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areas for Indiana bat (Myotis sodalis) conservation
in a complex habitat mosaic
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Abstract

Context Conservation for the Indiana bat (Myotis

sodalis), a federally endangered species in the United

States of America, is typically focused on local

maternity sites; however, the species is a regional

migrant, interacting with the environment at multiple

spatial scales. Hierarchical levels of management may

be necessary, but we have limited knowledge of

landscape-level ecology, distribution, and connectiv-

ity of suitable areas in complex landscapes.

Objectives We sought to (1) identify factors influ-

encing M. sodalis maternity colony distribution in a

mosaic landscape, (2) map suitable maternity habitat,

and (3) quantify connectivity importance of patches to

direct conservation action.

Methods Using 3 decades of occurrence data, we

tested a priori, hypothesis-driven habitat suitability

models. We mapped suitable areas and quantified

connectivity importance of habitat patches with prob-

abilistic habitat availability metrics.

Results Factors improving landscape-scale suitabil-

ity included limited agriculture, more forest cover,

forest edge, proximity to medium-sized water bodies,

lower elevations, and limited urban development.
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Areas closer to hibernacula and rivers were suitable.

Binary maps showed that 30% of the study area was

suitable for M. sodalis and 29% was important for

connectivity. Most suitable patches were important for

intra-patch connectivity and far fewer contributed to

inter-patch connectivity.

Conclusions While simple models may be effective

for small, homogenous landscapes, complex models

are needed to explain habitat suitability in large, mixed

landscapes. Suitability modeling identified factors that

made sites attractive as maternity areas. Connectivity

analysis improved our understanding of important

areas for bats and prioritized areas to target

for restoration.

Keywords Bats � Functional connectivity �
Landscape � Summer habitat � Maxent � Conefor

Introduction

Bats are critical components of functioning ecosys-

tems and, in the United States of America (USA), are

at risk from many factors. Hibernating populations are

impacted by human disturbance and adversely

affected by White-Nose Syndrome (WNS), a fungal

disease caused by a non-native pathogen, Pseudogym-

noascus destructans (USFWS 2007). Following hiber-

nation, bats migrating to summer maternity areas are

likely to encounter fragmented habitat (Carter et al.

2002; USFWS 2007), increased wind energy devel-

opment (Arnett and Baerwald 2013; Roscioni et al.

2013), decreased prey availability via agricultural

pesticide application (IDNR 2017 and Sanchez-Bayo

and Wyckhuys 2019), and exposure to environmental

contaminants (O’Shea and Clark 2002), all of which

may impact survival.

The Indiana bat (Myotis sodalis) is an insectivorous

species listed as ‘‘Endangered’’ under the USA

Endangered Species Act (ESA) and ‘‘Near Threat-

ened’’ on the International Union for Conservation of

Nature’s Red List of Threatened Species. The species

communally hibernates in caves and mines (Whitaker

and Brack 2002) and migrates regionally in spring

(Krauel et al. 2018), traveling away from hibernacula

to summer grounds, using stopover habitat to roost and

forage along the way (Roby et al. 2019). At summer

grounds, females form large maternity colonies,

usually under the bark of dead trees, and remain in

the area, rearing young until migrating back to

hibernacula in the fall (Guthrie 1933). Myotis sodalis

are philopatric and return to maternity areas (Gumbert

et al. 2002), suggesting that maintaining suitable ma-

ternity habitat enhances fitness (USFWS 2007).

Maternity habitat conservation focuses on the

protection of roosts and surrounding trees by assigning

a seasonal conservation buffer around identified sites

(USFWS 2018). However, ample data suggest addi-

tional strategies are essential for long-term conserva-

tion of M. sodalis. Protection beyond identified roosts

would be effective in the long-term, as trees naturally

deteriorate after 1–2 years, rendering them unusable

(Gumbert et al. 2002; Kurta et al. 2002; O’Keefe and

Loeb 2017), or within seasons when destroyed by

weather (Gardner et al. 1991). Detecting bat presence

and locating new roosts requires substantial time and

resources. Moreover,M. sodalis use a network of trees

every year (Humphrey et al. 1977; Gumbert et al.

2002), making locating all of them difficult. Numbers

of hibernating M. sodalis (* 537,297 bats; USFWS

2017) suggest that many maternity colonies have yet

to be located on the landscape and not all suitable areas

are protected.

Myotis sodalis has been studied intensively due to

its endangered status; thus, summer roost and home

range-level needs of the species are well-described

(e.g., Humphrey et al. 1977; Gumbert et al. 2002;

Kurta et al. 2002; Carter and Feldhamer 2005; Menzel

et al. 2005; Sparks et al. 2005; Britzke et al. 2006).

