspace and its

cooling effect may transcend far from its physical

boundary (Zhou et al. 2015). Future research should

consider a multi-scale analysis and neighborhood

information within the blocks. Next, this study only

considered the landscape metrics of greenspaces. The

surface albedo, water body, urban morphology, and

other important physical and socioeconomic proper-

ties were not fully analyzed as LST-influencing

factors. Thus, targeting the specific government

department adopting relevant scientific findings to

guide the selection of the LST-influencing factors in a

certain study area is a desirable process in future

studies. In addition, we assumed that the LST derived

from a single Landsat image could provide a repre-

sentative urban heat condition during a summer

daytime in the subtropics. However, the daytime

temperature in the urban area reaches its peak in the

summer afternoon (Wong et al. 2016), whereas the

Landsat images record the LST at approximately

10:45 am (local time). Considering the lack of a

satellite-based remote sensing image revealing the

LST in the afternoon, the LST information combined

with temperature field measurements of land surface

and canopy layer in urban areas might be an effective

framework for better understanding the mechanism of

the UHI.

Conclusion

Quantitatively mapping the dominant landscape met-

rics of greenspaces to determine the LST is crucial for

understanding the local UHI mechanism, facilitating a

more holistic understanding of the topological rela-

tionships between the greenspace and LST and a

flexible implementation of greenspace planning policy

for local sites and UHI mitigation. Both the green-

space spatial patterns and LST in urban sites were

highly heterogeneous. Urban planners and designers

frequently seek spatially explicit tools to make

strategic decisions based on the specific characteristics

of urban areas.

In this study, we proposed a new method for

mapping and detailing the dominant landscape metrics

of greenspaces that locally influence the LST across

two selected study areas. The following results were

found: (1) the four representative landscape metrics of

greenspaces identified from the proposed method

could be used to describe the major LST variations

(75.99% with PER, NP, FRAC_AM, and AREA_AM

for Guangzhou and 78.79% with PER, NP, CIR-

CLE_MN, and AREA_AM for Shenzhen). Adding

another landscape metric did not significantly improve

the prediction ability of the models; (2) the proposed

approach could map the dominant landscape metrics

of greenspaces that effectively determine the LST

across cities, in contrast to previous studies, which

identified only the most important influencing factor

for the entire study area; (3) the greenspace compo-

sition is the primary influencing metric, accounting for

the most blocks of the two cities, followed by the NP

and FRAC_AM for Guangzhou and CIRCLE_MN for

Shenzhen accounting for the fewest blocks. Addition-

ally, most of the blocks have a dominant intensity of

landscape metrics of less than 20% (not a very strong

magnitude) in the two cities. This proposed method

provides an operational spatially explicit tool

grounded for urban planners with a fine scale and a

local relationship between the greenspace spatial

patterns and LST, facilitating the implementation of

UHI mitigation strategies.
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