However,M. sodalis interacts with the environment at

multiple scales—fine scale for roost habitat, stand

scale for foraging, and larger landscape contexts for

migratory decisions. Hierarchical management may

be necessary and landscape-level conservation is

likely important. Migration is energetically demand-

ing, and functionally connected habitat may allow bats

to allocate less energy to searching for roosts and

foraging areas. In addition, policy, regulation, and

management decisions regarding endangered species

in the USA are often made at state or regional

government scales covering large mosaic areas. For

these reasons, understanding the landscape-level

habitat needs of M. sodalis is crucial to promote the

recovery of the species.

Myotis sodalis habitat suitability has been modeled

for relatively small study areas with little landscape

variation (Pauli et al. 2015; De La Cruz and Ward
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2016; Hammond et al. 2016), though Loeb and

Winters (2013) assessed suitability range-wide using

only climate and elevation variables. Habitat suitabil-

ity models (HSMs) may be informative only for

landscapes and scales in which they were created and

may not extrapolate well to larger areas or mosaic

landscapes (Pauli et al. 2015; Hammond et al. 2016).

We sought to identify factors that are important forM.

sodalis maternity distribution across a large, complex

landscape and to identify areas to target conservation

efforts.

Methods

Overview

Using Maxent (Phillips et al. 2006) and a long-term

occurrence dataset to identify factors influencing the

distribution of M. sodalis maternity colonies, we

tested an array of simple and complex hypotheses,

including some gleaned from the literature. As M.

sodalis show habitat affinities at smaller scales, we

also proposed the hypothesis that maternity habitat

needs are complex and require ‘‘just right’’ (i.e.,

‘‘Goldilocks’’) conditions at landscape scales, with

more forest and water available, less agriculture and

urban disturbance, lower elevations, farther from

roads, and closer to hibernacula.

Using an information theoretic approach and plau-

sible models, we mapped maternity habitat and

identified suitable patches. We quantified connectivity

importance for suitable patches using graph theory and

used probabilistic habitat availability metrics to target

areas for conservation action.

Study area

We studied M. sodalis in Illinois, USA, a large

landscape (14,594,235 ha) with mixed land cover

types. Historically dominated by prairie and some

forest, contemporary row-crop agriculture and urban-

ization has transformed the landscape into a mosaic of

agricultural, urban, sub/ex-urban, and fragmented

natural habitat (Iverson 1988). As of 2019, nearly

15% (78,403 bats) of the knownM. sodalis population

overwinters in Illinois hibernacula and several other

major hibernacula are scattered in neighboring states

(Indiana: 184,848 bats, 34% of the 2019 population;

Missouri: 195,157 bats, 36%; USFWS 2017). The

Mississippi River Floodplain provides important

roosting habitat for bats in this study area, likely due

to snag creation via flood events (Carter and Feld-

hamer 2005; Bergeson et al. 2015). The southern

quarter of the state encompasses the Shawnee National

Forest, * 107,485 ha managed by the United States

Forest Service.

Occurrence data

We acquired 294 M. sodalis summer occurrence

records via United States Fish and Wildlife Service

and Illinois Department of Natural Resources (data

compiled from IDNR, Illinois Nature Preserves Com-

mission, Illinois Endangered Species Board, and the

Natural Heritage Database). We removed records

labeled ‘‘low positional accuracy’’ and kept only

maternity-associated records (captured reproductively

active females, juveniles, and maternity roost loca-

tions). This left records from years 1989–2017.

To supplement these records and sample less-

studied areas, we completed 39 nights of mist-netting

in 10 areas in 2017 and 31 nights in 12 areas in 2018,

focusing on areas with distribution data gaps. A

sampling area consisted of at least one mist-net site

surveyed for at least two nights. Reproductively active

females and juveniles were fitted with radio transmit-

ters (0.27 g, Holohil Systems Ltd., Ontario, Canada)

and tracked with a receiver and antenna for C 7 days

(or until the transmitter failed) to locate maternity

roosts.

Field-collected data were combined with the

USFWS and IDNR datasets; the resulting data set

spanned nearly 3 decades (1989–2018). In ArcMap

10.6.1 (Environmental Systems Research Institute,

Redlands, California, USA), we randomly removed

records within 1 km of others to address sampling bias

and spatial autocorrelation, consistent with Pauli et al.

(2015). To determine if suitable sites from the late

1980s and the 1990s were still informative for modern

suitability, we evaluated the percent of land use

change for cover types (barren, urban, water, grass-

land, agriculture, and forest) from 1991 to 2018 at

occurrence locations and a surrounding 500-m buffer

(Online Resource 1). We used a paired t-test to

compare distance from major roads in 1996 versus

2018. The amount of forest around records increased

by 7.2% during the time span, and amount of
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agriculture decreased by 4.8%. Distance to major

roads significantly decreased during the span

(5,798 m ± 343 SE in 1996; 6,400 m ± 359 SE in

2017; p = 0.00002). These changes around occurrence

locations are potentially attributed to the ESA protec-

tions around sites and development of newer roads

rendering old major roads less traveled. Given that

forest increased during our occurrence time span, we

retained all points and believe our models represent a

conservative estimate of available suitable habitat.

Environmental variables

We initially considered 36 environmental variables

predicted to be important to the ecology ofM. sodalis.

Environmental variables were related to climate,

elevation, surrounding land cover, total forest edge,

and distance to features such as hibernacula, roads,

urban areas, and water sources. We resampled the

resolution of land cover and all other raster variables

(except climate data) from 30-m to 100-m

(100 9 100-m grid cell dimensions) to reduce com-

putational power needed for the analysis while still

accounting for landscape complexity.

We sourced land cover variables using the Land

Cover of Illinois (LCOI) 1999–2000 dataset (IDNR

et al. 1999). We simplified land classes from 29 to 6

major classes, which were forest, agriculture, grass-

land, urban, water, and other. To examine the influ-

ence of specific forest types, we created a second layer

of minor classes: bottomland forest, deciduous forest,

coniferous forest, agriculture, grassland, urban, water,

and other.

We used moving window analysis in FRAGSTATS

(version 4.2; McGarigal et al. 2012) to calculate

landscape metrics from major (water, agriculture,

forest, urban) and minor (bottomland, coniferous, and

deciduous forest) land cover classes. Per Bellamy et al.

(2013), we used a multi-scale approach. A 100-m,

500-m, and 1-km radius window was centered on each

raster cell to calculate total edge, total area, and

number of patches for each land cover class within the

window, so that each cell in the resulting rasters

contained a continuous value for the surrounding

landscape (* 7 ha for 100-m radius; * 95 ha for

500-m; * 345 ha for 1-km). The 500-m radius

moving window roughly corresponds to M. sodalis

dispersal distances from roosts to foraging sites

(* 1 km; Timpone et al. 2010; Pauli et al. 2015).

We did not consider spatial scales with radii[ 1 km

because this was the spatial autocorrelation distance

we used to filter the occurrence data.

We used elevation data (ISGS 2003) in our models

because elevation is important to M. sodalis distribu-

tion at large (Loeb and Winters 2013) and smaller

spatial scales (Hammond et al. 2016). Temperature is

important to distribution and maternity colony forma-

tion (Loeb and Winters 2013; Pettit and O’Keefe

2017); therefore, we assessed the effect of average

maximum temperature. Temperature data were

sourced from the 30-year normal (1981–2010) PRISM

dataset (800-m resampled to 100-m resolution,

PRISM Climate Group 2004).We used May temper-

atures because M. sodalis begin forming maternity

colonies * 8 April–14 May in Indiana, USA (Pettit

and O’Keefe 2017) and USFWS recognizes the

maternity season to begin mid-May (USFWS 2018).

For all ‘‘distance-to’’ variables, we used ArcMap to

calculate distance to a feature from the center of each

raster cell. We created a distance-to-water variable

(USGS 2018), eliminating water bodies with area\
1 ha. We derived a distance-to-major roads variable

(Illinois Department of Transportation 2018), select-

ing roads with annual average daily traffic rate of 2

cars/minute as major roads (per Pauli et al. 2015). We

calculated distance to closest hibernation site using

locations for sites surveyed within the last 10 years

where C 1 M. sodalis was observed (n = 47, RA

King, USFWS, Bloomington, IN Field Office, unpub-

lished data, 29 November 2017). We predicted

hibernacula would influence distributions in a study

area of this size. Hibernacula are spatially clustered in

Illinois’ limited karst regions; therefore, knowledge of

undocumented hibernation sites would be unlikely to

change our results substantially.

Habitat modeling

We developed models via Maxent version 3.4.1

(Phillips et al. 2017), quantifying relative habitat

suitability by finding the most uniform distribution

given a set of constraints (environmental conditions;

Elith et al. 2006; Phillips et al. 2006). Maxent

performs well with presence-only data compared to

other modeling approaches (Elith et al. 2006), improv-

ing our understanding of habitat associations for rare

and elusive species (Pearson et al. 2007) for which true

absences are difficult to confirm.
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Univariate vetting

To reduce the number of variables and identify

appropriate spatial scales, we used a univariate vetting

process to identify variables to populate the candidate

model set, similar to methods used by Bellamy et al.

(2013). We tested 36 univariate Maxent models

(default settings in Maxent, but only linear and

quadratic features selected). We withheld 10% of

random records for testing, partitioning 142 records

for training and 16 for testing; thus, AUCTest scores

from Maxent output were comparable among models.

This allowed us to determine discriminant ability of

variables at differing scales (100-m, 500-m, and 1-km)

and decide which of 2 correlated variables to retain in

subsequent candidate models (Online Resource 2). For

variables created at multiple scales we retained the

scale with the highest discriminant ability (AUCTest

score). We removed variables with AUCTest B 0.5, a

score that suggested the variable performed worse

than random at discriminating between occurrence

locations and background points; we kept variables

with AUCTest[0.5 to use in the candidate model set.

Habitat suitability models and map

Using an information theoretic approach (Burnham

and Anderson 2002), we tested a series of 26

competing models, including both null and global

models (Table 1). Each model contained 1 to 7

variables and each variable was used at least twice

in the candidate model set. These candidate models

were multi-scale and included variables at the cell

resolution (e.g., elevation), at the best performing

scale for land-cover derived variables (100-m, 500-m,

or 1-km), or that were non-scalar (e.g., ‘‘distance-to’’

variables). We calculated a Pearson’s correlation

matrix using SDMtoolbox (Brown et al. 2017). When

2 variables were highly correlated (r[ 0.7), we used

only the variable with the higher univariate AUCTest

score within a candidate model.

Of the 26 models, 7 were based on important

variables from previous M. sodalis studies (Carter

et al. 2002; Britzke et al. 2006; Carter 2006; Loeb and

Winters 2013; Womack et al. 2013; De La Cruz and

Ward 2016; Hammond et al. 2016). Sixteen models

represented novel hypotheses, including 2 models

accounting for potential sampling bias (e.g., more

surveys may have occurred closer to hibernacula,

water, and roads) and land use history bias (e.g., bats

may occur in areas that are difficult to access). The

global model contained 1 variable from every general

environmental category, minus correlated variables.

The ‘‘Goldilocks’’ model also contained variables

from every general category but contained 1 less

parameter than the global. We created an effective null

model (AUCTest = 0.49) by using an ASCII grid

generated in ArcMap, in which integer values from 1

to 100 were randomly distributed across the study area

extent.

As bats have complex relationships with environ-

mental conditions, we selected linear and quadratic

features in Maxent (Elith et al. 2011). We increased

the regularization multiplier from 1 (default) to 3 to

reduce overparameterization (Warren and Seifert

2011). All other Maxent settings were default,

including the number of background points.

We implemented ENMTools (Warren et al. 2010)

in Perl to calculate AICc values (Burnham and

Anderson 2002) from raw Maxent output ASCII and

LAMBDAS files. Models were ranked on deviation

from the model with the lowest AICc score (DAICc).

Models with DAICc B 2 are typically considered to

have substantial and equivalent support given the

candidate set (Burnham and Anderson 2002); we also

considered a model plausible if its AICc weight was

within 1% of top model’s weight. To evaluate model

predictive performance, we followed Hovick et al.

(2015) to create binary models using the 10% error

threshold of suitability values of the training data and

calculate the omission rate (proportion of test occur-

rences that were predicted absent). A 10% tolerance

accounts for potential spatial and species identification

errors in the dataset by omitting suitability scores in

the lowest 10th percentile of the training data (Hovick

et al. 2015). Thresholding based on occurrence data

produces maps that are biologically relevant. We

determined the proportion of the study area predicted

to be suitable to check the efficacy of models with low

omission rates (i.e., a model with a low omission rate

that predicted most of the study area suitable was not

informative for our objectives). Despite recent con-

cerns of assessing presence-background models with

discriminant metrics (Leroy et al. 2018; Warren et al.

2020), AUC is reported frequently in the HSM

literature; thus, we provide AUCTest scores for candi-

date models as a threshold-independent evaluation
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metric. We calculated parameter importance values by

summing weights across all plausible models in which

each parameter appeared, with values closest to 1

considered most important. We also calculated model-

averaged parameter estimates and direction of influ-

ence for each of the variables within plausible models,

using values from all plausible models.

To define suitable areas, we summed binary maps

from the plausible model set using the Raster Calcu-

lator in ArcMap. In the final raster, cells with summed

values[ 1 were considered suitable habitat. For

example, if two models were plausible, then 2 binary

maps would be summed together. The possible values

in the resulting raster would range from 0 to 2, and

cells with values[1 would be considered suitable.

Habitat connectivity

We quantified patch importance to functional connec-

tivity of the habitat network (Saura and Rubio 2010) in

Conefor Sensinode 2.6 (CS26; Saura and Torne 2009).

We converted suitable raster cells into simplified

polygons using the Raster to Polygon tool in ArcMap

to represent maternity habitat patches. CS26 requires

substantial computational power (Saura and Torne

2009), so we removed 6201 patches\ 40 ha in area to

reduce the number of nodes. The average home range

area for females in Illinois is 161.1 ha (Menzel et al.

2005) and, therefore, 40 ha is likely a conservative

value. We retained 1573 patches ranging from 40 to

3,328,276 ha (mean = 2,765 ha). Using Conefor

Inputs for ArcGIS Extension (Jenness 2016), we

converted the landscape to a graph of nodes (suit-

able patches) and all possible links (Euclidean

distances between patches).

In CS26, we calculated the Probability of Connec-

tivity (PC) of the overall patch network and the

connectivity importance of individual patches by the

deviation in the PC when a patch was removed from

the landscape (dPCk; see Saura and Rubio (2010) and

Saura and Pascual-Hortal (2007) for extensive details

on PC and dPCk metrics). Three fractions sum to

determine the patch importance (dPCk): dPCintrak,

dPCfluxk, and dPCconnectork. The dPCintrak consid-

ers the movement within the patch k itself and is

influenced by the attribute (area in this study). The

dPCfluxk is determined by the area of the patch and the

topological position in the network. A patch only

contributes to the dPCk with a dPCconnectork value if

it is the most likely path between patches. The

dPCconnectork fraction can identify patches that are

likely important stepping-stones for reaching other

patches.

Bats are capable of traversing a matrix of suit-

able and unsuitable patches; however, they do require

protective cover, foraging habitat, and roosting stops

along migration routes. We used the median distance

traveled by M. sodalis between foraging bouts during

spring migration (Roby et al. 2019) to define dispersal

distance in CS26; if a patch was 10.1 km from another

patch (based on Euclidean distance of the links), it was

defined as 50% likely to be connected to another patch.

Distances[ 10.1 km were assigned a lower probabil-

ity of dispersal. Similar to Saura and Pascual-Hortal

(2007), this process allowed for prioritization of

suitable areas (patches with higher relative dPCk

values) important for connectivity and areas with

opportunity to improve dPCk values. To assess if

available habitat patches were isolated from the

network and identify those important for inter-patch

connectivity, we calculated the number of patches

important for each fraction of dPC, and the relative

importance of each fraction by dividing the sum of

dPCintrak, dPCfluxk, and dPCconnectork values by the

sum of dPCk.

Results

Occurrence data

Our 2017 and 2018mist-netting efforts yielded 28 new

occurrence records: 8 capture sites and 20 roost sites.

We combined these with the USFWS and IDNR

records and then reduced the total dataset to 158

records after culling points with low positional

accuracy, within 1 km of other records, or not

associated with a maternity colony (Fig. 1). The

resulting dataset spanned 45 of Illinois’ 102 counties.

Eighty-seven of the records were roost occurrences

and 71 were capture records.

Univariate models

Most land cover variables had more discriminant

ability at the 500-m scale (* 95 ha area). The

exceptions were area of coniferous and bottomland
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forest (best at 1-km) and number of forest patches

(best at 100-m). Three variables had little discriminant

ability—number of urban patches in 1-km radius,

(AUCTest = 0.31), area of urban in 1-km radius

(AUCTest = 0.38), and area of coniferous forest in

500-m radius (AUCTest = 0.48).

Habitat suitability models

The ‘‘Goldilocks’’ model, hypothesizing that M.

sodalis require complex conditions, had the lowest

AICc score and held 78% of AICc weight (Table 2).

The global model ranked second (DAICc = 2.54) and

was also plausible based on AICc weight (22%). Both

plausible models had moderate omission rates and the

bFig. 1 Maternity-associated records in Illinois (data compiled

from USFWS, IDNR, Illinois Nature Preserves Commission,

Illinois Endangered Species Board, and the Natural Heritage

Database, and the Illinois Bat Conservation Program; years

1989–2018; hexagons) and hibernacula in Illinois and neigh-

boring states provided by USFWS and IDNR (diamonds). Map

depicts the 158 maternity records retained after filtering out

spatially autocorrelated (\ 1 km away from other records) and

low positional accuracy records. Areas predicted to be

suitable by plausible Maxent models are depicted in gray

Table 2 Rankings for candidate models tested to assess Myotis sodalis maternity habitat suitability in Illinois

Model K DAICc AICc

wi

AUCTest Omission rate

(n occurrences

omitted)

Proportion of study area predicted

suitable

‘‘Goldilocks’’ 10 0 0.78 0.86 0.12 (2) 0.35

Global 11 2.54 0.22 0.87 0.12 (2) 0.31

Womack et al. (2013) 4 21.29 \ 0.01 0.83 0.19 (3) 0.41

Hammond et al. (2016) 4 21.53 \ 0.01 0.83 0.19 (3) 0.40

Land use history bias 7 26.40 \ 0.01 0.85 0.12 (2) 0.36

Migration demand 6 26.79 \ 0.01 0.84 0.12 (2) 0.38

Insects 7 46.25 \ 0.01 0.85 0.06 (1) 0.35

Foraging needs 6 62.21 \ 0.01 0.86 0.12 (2) 0.36

Forest type 5 79.63 \ 0.01 0.83 0.06 (1) 0.35

Carter et al. (2002) 8 83.22 \ 0.01 0.82 0.00 (0) 0.41

Snag availability 3 96.23 \ 0.01 0.81 0.06 (1) 0.38

De La Cruz and Ward

2016)

5 99.48 \ 0.01 0.82 0.00 (0) 0.41

Forest availability 2 106.48 \ 0.01 0.80 0.06 (1) 0.38

Forest fragmentation 3 108.39 \ 0.01 0.80 0.06 (1) 0.39

Carter (2006) 6 119.73 \ 0.01 0.79 0.12 (2) 0.67

Forest complexity 2 137.63 \ 0.01 0.83 0.00 (0) 0.47

Research bias 5 148.37 \ 0.01 0.77 0.12 (2) 0.53

Agriculture 4 154.89 \ 0.01 0.76 0.00 (0) 0.48

Elevation 1 174.90 \ 0.01 0.73 0.12 (2) 0.68

Loeb and Winters (2013) 2 175.88 \ 0.01 0.73 0.12 (2) 0.67

Britzke et al. (2006) 4 179.47 \ 0.01 0.75 0.06 (1) 0.55

Hibernacula 2 205.81 \ 0.01 0.72 0.12 (2) 0.77

Climate 1 209.13 \ 0.01 0.70 0.12 (2) 0.67

Water 5 216.86 \ 0.01 0.76 0.06 (1) 0.79

Urban disturbance 4 307.79 \ 0.01 0.66 0.12 (2) 0.83

Null 1 321.59 \ 0.01 0.49 0.19 (3) 0.88

For each model, we show number of parameters (K), the difference between the Akaike’s Information Criterion for small sample

sizes and the model with the lowest AICc (DAICc), the AICc model weight (wi), discriminant ability (AUCTest), the true omission rate

(proportion of test occurrences predicted absent), the number of test occurrences predicted absent (n occurrences omitted of 16

tested), and the proportion of the study area predicted suitable. Omission rate is an evaluation of the binary maps determined by the

suitability value at 10% omission error of training occurrences
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highest discriminant ability of all candidate models

(AUCTest=0.86 and 0.87; Table 2). None of the other

models, including those based on previous studies of

M. sodalis roosting and foraging habitat requirements,

were plausible according toDAICc and weight criteria.

Models with a 0% omission rate had relative low

discriminant ability (Table 2); all such models were

implausible (DAICc[21).

Parameter importance and estimates

Five variables appeared in both plausible models and

had importance values of 1—area of agriculture in

500-m radius, area of water in 500-m radius, elevation,

distance to closest hibernacula, and area of urban in

500-m radius (Table 3). Response curves for these

variables and area of forest in 500-m radius, which was

also in the top-ranked ‘‘Goldilocks’’ model, are plotted

Table 3 Parameter coefficient estimates for variables in two plausible models (‘‘Goldilocks’’ and Global), directions of influence

(positive or negative), and importance values

Parameter ‘‘Goldilocks’’ estimate Global estimate Importance value

a_ag_500/_q 0.93/- 1.79 0/- 0.51 1.00

a_wat_500/_q 1.99/- 2.06 0.46/0.76 1.00

elev - 2.35 - 0.72 1.00

dist_hib/_q - 1.28/0.16 0.32/0.03 1.00

a_urb_500 - 0.94 - 0.39 1.00

a_for_500/_q 6.08/- 4.44 – 0.78

dist_roads/_q – 3.28/- 3.68 0.22

te_for_500/_q – 2.55/- 1.08 0.22

Importance values were calculated by summing the AICc weight across the plausible models in which the parameter appeared.

Parameters with ‘‘/_q’’ refer to quadratic effects. Variables are defined in Table 1 and Table S2

Fig. 2 Maxent response curves (solid lines) of the six variables

in the top-ranked habitat suitability model (‘‘Goldilocks’’) and

the relationship to the relative habitat suitability score (0–1).

Variables in the figure are converted to proportions for

visualization. Vertical dotted lines are mean conditions

available throughout the study area (Illinois, USA). Vertical

dashed lines are mean conditions observed at the 158 Myotis
sodalis maternity occurrence locations that were used to model

suitability in Maxent. Mean conditions were measured in

ArcMap 10.6.1
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in Fig. 2. When we considered area in terms of

proportion of the window, habitat suitability was

highest when the landscape was less than * 20%

agriculture in a 500-m radius, and above this value

suitability steadily declined (Fig. 2c). Suitability was

also highest when the proportion of water was

* 30–50% of the landscape (Fig. 2e), and proportion

of forest was * 60–80% (Fig. 2f). Suitability

decreased farther from hibernacula, reaching an

asymptote at distances[ 125 km (Fig. 2a). Elevation

and area of urban cover had negative linear effects

(Fig. 2b, d).

Suitability map

In the final summed raster, 30% of the study area was

suitable habitat (Fig. 1). There was a high concentra-

tion of suitable areas in southern Illinois, which

included the Shawnee National Forest (Fig. 1). Fur-

ther north, suitable areas were generally adjacent to

rivers (e.g., Illinois River Valley). Fourteen of 16 test

occurrences were in areas predicted to be suitable.

Two test records were in unsuitable areas: a roost from

1989 and a capture location from 2011. Of the more

recent test records (years 2011–2017), 9 of 10 were

successfully predicted.

Habitat connectivity

We analyzed 1573 habitat patches in CS26 (Fig. 3).

The most critical patch for connectivity was a single

large patch covering the southern Illinois landscape

and extending across the Illinois River Valley. When

this patch was removed, the overall functional con-

nectivity of the habitat network decreased by 99.7%

(dPCk = 99.67; dPCintrak = 98.96; dPCfluxk = 0.71;

dPCconnectork = 0.001). This critical patch comprised

22.8% of the total state area and 76% of the

suitable habitat available in the state. Most patches

contributed to importance (dPCk) via the dPCintrak
fraction (n = 1132; Fig. 4), and fewer patches

contributed through dPCfluxk (n = 130) and dPCcon-

nectork (n = 8). The relative importance of each

fraction to the dPC were as follows: dPCintra

(98%), dPCflux (1%), and dPCconnector (1%). There

were 1,443 patches that only contributed to impor-

tance through the dPCintra fraction and were not

important for inter-patch connectivity.

Discussion

Two complex models successfully identified land-

scape-scale factors explaining M. sodalis maternity

habitat site suitability in a large mosaic landscape

(88% of test occurrences were predicted present).

Models derived for smaller, more homogenous study

areas were implausible at the larger spatial scale of our

study area and had either higher omission errors or

lower discriminant ability than plausible models,

supporting the idea that M. sodalis habitat needs are

multi-scale. When applied to Illinois, the range-wide

model created by Loeb and Winters (2013) for a

climatic suitability study had lower discriminant

ability compared to our plausible models and likely

over-predicted suitability (67% of the study area

predicted suitable), which suggests it did not ade-

quately account for M. sodalis ecology. Therefore,

effective habitat suitability models should consider

hierarchical levels of bat ecology (i.e., roost habitat,

foraging areas, and migration corridors connecting

summer habitat and hibernacula).

At the regional landscape scale considered herein,

M. sodalis inhabited complex maternity habitat near

medium- to large-sized water bodies, with limited

agriculture and more forest cover, at lower elevations,

and closer to hibernacula. For land cover variables

tested at 3 scales, conditions available in the sur-

rounding * 95 ha area (500-m radius), rather than

smaller (* 7 ha; 100-m radius) or larger (* 346 ha;

1-km radius) scales, were generally more influential.

The 500-m radius moving window corresponds to

typical M. sodalis dispersal distances from roosts to

foraging sites (* 1 km; Timpone et al. 2010; Pauli

et al. 2015). However, consistent with findings for

multiple bat species in Europe (Bellamy and Altring-

ham 2015), different scales were important for differ-

ent variables (e.g., bottomland forest area was best at

bFig. 3 Connectivity importance of patches (dPCk) of modeled

maternity habitat for Myotis sodalis in Illinois, USA. Larger

dPCk values are more important than lower values to the overall

habitat connectivity (PC)
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1-km radius and number of forest patches was best at

100-m radius). This suggests that, at landscape scales,

M. sodalis distribution is a function of foraging needs,

not just local roosting needs and that habitat needs are

likely multi-scale. The concentration of suitable areas

around rivers was not surprising; low-elevation,

forested riparian areas may flood regularly, which is

important for snag creation (Carter 2006). Elevation is

an important predictor of habitat suitability for M.

sodalis in the heavily forested Southern Appalachian

Mountains; however, there bats roost at higher eleva-

tions than in other parts of the species’ range

(Hammond et al. 2016). In forested regions of the

Midwest where remote sensing data were available,

Pauli et al. (2015) determined that proximity to

hibernacula was not an important predictor of M.

sodalis roosting habitat. However, ours is the first

study to assess the relationship between M. sodalis

maternity habitat suitability and distance to hibernac-

ula across an entire state, and we found that suitability

steadily decreased as distance increased. The average

distance from occurrence records to the nearest

hibernaculum was * 55 km and areas within

125 km of hibernacula were more suitable.

While agricultural lands may provide some forag-

ing opportunities for M. sodalis (Sparks et al. 2005;

Kaiser and O’Keefe 2015), we found that bats used

areas with less agriculture than is typically available in

this large mosaic landscape. Our models identified a

threshold where suitability decreased as proportion of

agriculture within 95 ha increased above 20%. Clear-

ing large tracts of land for agriculture may contribute

to forest fragmentation and isolation of suitable ma-

ternity roost habitat. Large agricultural areas may also

indirectly affect habitat suitability by decreasing

biodiversity and abundance of insect prey (Sanchez-

Bayo and Wyckhuys 2019). This result of our study

has implications for bats globally, as agriculture is

estimated to be a threat to half of bat species (Frick

et al. 2019).

To maximize return on conservation investment,

improvements in both habitat suitability and func-

tional connectivity are essential. Our study was the

first to examine connectivity of the distribution of M.

sodalis habitat across a large landscape. Similar

modeling methods were used in a study of horseshoe

bats (Rhinolophus spp.) to identify key corridors and

areas for conservation in a 176,000-ha area in Europe

(Le Roux et al. 2017). Metrics such as dPC and dPC

fractions enhanced our knowledge of the habitat

network and patches important for maintaining or

restoring connectivity. Based on quality of habitat

patches alone, 1573 patches were suitable in our *
14,594,000-ha study area. Of these suitable patches,

72% contributed to connectivity importance, owing

mostly to connectivity within the area of a patch

(dPCintra); however, intra-patch connectivity is likely

unimportant to migratory movements. Only 130

patches (8%) were important for inter-patch connec-

tivity (dPCfluxk and dPCconnectork), indicating there

is relatively low connectivity among suitable patches

across the larger landscape we studied.

Our results have landscape-scale implications for

M. sodalis management. For example, if a patch only

contributes to importance via the dPCintra fraction

(1,443 patches in our study; red patches in Fig. 5), this

is indicative of isolation from other patches. Accord-

ingly, in Illinois, many patches of M. sodalis habitat

are isolated. The most influential landscape variables

were typically at the 95-ha scale in our models, while

10.1 km is the median distance migrating M. sodalis

travel before they stop in habitat to forage or roost

(Roby et al. 2019). Our results suggest that allocating

resources close to hibernacula may yield the greatest

return on investment; thus distance to hibernacula

should be considered in studies on other hibernating

bat species. We recommend first preserving and

restoring native prairies and forests in areas that are

B 10.1 km away from existing habitat patches and

\ 125 km away from known hibernacula (Fig. 5).

Improving conditions in the matrix at the 95-ha scale

would improve landscape-scale maternity habitat

suitability, and likely increase inter-patch connectivity

importance values (dPCflux and dPCconnector).

More specifically, we propose two ways to improve

conservation outcomes forM. sodalis in Illinois. First,

we suggest restoring habitat around existing patches

near a ‘‘Priority 2’’ hibernaculum in the Illinois River

Valley (‘‘Priority’’ designation by USFWS where

1000 to 10,000 individual M. sodalis have been

observed hibernating; USFWS 2007; IDNR 2017;

bFig. 4 Myotis sodalis maternity habitat patches important for

intra-patch connectivity (dPCintrak) and inter-patch connectiv-

ity (dPCfluxk and dPCconnectork). These three fractions sum to

the patch connectivity importance (dPCk)
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Figs. 1 and 5). This is an area of conservation interest,

as it is near the northernmost edge of the species’ range

and is predicted to be a vulnerable area under future

climate change (Loeb and Winters 2013) and wind

energy development scenarios (Erickson et al. 2016).

Second, as wind farms threaten migratory bats (Arnett

and Baerwald 2013), we suggest siting new wind

farms farther from hibernacula and away from the

maternity habitat network (i.e., outside of the orange

suitable areas and the gray priority restoration areas in

Fig. 5). Areas within the range ofM. sodalis are under

increasing pressure for wind development; placing

farms outside of the main habitat network may reduce

mortality risk during migration. Wind farm risk maps

have been created for two bat species in Europe and

are likely a valuable tool for conservation planning in

other areas (Roscioni et al. 2013).

While these models have numerous applications,

important caveats exist. Sampling bias is a common

problem with HSMs, potentially skewing variable

importance (Elith et al. 2011). Although we incorpo-

rated a research bias hypothesis into our candidate

model set and reduced bias by spatially filtering

records, our occurrence dataset was acquired from

multiple sources; therefore, possible errors and some

sampling bias may still exist. However, because we

combined data from more than one source and

conducted field surveys to address distribution gaps,

we likely alleviated some biases. Further, the research

bias model was not plausible (Table 2). As is the case

with most HSM studies, we did not model abundance

data for summer or winter populations; incorporating

abundance data might alter the relative importance of

some patches. Our models were created with currently

available data, but as climate and land use patterns

change, M. sodalis may alter its behavior and distri-

bution (Loeb and Winters 2013); therefore, these

models should be retested in the future and in different

landscapes. Although we found that land use has

changed in the span of our occurrence data, there is

evidence thatM. sodalis are loyal to maternity areas in

the Midwest for decades, even in cases of extensive

urbanization; e.g., the Indianapolis Airport colony was

discovered in 1994 and is still present in the area

26 years later (Whitaker and Sparks 2008; Bergeson

et al. 2020). Though areas around maternity colonies

in Illinois may have become more suitable (increased

forest) during the span of our occurrence data,

potentially via habitat protections under the ESA, this

may not be the case for unprotected areas in the state.

Models created at larger, range-wide scales might

provide more insight and could help managers under-

stand if range-wide management is needed or if state-

wide scales are sufficient to promote recovery.Myotis

sodalis cross geopolitical boundaries, so larger-scale

models may be necessary. Additional work addressing

migration-related questions may lead to better land-

scape-scale models as we gain more insight into the

behavior, dispersal capabilities, and habitat needs of

migrating bats. We recognize thatM. sodalis is but one

species of concern and that resources are limited;

therefore, we recommend future studies that overlay

HSMs for multiple sensitive species (Cooper-Bohan-

non et al. 2016) and identify important patches for a

variety of organisms to maximize return on conserva-

tion investment. Though we model habitat and con-

nectivity for one bat species, our methods could be

applied to numerous species in myriad ecological

contexts to inform conservation action for imperiled

bats worldwide. We conclude that including data

collected across several decades identifies factors

influencing suitability and incorporating multi-scale

variables in complex models is crucial when modeling

bat habitat at larger spatial scales.
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